Incentive Compatible Experiments: An Overview

P.J. Healy

Cast

Cast of characters:

- Yaron Azrieli (OSU)
- Chris Chambers (Georgetown)
- Nicolas Lambert (MIT)
- John Kagel (OSU)
- Kirby Nielsen (Caltech)
- Marina Agranov (Caltech)
- Alex Brown (Texas A&M)
- Greg Leo (Vanderbilt)
- Sam(antha) Stelnicki (OSU student)

Part 1: General experiments

Part 2: Belief elicitation

Goal of any experiment: elicit (coarse) information about \succeq

Goal of any experiment: elicit (coarse) information about \succeq

Requirement: Incentive compatibility

Goal of any experiment: elicit (coarse) information about \succeq

Requirement: Incentive compatibility

Classic mechanism design problem, except:

- 1. Don't have any particular SCF in mind
 - Any IC payment is fine
- 2. Allow random mechanisms
- 3. Strict incentive compatibility

Why Pay?

- · Experiment: sequence of choices from menus
- Goal: observe their "true" choices (preferences)

- · Experiment: sequence of choices from menus
- Goal: observe their "true" choices (preferences)
- Pay every decision?

- · Experiment: sequence of choices from menus
- Goal: observe their "true" choices (preferences)
- Pay every decision?
 - Portfolio effects: {risky₁, safe₁},{risky₂, safe₂},...,{risky_k, safe_k}
 - Laury (2005)

- · Experiment: sequence of choices from menus
- Goal: observe their "true" choices (preferences)
- Pay every decision?
 - Portfolio effects: {risky₁, safe₁},{risky₂, safe₂},...,{risky_k, safe_k}
 - Laury (2005)
 - · Hedging: play game & elicit belief
 - Armantier & Treich (2013)

- · Experiment: sequence of choices from menus
- Goal: observe their "true" choices (preferences)
- Pay every decision?
 - Portfolio effects: {risky₁, safe₁},{risky₂, safe₂},...,{risky_k, safe_k}
 - Laury (2005)
 - Hedging: play game & elicit belief
 - Armantier & Treich (2013)
 - Wealth effects: bid less after win
 - Kagel & Levin (1991)

- · Experiment: sequence of choices from menus
- Goal: observe their "true" choices (preferences)
- Pay every decision?
 - Portfolio effects: {risky₁, safe₁},{risky₂, safe₂},...,{risky_k, safe_k}
 - Laury (2005)
 - Hedging: play game & elicit belief
 - Armantier & Treich (2013)
 - Wealth effects: bid less after win
 - Kagel & Levin (1991)
 - Complementarities: {Left shoe, Apple}, {Right shoe, Banana}

- · Experiment: sequence of choices from menus
- Goal: observe their "true" choices (preferences)
- · Pay every decision?
- Pay one random decision?

- · Experiment: sequence of choices from menus
- Goal: observe their "true" choices (preferences)
- Pay every decision?
- Pay one random decision?
 - Random Problem Selection ("RPS") mechanism
 - Savage credits Allais. Used since Yaari (1965)

- · Experiment: sequence of choices from menus
- · Goal: observe their "true" choices (preferences)
- Pay every decision?
- Pay one random decision?
 - Random Problem Selection ("RPS") mechanism
 - Savage credits Allais. Used since Yaari (1965)
 - Examples where it's not IC with RDU
 - Holt (1986), Karni & Safra (1987), Segal (1988), others

- · Experiment: sequence of choices from menus
- Goal: observe their "true" choices (preferences)
- Pay every decision?
- Pay one random decision?
 - Random Problem Selection ("RPS") mechanism
 - Savage credits Allais. Used since Yaari (1965)
 - Examples where it's not IC with RDU
 - Holt (1986), Karni & Safra (1987), Segal (1988), others
 - Literature: "RPS requires Expected Utility"

- · Experiment: sequence of choices from menus
- Goal: observe their "true" choices (preferences)
- Pay every decision?
- Pay one random decision?
 - Random Problem Selection ("RPS") mechanism
 - Savage credits Allais. Used since Yaari (1965)
 - Examples where it's not IC with RDU
 - Holt (1986), Karni & Safra (1987), Segal (1988), others
 - Literature: "RPS requires Expected Utility"
 - Hadn't been proven either way

- · Experiment: sequence of choices from menus
- Goal: observe their "true" choices (preferences)
- Pay every decision?
- Pay one random decision?
- Which do researchers use?

