Minimal Experiments

Healy,Leo

Will the Braves Win the World Series?

0-33%	33-66%	66-100%

What's the simplest experiment that learns this info?

0-33% 33-66%		66-100%

\$10 if *Braves Win*, \$10 if *Astros Win*, \$10 with 66%

0-33% 33-66%		66-100%	

0-25%	25-50%	50-75%	75-100%

\$10 if *Braves*, \$10 if *Astros*, \$10 with **75%**

\$10 if *Braves*, \$10 with **50%**

0-25%	25-50%	50-75%	75-100%

Everyone likes cookies better than apples and bananas.

Everyone either likes dates best and anyone who doesn't like dates best likes cookies best and dates worst.

The General Method

Objects.

Can be anything.

• Lotteries

. . .

- Consumption Goods
- Time-dated payments
- Strategies in a game
- *Multi-person payments*

In general: A, B, C, D, ...

ABC,ACB,BAC,BCA,CAB,CBA

Model (or, "Type Space").

{CAB,CBA},{ABC,ACB,BAC,BCA}

Everyone likes cookies better than apples and bananas.

Option 1: Testing the Theory.

{CAB,CBA},{ABC,ACB,BAC,BCA}

Everyone likes cookies better than apples and bananas.

Option 2: Categorize Subjects (& Test).

{DABC,DACB,DBAC,DBCA,DCAB,DCBA},{CBAD,CABD},{Rest}

Everyone likes dates best, or cookies best and dates worst.

Option 3: Categorize, Assume Theory True

{DABC,DACB,DBAC,DBCA,DCAB,DCBA},{CBAD,CABD}

Q: What's the "smallest" experiment that accomplishes your goal?

How many possible experiments are there?

N=9

6,703,903,964,971,298,549,787,012,499,102,923,063,739,682,910,296 ,196,688,861,780,721,860,882,015,036,773,488,400,937,149,083,451, 713,845,015,929,093,243,025,426,876,941,405,973,284,973,216,824,5 03,042,047

Differ by one Inversion.

ABC, ACB, BAC, BCA, CAB, CBA

Differ by one Inversion.

ABC,ACB,BAC,BCA,CAB,CBA

Permutahedron.

Permutahedron.

Differentiating Vertices.

Theorem.

An experiment tests a model M:

if and only if

it includes at least one set from each edge between **neighbors** that are **not in the same set** under *M*.

Cookies and Dates.

${A,B,C,D},{A,D},{B,D}$

$\{A,D\},\{B,D\}$

${A,B,C,D},{A,D},{B,D}$

Parametric Utility Example: Risk Prefs

Parametric Utility Example: R²

The App

<u>https://gregleo-econ.shinyapps.io/minimalexperiments/</u>