Epistemic Conditions for the Failure of Nash Equilibrium

P.J. Healy

SITE

August 2010201120122013

Motivation

Question:

Do people play Nash equilibrium? If not, why not?

- Utilities? (NE with Fehr-Schmidt preferences)
- Beliefs? (Level-K)
- Rationality? (QRE)

Rationality is not primitive.
'Imposed by the solution concept?'... not so obvious.
We need theory framework in which to discuss these things!

Aumann \& Brandenburger (1995), bastardized

The lab environment:

- Outcome space: X (\$\$ payoffs to each player)
- Game form: $(N, S, g)(g: S \rightarrow X)$

Example: 1-Shot P.D. in the Lab

Actual game is determined by players' types.

Adding Epistemology

- Outcome space: X
- Game form: $(N, S, g)(g: S \rightarrow X)$
- Type space: Θ_{i} for each $i \in N$
- Player's type θ_{i} determines:
- Payoff function: $\boldsymbol{u}_{i}\left(x ; \theta_{i}\right)$
- Beliefs about $\theta_{-i}: \boldsymbol{p}_{i}\left(\theta_{i}\right)\left(\theta_{-i}\right)$
- Pure strategy choice: $s_{i}\left(\theta_{i}\right) \in S_{i} \leftarrow$ Cool!

Given this, we can define at each θ_{i} :
i 's 'conjecture' about s_{-i} :

$$
\boldsymbol{\phi}_{i}\left(\theta_{i}\right)\left(s_{-i}\right)=\boldsymbol{p}_{i}\left(\theta_{i}\right)\left(\left\{\theta_{-i}: s_{-i}\left(\theta_{-i}\right)=s_{-i}\right\}\right)
$$

i 's (subjective) expected utility:

$$
\boldsymbol{E} \boldsymbol{u}_{\boldsymbol{i}}\left(s_{i} ; \theta_{i}\right)=\sum_{s_{-i}}\left[\boldsymbol{\phi}_{i}\left(\theta_{i}\right)\left(s_{-i}\right)\right] \boldsymbol{u}_{\boldsymbol{i}}\left(g\left(s_{i}, s_{-i}\right) ; \theta_{i}\right)
$$

Rationality \& Equilibrium

A player is rational at θ_{i} if:

$$
s_{i}\left(\theta_{i}\right) \in \arg \max _{s_{i}} \boldsymbol{E} \boldsymbol{u}_{i}\left(s_{i} ; \theta_{i}\right) .
$$

Standard definitions of known, mutually known, and common knowledge.

Interpretations

- Everyone comes to the lab with a θ_{i}
- Preferences over outcomes (inequality aversion, selfishness, etc.) captured in $\boldsymbol{u}_{i}\left(x ; \theta_{i}\right)$
- Nobody mixes: I'm uncertain about your action only because I'm uncertain about your type.
- Thus, mixed-strategy equilibrium only exists in conjectures. 'Equilibrium' is a property of beliefs, not actions!

AB95's Theorem: 2 Players

Theorem

Suppose $n=2$. If
(1) $\boldsymbol{u}(\theta)$ is mutually known,
(2) $\boldsymbol{\phi}(\theta)$ is mutually known, and
(3) rationality is mutually known.

Then $\left(\phi_{2}\left(\theta_{2}\right), \phi_{1}\left(\theta_{1}\right)\right)$ is a MSNE of $(N, S, u \circ g)$.

This Paper

- Subjects play five 2×2 one-shot games. Strangers, no feedback.
- For each game, elicit:
(1) Chosen action $\left(s_{i}\left(\theta_{i}\right)\right)$
\star Play game
(2) Preferences over outcomes $\left(u_{i}\left(\cdot ; \theta_{i}\right)\right)$
\star 'Probability equivalent' of each cell. $u(x) \in[0,100]$
(3) i 's beliefs about u_{j}
\star Point estimate, paid on abs. deviation
((Conjectures about $s_{j}\left(\boldsymbol{\phi}_{i}\left(\theta_{i}\right)\right)$
\star Grether/Karni mechanism (probability BDM)
(3) i 's beliefs about ϕ_{j}.
\star Point estimate, paid on abs. deviation
(0) i 's beliefs about j 's rationality
« Grether/Karni mechanism
If $\left(\phi_{2}, \phi_{1}\right)$ is not NE , then ≥ 1 of these 3 conditions fails. WHICH??