- · Experiment: sequence of choices from menus
- Goal: observe their "true" choices (preferences)
- Pay every decision?
- Pay one random decision?
- Which do researchers use?
 - Survey from 2011:

Pay all:	56%
RPS:	25%
Pay some:	13%
Other:	6%

Framework for Analyzing IC:

- Choice objects: $x, y, z \in X$
- (Strict complete) preference: $\succeq \in \mathcal{O}$
- Decision problems: $D = (D_1, \dots, D_k)$, each $D_i \subseteq X$
- "True" choices: $\mu_i(\succeq) \in D_i$
 - $\mu_i(\succeq) \succeq x \ \forall x \in D_i$
- Stated choices (messages): $m_i \in D_i$ $m = (m_1, \dots, m_k)$
- Payment mechanism: $\phi(m) \in \mathcal{P}(X)$
 - Payment objects: $\mathcal{P}(X)$
- Experiment: (D, ϕ)

Definition

An experiment (D, ϕ) is **incentive compatible** if, for every \succeq and every $m \neq \mu(\succeq)$,

 $\phi(\mu(\succeq))$ is strictly preferred to $\phi(m)$.

Definition An experiment (D, ϕ) is **incentive compatible** if, for every \succeq and every $m \neq \mu(\succeq)$,

 $\phi(\mu(\succeq))$ is strictly preferred to $\phi(m)$.

• But what are these payment objects in $\mathcal{P}(X)$??

Definition An experiment (D, ϕ) is **incentive compatible** if, for every \succeq and every $m \neq \mu(\succeq)$,

 $\phi(\mu(\succeq))$ is strictly preferred to $\phi(m)$.

- But what are these payment objects in $\mathcal{P}(X)$??
- Pay all: bundles
 - $\phi(m) = \{ \text{Left shoe,Right shoe} \}$

Definition

An experiment (D, ϕ) is **incentive compatible** if, for every \succeq and every $m \neq \mu(\succeq)$,

 $\phi(\mu(\succeq))$ is strictly preferred to $\phi(m)$.

- But what are these payment objects in $\mathcal{P}(X)$??
- Pay all: bundles
 - $\phi(m) = \{ \text{Left shoe,Right shoe} \}$
- RPS: acts
 - $\Omega = \{\omega_1, \omega_2\}$
 - $\phi(m)(\omega_1) = \{ \text{Left shoe} \}$
 - $\phi(m)(\omega_2) = \{ \text{Right shoe} \}$

Definition

An experiment (D, ϕ) is **incentive compatible** if, for every \succeq and every $m \neq \mu(\succeq)$,

 $\phi(\mu(\succeq))$ is strictly preferred to $\phi(m)$.

- But what are these payment objects in $\mathcal{P}(X)$??
- Pay all: bundles
 - $\phi(m) = \{ \text{Left shoe,Right shoe} \}$
- RPS: acts
 - $\Omega = \{\omega_1, \omega_2\}$
 - $\phi(m)(\omega_1) = \{ \text{Left shoe} \}$
 - $\phi(m)(\omega_2) = \{ \text{Right shoe} \}$

 \succeq says <u>nothing</u> about how these objects are ranked!

- Preference Extension: \succeq on X, \succeq^* on $\mathcal{P}(X)$.
 - Example: \succeq over money, \succeq^* EU over lotteries

Definition

An experiment (D, ϕ) is **incentive compatible** if, for every \succeq and every $m \neq \mu(\succeq)$,

 $\phi(\mu(\succeq)) \succ^* \phi(m).$

Theorem

If no restrictions are placed on \succeq^* then an experiment is IC if and only if there is <u>one</u> decision problem and $\phi(m_1) = m_1$.

Corollary

If k > 1 we <u>must</u> talk about \succeq^* and how it relates to \succeq .

When is the Pay-All mechanism incentive compatible?

• Need an assumption about \succeq^* over bundles

- Need an assumption about \succeq^* over bundles
- No Complementarities at the Top (NCaT):

- Need an assumption about \succeq^* over bundles
- No Complementarities at the Top (NCaT):
 - "The bundle of your favorites is your favorite bundle"

- Need an assumption about \succeq^* over bundles
- No Complementarities at the Top (NCaT):
 - "The bundle of your favorites is your favorite bundle"
 - Apple \succeq Left shoe & Banana \succeq Right shoe \Longrightarrow {Apple, Banana} is \succeq^* -maximal

- Need an assumption about \succeq^* over bundles
- No Complementarities at the Top (NCaT):
 - "The bundle of your favorites is your favorite bundle"
 - Apple \succeq Left shoe & Banana \succeq Right shoe \implies {Apple, Banana} is \succeq^* -maximal

Theorem

Assume $D = (D_1, ..., D_k)$ is non-redundant ($\bigcap_i D_i = \emptyset$). If \succeq^* satisfies NCaT (and nothing else is assumed) then Pay-All is the **only** IC mechanism.

- Need an assumption about \succeq^* over bundles
- No Complementarities at the Top (NCaT):
 - "The bundle of your favorites is your favorite bundle"
 - Apple \succeq Left shoe & Banana \succeq Right shoe \implies {Apple, Banana} is \succeq^* -maximal

Theorem

Assume $D = (D_1, ..., D_k)$ is non-redundant ($\bigcap_i D_i = \emptyset$). If \succeq^* satisfies NCaT (and nothing else is assumed) then Pay-All is the **only** IC mechanism.

*Redundant case just adds flexibility on "intransitive" messages.

When is the RPS mechanism incentive compatible?

• Need an assumption about \succeq^* over acts

- Need an assumption about \succeq^* over acts
- The RPS mechanism has the "truth dominates lies" property

	States of the World						
Payment Object	1	2	3	4		k	
$\phi(m_1,m_2,m_3,\ldots,m_k)$	<i>m</i> ₁	<i>m</i> ₂	<i>m</i> ₃	<i>m</i> ₄		m _k	
$\phi(m_1, m_2', m_3, \ldots, m_k)$	<i>m</i> ₁	<i>m</i> ₂ ′	<i>m</i> ₃	<i>m</i> 4		m _k	
$\phi(m_1, m'_2, m'_3, \ldots, m_k)$	<i>m</i> ₁	<i>m</i> ₂ ′	<i>m</i> ′ ₃	<i>m</i> ₄		m_k	
When is the RPS mechanism incentive compatible?

- Need an assumption about \succeq^* over acts
- The RPS mechanism has the "truth dominates lies" property

	States of the World				
Payment Object	1	2	3	4	 k
$\phi(m_1,m_2,m_3,\ldots,m_k)$	<i>m</i> ₁	<i>m</i> ₂	<i>m</i> ₃	<i>m</i> ₄	 m _k
$\phi(m_1, m_2', m_3, \ldots, m_k)$	<i>m</i> ₁	<i>m</i> ₂ ′	<i>m</i> ₃	<i>m</i> 4	 m _k
$\phi(m_1, m_2', m_3', \ldots, m_k)$	<i>m</i> ₁	<i>m</i> ₂ ′	<i>m</i> ′ ₃	<i>m</i> ₄	 m _k

• **Monotonicity:** \succeq^* respects statewise dominance (w.r.t. \succeq)

 $f(\omega) \succeq g(\omega) \ \forall \omega \Longrightarrow f \succeq^* g$

When is the RPS mechanism incentive compatible?

- Need an assumption about \succeq^* over acts
- The RPS mechanism has the "truth dominates lies" property
- **Monotonicity:** \succeq^* respects statewise dominance

Theorem

Assume $D = (D_1, ..., D_k)$ is non-redundant. If \succeq^* satisfies Monotonicity (and nothing else is assumed) then the RPS is the **only** IC mechanism. When is the RPS mechanism incentive compatible?