Example Observation

Game Form

	0%	100%
$>0 \%$	50,50	90,90
100%	10,10	1,1

Obs 180: Row's Game

	$\vee 55 \%$	45%
85%	40,10	50,70
15%	10,20	5,5

Obs 180: Column's Game

	$\vee 55 \%$	45%
85%	3,2	4,4
15%	2,3	1,1
	Column's Ordinal Game	

Data

- 2010 Data:
- 78 subjects
- Very negative results. Confusing interface? (Note: blame RA)
- 2011 Data:
- More intuitive interface \& instructions
- 72 subjects
- 2013 Data:
- Simple pencil \& paper
- Ordinal preferences, guess s_{j}, no rationality. Can't test AB95...
- 26 subjects so far
- ~60 min, \$5-\$20 payout

Game Form 1: Dominance Solvable

Game Form:

Dom. Solvable \$NE: (U,R)

Game Form 2: Symmetric Coordination

Game Form:

Three \$NE: $(\mathrm{U}, \mathrm{L}) \geq(\mathrm{D}, \mathrm{R}) \geq((2 / 9,7 / 9),(2 / 9,7 / 9))$

Game Form 3: Prisoners' Dilemma

Game Form:

Dominant Strategy Equil (\$): (D,R)

Game Form 4: Asymmetric Matching Pennies

Game Form:

	L	R
U	\$15,5	\$5,10
D	\$5,10	\$10,5

Unique Mixed-Strategy \$NE: ((1/2,1/2),(1/3,2/3))

Game Form 5: Asymmetric Coordination

Game Form:

Three \$NE: $(\mathrm{U}, \mathrm{L}) \geq(\mathrm{D}, \mathrm{R}) \geq((9 / 13,4 / 13),(2 / 9,7 / 9))$

Hand-Waving Summary of 2011 Data

Game Form

G1:DomSolv	${ }^{\$} 10,{ }^{\$} 5$	${ }^{\$} 15,{ }^{\text { }} 15$	Util: Decent	RowRtnl: \checkmark
	\$5,\$ 10	\$1,\$1	Blfs: Bad	ColRtnl: OK
G2:SymCoord	${ }^{\text {\$ }} 15,{ }^{\text { }} 15$	${ }^{\$} 1,{ }^{\$} 1$	Util: \checkmark	RowRtnl: \checkmark
	\$1,\$ 1	\$5,\$5	Blfs: \checkmark	ColRtnl: \checkmark
G3:PD	${ }^{\$} 10,{ }^{\text { }} 10$	${ }^{\$ 1,1} 15$	Util: V.Bad	RowRtnl: OK
	${ }^{\$} 15,{ }^{\text { }} 1$	\$5,\$5	Blfs: Bad	ColRtnl: OK
G4:AsymMP	\$15,\$5	\$5,\$ 10	Util: Weak	RowRtnl: Bad
	\$5, ${ }^{\text {² }} 10$	${ }^{\$} 10,{ }^{\text {S }} 5$	Blfs: \checkmark	ColRtnl: Weak
G5:AsymCoord	${ }^{\$} 15,{ }^{\text {S }} 5$	\$1,\$1	Util: OK	RowRtnl: Bad
	${ }^{\$ 1}{ }^{\text {, }} 1$	\$5,\$ 10	Blfs: Bad	ColRtnl: Bad

Playing the Same Ordinal Game?

Game Form

G1:DomSolv	${ }^{\$} 10, \$ 5$	\$15,\$ 15	69.4\%	100\%
	\$5, ${ }^{\text { }} 10$	\$1,\$1		
G2:SymCoord	${ }^{\$} 15,{ }^{\text {¢ }} 15$	\$1,\$1	88.9\%	100\%
	\$1,\$1	\$5,\$5		
G3:PD	\$10,\$ 10	\$1,\$ 15	36.1\%	92.3\%
	${ }^{\$ 15,4} 1$	\$5,\$5		
G4:AsymMP	\$15,' 5	\$5,', 10	52.8\%	100\%
	\$5, ${ }^{\text {² }} 10$	${ }^{\$} 10,{ }^{\$} 5$		
G5:AsymCoord	\$15,\$ 5	\$1,\$1	75.0\%	100\%
	\$1,\$ 1	\$5, ${ }^{\text { }} 10$		
		Overall:	64.4\%	99.1\%
H_{0}	Random	Response:	6.25\%	6.25\%

Testing AB95 w/ 2011 Data

- u mutual knowledge: If same ordinal game
- ϕ mutual knowledge: If max $\pm 10 \%$ error
- Ratn'I mutual knowledge: If true, $>=75 \%$ prob
- 10/180 observations satisfy these 3 conditions.
- 9: Game 2 (SymCoord). 1: Game 1 (DomSolv)

The 2013 Data

- Simple enough that I trust the data
- Not rich enough to test at the individual (pair) level

2013 Data: Preference Ranking Histograms

\section*{GAME 1: DOMINANCE SOLVABLE
 | | L | R |
| :---: | :---: | :---: |
| U | ${ }^{\text {¢ }} 10,5$ | ¢15,15 |
| D | ${ }^{\text {¢ }}$, 10 | ${ }^{\text {¢ }} 1,1$ |