- Need an assumption about \succeq^* over acts
- The RPS mechanism has the "truth dominates lies" property
- **Monotonicity:** \succeq^* respects statewise dominance

Theorem

Assume $D = (D_1, ..., D_k)$ is non-redundant. If \succeq^* satisfies Monotonicity (and nothing else is assumed) then the RPS is the **only** IC mechanism.

*Redundant case adds flexibility on "surely-identified" sets. **Can also add states that pay a fixed prize. Pay All: No Complementarities

RPS: Monotonicity w.r.t. statewise dominance

Incentives in Experiments

"Incentives in Experiments with Objective Lotteries" Azrieli, Chambers & Healy Experimental Economics (2020)

- RPS with lotteries instead of acts
 - Assume an objective $p \in \Delta(\Omega)$
- More restrictive setting \Rightarrow more IC mechanisms??

Incentives in Experiments

"Incentives in Experiments with Objective Lotteries" Azrieli, Chambers & Healy Experimental Economics (2020)

- RPS with lotteries instead of acts
 - Assume an objective $p \in \Delta(\Omega)$
- More restrictive setting \Rightarrow more IC mechanisms??

Theorem

Assume Monotonicity w.r.t. FOSD (and nothing else).

- 1. Non-redundant: Same as before (only RPS)
- 2. Redundant: Added flexibility on "surely-identified" sets; not useful

Things we should worry about with Monotonicity/RPS:

Things I don't think we need to worry much about:

Suppose X are multi-agent payments. $\mathcal{P}(X)$ are lotteries over X. Ex-ante fairness \Rightarrow monotonicity violation

Example: Machina's mom

Things we should worry about with Monotonicity/RPS:

• Ex-ante fairness

Things I don't think we need to worry much about:

Suppose X are lotteries, $\mathcal{P}(X)$ are compound lotteries. Monotonicity + reduction $\Rightarrow \succeq$ satisfies independence (EUT)!

Suppose X are lotteries, $\mathcal{P}(X)$ are compound lotteries. Monotonicity + reduction $\Rightarrow \succeq$ satisfies independence (EUT)!

Reduction + Non-EU \Rightarrow Monotonicity \Rightarrow RPS may not be IC

The counter-examples all assume Reduction + Non-EU

Halevy (2007): those who reduce are EU maximizers! \checkmark

Things we should worry about with Monotonicity/RPS:

• Ex-ante fairness

Things I don't think we need to worry much about:

• Non-expected utility + reduction

Suppose X are lotteries, $\mathcal{P}(X)$ are compound lotteries. Monotonicity + reduction $\Rightarrow \succeq$ satisfies independence (EUT)!

Suppose X are acts, $\mathcal{P}(X)$ are lotteries over acts (AA). Monotonicity + order-reversal $\Rightarrow \succeq$ is ambiguity-neutral!

Suppose X are lotteries, $\mathcal{P}(X)$ are compound lotteries. Monotonicity + reduction $\Rightarrow \succeq$ satisfies independence (EUT)!

Suppose X are acts, $\mathcal{P}(X)$ are lotteries over acts (AA). Monotonicity + order-reversal $\Rightarrow \succeq$ is ambiguity-neutral!

Ability to "hedge" away ambiguity...

Suppose X are lotteries, $\mathcal{P}(X)$ are compound lotteries. Monotonicity + reduction $\Rightarrow \succeq$ satisfies independence (EUT)!

Suppose X are acts, $\mathcal{P}(X)$ are lotteries over acts (AA). Monotonicity + order-reversal $\Rightarrow \succeq$ is ambiguity-neutral!

Ability to "hedge" away ambiguity...

Should we add ambiguity hedging to the "worry" list??

"A Direct Test of Hedging" Healy & Stelnicki Work in Progress

 $D_1 = \{$ \$2.00 if Red from K, \$2.10 if Red from U $\}$ $D_2 = \{$ \$2.00 if Blue from K, \$2.10 if Blue from U $\}$

Picking UU:

• Do people "see" the hedging opportunity?

- Do people "see" the hedging opportunity?
 - Oechssler Rau & Roomets (2019): No.
 - Baillon Halevy & Li (forthcoming): Yes.

- Do people "see" the hedging opportunity?
 - Oechssler Rau & Roomets (2019): No.
 - Baillon Halevy & Li (forthcoming): Yes.

Our design:

• "I think the probability of me winning a bonus payment is between _____% and _____%." (incentivized)

- Do people "see" the hedging opportunity?
 - Oechssler Rau & Roomets (2019): No.
 - Baillon Halevy & Li (forthcoming): Yes.

Our design:

- "I think the probability of me winning a bonus payment is between _____% and _____%." (incentivized)
- Hedgers: Pick UU, say "between 50% and 50%."

- Do people "see" the hedging opportunity?
 - Oechssler Rau & Roomets (2019): No.
 - Baillon Halevy & Li (forthcoming): Yes.

Our design:

- "I think the probability of me winning a bonus payment is between _____% and _____%." (incentivized)
- Hedgers: Pick UU, say "between 50% and 50%."
- True even if the jars aren't 50-50

Results:

	Ask	One		Ask Both	
	Red	Blue		(RPS)	
V	-00/	6.0%	KK	19%	
	50 /0	K 20% (00%	KU	23%
	1.2%	10%	UK	44%	
0	42 /0 40 /	40 %	UU	15%	

15% UU contains:

- Ambiguity Loving & Monotonicity
- Ambiguity Neutral & \sim 50-50 beliefs & Monotonicity
- Ambiguity Averse & Hedging

UK>KU \Rightarrow red more likely \Rightarrow Ask One should differ

Belief ranges of the 15% who choose UU in Ask Both:

 ${\sim}$ 15% are consistent with hedging. Or, ${\sim}$ 2% overall.

Belief ranges of the 19% who choose KK. (1/2)(1/8) + (1/2)(7/8) = 1/2

21% say [50, 50]. 17% say [1/8, 7/8].

Back to UU:

Could be some non-reducers here, but Order Reversal fails

Things we should worry about with Monotonicity/RPS:

• Ex-ante fairness

Things I don't think we need to worry much about:

- Non-expected utility + reduction
- Ambiguity hedging

Results:

	Ask One			Ask Both
	Red	Blue		(RPS)
v	-00/	60%	KK	19%
	50 /0	00%	KU	23%
	1.20/	1.0%	UK	44%
0	4270	40%	UU	15%

Our conjecture: Preference for randomization (violates Monotonicity)

Randomization

"Stable Randomization" Agranov, Healy & Nielsen Working Paper

Randomization

- "PM" Questions: dominance
- "RS" Questions: risky-safe

Mixing highly correlated across decisions and games. "Mixing types"

Things we should worry about with Monotonicity/RPS:

- Ex-ante fairness
- Repeated choices (same or similar)

Things I don't think we need to worry much about:

- Non-expected utility + reduction
- Ambiguity hedging

÷

"Separated Decisions" Brown & Healy *EER* (2018)

Row #	Option A		or	Option B	
1	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Ball 1 pays \$15 (5% chance of \$15)	Balls 2-20 pay \$0 (95% chance of \$0)
2	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Balls 1-2 pay \$15 (10% chance of \$15)	Balls 3-20 pay \$0 (90% chance of \$0)
3	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Balls 1-3 pay \$15 (15% chance of \$15)	Balls 4-20 pay \$0 (85% chance of \$0)
4	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Balls 1-4 pay \$15 (20% chance of \$15)	Balls 5-20 pay \$0 (80% chance of \$0)
	Ralle 1_10 nov \$10	Rolle 11_20 nov \$5		Rolle 1-5 nov \$15	Rolle 6-20 nov \$0

10	(50% chance of \$10)	(50% chance of \$5)	01	(90% chance of \$15)	(10% chance of \$0)
19	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Balls 1-19 pay \$15 (95% chance of \$15)	Ball 20 pays \$0 (5% chance of \$0)
20	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	All Balls pay \$15 (100% chance of \$15)	(0% chance of \$0)

÷

÷

:

- List-RPS: See all rows, RPS payment
- List-R14: See all rows, only paid for row 14

- List-RPS: See all rows, RPS payment
- List-R14: See all rows, only paid for row 14

	% Risky on Row 14
List-RPS	52%
List-14	70%

List formatting violates monotonicity.