Row Prefs
Col Prefs

Play, Conjectures \& Beliefs)

GAME 1: DOMINANCE SOLVABLE

		Play	15\%	85\%
		1stBIf	8\%	92\%
Play	1stBIf	2ndBIf	15\%	85\%
100\%	92\%	100\%	\$10,\$5	\$15,\$15
0\%	8\%	0\%	\$5,\$10	\$1,\$1

Utility \checkmark
Beliefs OK
Rationality seems to fail, but maybe not at indiv. level

2013 Data: Preference Ranking Histograms

GAME 2: SYMMETRIC COORDINATION

	L	R
U	15,15	$\$ 1,1$
	$\$ 1,1$	$\$ 5,5$

Row Prefs
Col Prefs

Play, Conjectures \& Beliefs)

GAME 2: SYMMETRIC COORDINATION

		Play	92\%	8\%
		1stBIf	100\%	0\%
Play	1stBIf	2ndBIf	100\%	0\%
100\%	100\%	100\%	\$15,\$15	\$1,\$1
0\%	0\%	0\%	\$1,\$1	\$5,\$5

Utility \checkmark
Beliefs \checkmark
A game theory home run!!

2013 Data: Preference Ranking Histograms

GAME 3: PRISONERS' DILEMMA

	L	R
U	\$10,10	\$1,15
D	${ }^{\text {\$ }} 15,1$	\$5,5

Row Prefs

Col Prefs

Play, Conjectures \& Beliefs)

GAME 3: PRISONERS' DILEMMA

		Play	54\%	46\%
		1stBIf	31\%	69\%
Play	1stBIf	2ndBIf	46\%	54\%
54\%	31\%	38\%	\$10,\$10	\$1,\$15
46\%	69\%	62\%	\$15,\$1	\$5,\$5

Utility X
Beliefs X
Not complete-info game.

2013 Data: Preference Ranking Histograms

GAME 4: ASYMMETRIC MATCHING PENNIES

	L	R
U	\$15,5	\$5,10
D	\$5,10	\$10,5

Row Prefs
Col Prefs

Play, Conjectures \& Beliefs)

GAME 4: ASYMMETRIC MATCHING PENNIES

		Play	54\%	46\%
		1stBIf	69\%	31\%
Play	1stBIf	2ndBIf	62\%	38\%
85\%	92\%	100\%	\$15,\$5	\$5,\$10
15\%	8\%	0\%	\$5,\$10	\$10,\$5

Utility OK, but a little shaky
Beliefs \checkmark
Rationality seems to fail for Column

2013 Data: Preference Ranking Histograms

GAME 5: ASYMMETRIC COORDINATION

	L	R
U	\$15,5	${ }^{\$} 1,1$
D	${ }^{\text {\$ }} 1,1$	\$5,10

Row Prefs

Col Prefs

Play, Conjectures \& Beliefs)

GAME 5: ASYMMETRIC COORDINATION

		Play	54\%	46\%
		1stBIf	31\%	69\%
Play	1stBIf	2ndBIf	23\%	77\%
92\%	100\%	92\%	\$15,\$5	\$1,\$1
8\%	0\%	8\%	\$1,\$1	\$5,\$10

Utility \checkmark
Beliefs OK
Rationality seems to fail for Column

Summary

- Sometimes not even playing same game! NE not defined
- Subjects are pretty bad at 2nd order beliefs.
- Beliefs about rationality are reasonably good.
- When are utilities mutual knowledge??
- Respect for Bayesian games... but beliefs?
- WARNING: Confound with reliability of elicitation procedure. See: Old data vs. New data

The End.

Your payoffs are in red. The other player's payoffs are in blue.

You are the row player. Choose an action (row) for game $5 \subset \mathrm{C}$
$C D$

Game 1	L	R		
u	510:35	315 515	Your adton in Game 1.0	
-	35.810	81, 81		
Game 2	1	R		
u	515;15	51.51	Your action in Game 21	
D	51.31	55,35		
Game 3	L	R		
u	\$10. 510	31. 815	Your adion in Game 3.0	C Im happy with these choices. Proceed with the experiment. C rollike to go back and realse some of these cholces.
D	515. 51	36. 55		
Game 4	1	R		
u	\$15,45		Your aclion in came 4:L	
D	56,510	\$10, 35		
Game 5	1	R		
u	315. 55	34.51	Your action in Game 5 : U	
D	31.31	55 $\$ 10$		

Your payoffs are in red. The other player's payoffs are in blue.		
Game 1	L	R
U	\$10, \$5	\$15, \$15
D	\$5, \$10	\$1, \$1
Question A: Ranking Outcomes		
	100	
Meur mens Soisw wommesmesmeass	\square	
Meerinemsilis wombe smemmess		
mewn Temonosm	-	monamex mems