• Separated-RPS:

See all rows on separate screens in random order, RPS payment

• Separated-R14:

See all rows on separate screens in random order, pay row 14

• Separated-RPS:

See all rows on separate screens in random order, RPS payment

• Separated-R14:

See all rows on separate screens in random order, pay row 14

	% Risky on Row 14
Sep-RPS	59%
Sep-14	56%

Separated formatting restores monotonicity. Multiple switching: 5% \rightarrow 33%, but usually very minor Recommendation: Separate your decisions!

Things we should worry about with Monotonicity/RPS:

- Ex-ante fairness
- Repeated choices (same or similar)
- · Showing choices all together

Things I don't think we need to worry much about:

- Non-expected utility + reduction
- Ambiguity hedging

Things we should worry about with Monotonicity/RPS:

- Ex-ante fairness
- Repeated choices (same or similar)
- · Showing choices all together

Things I don't think we need to worry much about:

- Non-expected utility + reduction
- Ambiguity hedging

That's it!

"Constrained Preference Elicitation" Azrieli, Chambers & Healy *Theoretical Economics* (2021)

Structure theorems on what we can learn about \succeq from any experiment.

"Minimal Experiments" Healy & Leo Work in Progress

Given: Something you want to learn about \succeq .

• Example: is p(E) in $[0, \frac{1}{3})$, $[\frac{1}{3}, \frac{2}{3})$, or $[\frac{2}{3}, 1]$?

Step 1: Which experiments would elicit that?

Step 2: Which experiment is the "simplest"?

•
$$D_1 = \{$$
\$10 *if* E , \$10 *if* E^C , \$10 w/ 66% $\}$

Part 1: General experiments

Part 2: Belief elicitation

"Testing Elicitation Mechanisms Via Team Chat" Healy & Kagel Work in Progress

Belief Elicitation Mechanisms:

- Quadratic scoring rule (QSR; Brier 1950)
 - Logarithmic, spherical...
 - QSR corrected for risk aversion (Harrison et al. 2014)
- Binarized scoring rules (BSR; Savage 1971, Hossain & Okui 2013)
- BDM for probabilities (Marschak 1963, Grether 1981)
 - Clock BDM (Karni 2009)
- Multiple Price List (MPL; Holt & Smith 2016)

What Do The Data Say?

- Offerman & Sonnemans (2004): QSR \sim None
- Armantier & Treich (2013): QSR>None
- Huck & Weizsacker (2002): QSR>BDM
- Hollars et al. (2010): BDM≻QSR
- Hao & Houser (2012): BDM-Clock≻BDM
- Hossain & Okui (2013): <mark>BSR</mark>≻QSR
- Harrison et al. (2014): BSR~QSR-Corr≻QSR
- Holt & Smith (2016); MPL≻BDM

Best performers: BSR and MPL

- Offerman & Sonnemans (2004): QSR \sim None
- Armantier & Treich (2013): QSR>None
- Huck & Weizsacker (2002): QSR>BDM
- Hollars et al. (2010): BDM≻QSR
- Hao & Houser (2012): BDM-Clock≻BDM
- Hossain & Okui (2013): <mark>BSR</mark>≻QSR
- Harrison et al. (2014): BSR~QSR-Corr≻QSR
- Holt & Smith (2016); MPL≻BDM

Motivation: Compare MPL to BSR in theory and in the lab

Suppose $X \in \{0, 1\}$. Want to elicit p = Pr(X = 1). Subject announces q, gets paid:

 $S(q, X) = 1 - (X - q)^2$

IC requires risk neutrality.

Solution: pay in probabilities Savage (1971) \rightarrow C. Smith (1961) \rightarrow Savage (1954)

Conditions for Incentive Compatibility

Proof of Incentive Compatibility:

This requires "Subjective-Objective Reduction"

• Weakening of ROCL: Applies only to two-prize lotteries

Multiple Price Lists (MPL)

Row#	Option A	OR	Option B
1	\$8 if X = 1	or	\$8 w/ prob 1%
2	\$8 if X = 1	or	\$8 w/ prob 2%
•	:	:	:
q	\$8 if X = 1	or	\$8 w/ prob <i>q%</i>
q + 1	\$8 if X = 1	or	\$8 w/ prob q + 1%
q + 2	\$8 if X = 1	or	\$8 w/ prob q + 2%
q + 3	\$8 if X = 1	or	\$8 w/ prob q + 3%
•	:	:	:
99	\$8 if <i>X</i> = 1	or	\$8 w/ prob 99%
100	\$8 if X = 1	or	\$8 w/ prob 100%

Choose Option A or Option B (single switch point q) One row randomly selected for payment

Multiple Price Lists (MPL)

Row#	Option A	OR	Option B
1	\$8 if X = 1	or	\$8 w/ prob 1%
2	\$8 if X = 1	or	\$8 w/ prob 2%
:	:	:	:
q	\$8 if X = 1	or	\$8 w/ prob <i>q</i> %
<i>q</i> + 1	\$8 if X = 1	or	\$8 w/ prob q + 1%
q + 2	\$8 if X = 1	or	\$8 w/ prob q + 2%
q + 3	\$8 if X = 1	or	\$8 w/ prob q + 3%
:	:	•	:
99	\$8 if X = 1	or	\$8 w/ prob 99%
100	\$8 if X = 1	or	\$8 w/ prob 100%

"Multiple Price List" (MPL) version of BDM for probabilities Holt & Smith (2016)

Multiple Price Lists (MPL)

Row#	Option A	OR	Option B
1	\$8 if X = 1	or	\$8 w/ prob 1%
2	\$8 if X = 1	or	\$8 w/ prob 2%
:	÷	:	:
q	\$8 if X = 1	or	\$8 w/ prob <i>q</i> %
<i>q</i> + 1	\$8 if X = 1	or	\$ w/ prob <i>q</i> + 1%
q + 2	\$8 if X = 1	or	\$ w/ prob q + 2%
<i>q</i> + 3	\$8 if X = 1	or	\$8 w/ prob q + 3%
:	÷	:	:
99	\$8 if X = 1	or	\$8 w/ prob 99%
100	\$8 if X = 1	or	\$8 w/ prob 100%

If you lie, you get the less-preferred option on some rows I.C. as long as subject respects **statewise dominance** in rows

MPL vs BSR

Proposition:

- Compare BSR to MPL
- Put subjects in teams of two, working together via chat
 - Cooper & Kagel (2005,2009,2020)
- Scan chat transcripts for (1) true beliefs, (2) manipulation
- Variety of questions (objective, subjective)
 - Focus here on objective questions

The Mechanism Interfaces: MPL

0

'ime remai 'ause timer	ning: 199 PART : 🗹 Skip 30s	NER: c	urrent choice:	:lock
Your	answer to Q3 determi One row will be o	nes what chosen at	you choose in each row bel random for payment.	ow.
Pick:	Option A	OR	Option B	
Row 57:	\$8 if RED is drawn	OR O	\$8 with probability 57%	
Row 58:	\$8 if RED is drawn	OR O	\$8 with probability 58%	
Row 59:	• \$8 if RED is drawn	OR O	\$8 with probability 59%	
Row 60:	• \$8 if RED is drawn	or O	\$8 with probability 60%	
Row 61:	○ \$8 if RED is drawn	or O	\$8 with probability 61%	- 1
Row 62:	\bigcirc \$8 if RED is drawn	or 🔍	\$8 with probability 62%	
Row 63:	\bigcirc \$8 if RED is drawn	or O	\$8 with probability 63%	
Reme	mber: you maximiz when y	e your o ou repor	verall probability of gettin t truthfully.	ng \$8

Link

Note: subjects saw the same phrase in all three treatments

The Mechanism Interfaces: BSR

Confirm and lock in your choices: Lock In Your Choices

Link

Note: subjects saw the same phrase in all three treatments.