Your payoffs are in red. The other player's payoffs are in blue.				
	Game 2	L	R	
	U	\$15, \$15	\$1,\$1	
	D	\$1,\$1	\$5, \$5	
Question B: Guessing the Other's Ranking				
Ithink:tine other player sald (them: $\$ 20$, Me:	vorth the same to then	100	percent chance of got	(Them. $520, \mathrm{Me:5203}$
Itink the other player said (them:815, Me: 1 is) is worth the same to them as a			percent chance of getting (Them. $520, \mathrm{Me}: 520)$	
1 Ithink the other clayer said (Them $\$ 1$, Me ${ }^{\text {S }}$)) is werth the same to them as a			percent chance of getting (Them 520 , Me:320)	
I Itink the other player said (Them 55, Me-N) is worth the same to them as a			percent chance of getting (Them 520, Me:320)	
1 Ihink the other player said (Them s 0 , Meiv) is worth the same to them as a			percert chance of getting (Them s 20, Me:320)	

Your payoffs are in red. The other player's payoffs are in blue.

Game 1	L	R
U	$\$ 10, \$ 5$	$\$ 15, \$ 15$
D	$\$ 5, \$ 10$	$\$ 1, \$ 1$

Question C: Guessing their Choice
Please answer the following question as honestly as possible:
\square

Your payoffs are in red. The other player's payoffs are in blue.

Your payoffs are in red. The other player's payoffs are in blue.

Game 1 L R U $\$ 10, \$ 5$ $\$ 15, \$ 15$ D $\$ 5, \$ 10$ $\$ 1, \$ 1$

Remaining timepsec is							
Game	(U.L) Ranking	(u.). Ranking	(0.L) Resiting	(D.R) Rasting	Randam Cell	Your Fayoff from Your Rankinge	Onar Playors Payot trom Your Rankinjus
Game 1	90.00	3000	70.00	5000	(0.L)	510.00	8500
came 2	500	500	500	500	(D,L)	5000	80.00
Game 3	5.00	500	500	500		320.00	\$20000
Game 4	5.00	500	500	500	(0,L)	320.00	52000
Game 5	5.00	500	500	500	(1.R)	120.00	820000
							ок

Game	$\begin{aligned} & \text { athar Players (U,L) } \\ & \text { Farkang } \end{aligned}$	Your Estimate of Other Plajer's (UL) Ranking	$\begin{aligned} & \text { Cemen Pasyars (U.R) } \\ & \text { Fanting } \end{aligned}$	Your Estimate of Other Player's (U)R) Ranving	$\begin{aligned} & \text { Oher Players (DL:) } \\ & \text { Ranking } \end{aligned}$	Your Esimmate of Cther Player's (D.L) Ranting	Dther Playor's (DR) Raniking	Remaining Time fsect	
								Your Esimale of Oher Players (DR) Ranking	Accurat Score
Game 1	10.00	500	1.90	500	1.00	5.00	100	8.00	519.15
Came 2	000	500	0.00	500	000	5.00	000	8.00	\$18.00
Came 3	000	500	0.00	500	000	500	0.00	5.00	51900
Game 4	0.00	500	0.00	5.00	0.00	5.00	000	5.00	\$19.00
Game 5	000	500	0.00	500	000	5.00	000	5.00	81900
									\%

				Remaining Time jecel	4
Game		Your AssionedProbsabit	Astigned Probability Highor than Rendom Draw?	Garnde Parath	
Game 1	yes	so	No	82000	
Came 2	${ }^{\mathrm{Na}}$	so	res	5000	
Came 3	No	so	No	52000	
Game 4	No	50	Yes	50.00	
Game 5	No	50	No	50.00	
				о\%	

			Remaining Time [sact	13
Game	Other Player's Assianed Protatitr of You Plasing Ui,	Your Estimute ef tis Probabity	*curacy Score	
Came 1	2	so	510.40	
Cane 2	0	so	\$1000	
Come 3	0	so	51000	
Gams 4	0	50	\$1000	
Game 5	0	50	81000	
			о\%	

			Remaining Time [sec] is	0
Game	Random Pasot Categon	Yourfral Payoff	Other Players Final Paot	
Game 1	Ovestion A	310.00	3500	
Cane 2	Gameplay	5500	3000	
Ceme 3	Ouestion E	50.00	5000	
Game 4	Gameplay	\$10.00	30.00	
Gane 5	Question E	30.00	5000	
			о\%	

Game Randomiy Chosen tor Payort	3
Your Total Profit (rounded up to nearest dollar, inclucing show-up payment)	$\$ 10$
Your Participantio Number	2