The Mechanism Interfaces: NoInfo

Q3:	What do you that a RED 1	think narble	x is the probability (from 0% to 100%) e will be drawn? 60 %		
	Time remaining: Pause timer:	199 Skip 30s	PARTNER: current choice: Slocked in		
	Remember	: you ma	aximize your overall probability of getting \$8 when you report truthfully.		
Confirm and lock in your choices:					

Link

Note: subjects saw the same phrase in all three treatments

	CHAT WINDOW	
	Partner's ID: 112-380 Your ID: 112-3	81
	hilo!	•
	what probability should we put in? um you do realize that I'm you. right? you're just creating this fake chat to put into your presentation yeah, of course, but you know just go with it ummmm 50%??? DONE 112-380 moved on to Problem #2 of 5	
Ω_1 . Now what do you think is the probability (from Ω_0 to	112-381 moved on to Problem #2 of 5 how about on this problem? 33%?	
100%) that the RED JAR was chosen? 30%	why are you still doing this? They don't need to see a whole long conversation	
Time remaining: 194 PARTNER: current choice: 20 🗹 :locked in Pause timer: 🗌 Step 30s	Send	

- Use chat window to communicate
- Must lock in the same number to proceed
- If time runs out, one choice is randomly used

Misreporting Rate: Objective Probabilities

Two Types of Evidence of IC Failures:

Deviate Discuss deviating from their belief
 May not specify why they're deviating
 Manipulate Discuss manipulation of payoffs
 May not end up deviating from their belief

Warning: So far, only encoded by me

Two Types of Evidence of IC Failures:

Deviate Discuss deviating from their belief

 May not specify why they're deviating

 Manipulate Discuss manipulation of payoffs

 May not end up deviating from their belief

Mechanism	MPL	BSR	NoInfo
Deviate	2/33	2/34	0/27
Manipulate	1/33	5/34	0/27

ID#181	MPL	ID#187	
i have 12 for	i have 12 for red		
and 8 for bl	ue		
12, 20, and 75%?			
		yes	
75 sounds good with me			
12 20 75%	12 20 75% 12 20 75%		

ID#257	BSR	ID#260
		50 ?
id say 60		
		Why
cause heads is always more likely		
	T	hats just false
55 is a compromise		
Which is also wrong but whatever		
55%		55%

ID#357	BSR	ID#365
(no chat)		
75%		75%

12/20 = 60%				
ID#352 MPL ID#35			ID#353	
			60%	
12 red marbles, 20 total, so 6	0%			
Yea but I am thinking should we really put the correct number				
for probability				
I mean yeah i think				
Although its random, its the best "odds" then				
alright				
60% 60%				

Capital of Australia

ID#407	BSR	ID#414			
hi					
		hi			
i noticed that th	i noticed that the higher you make their percentage,				
the higher our probability percentage gets					
yeah that's true					
but the closer to 50, the more equal the probs					
i say we go for a big one					
85		85			

- Chats conclude they're **not** successfully manipulating
 - Maybe slightly more attempts in BSR?
- NoInfo performs well when easy, worst when hard
- Implication: Mechanism details can be distracting **or** useful
 - Easy problems: details get in the way, \uparrow mistakes
 - Harder problems: details maybe help focus, \downarrow mistakes

- Theory:
 - 1. MPL has superior IC properties
 - 2. Some scoring rules are equiv. to an MPL, but not BQSR
- Empirics:
 - 1. MPL and BSR perform similarly
 - 2. NoInfo works well when easy, not when hard
 - 3. Very little evidence of manipulation
 - Subjects are confused/overwhelmed, not manipulating

"Coarse Elicitation" Healy & Leo Work in Progress

"Coarse Elicitation" Healy & Leo Work in Progress

"Midpoint Property"

(0-12.5%	12.5-	37.5%	37.5-	62.5%	ا-62.5	37.5%	87.5-100 <mark> </mark>)%
									4
			l				I		I
0%		25%		50%		75%		100%	

Theorem: The only* differentiable scoring rule that satisfies the midpoint property for *any* grid is the quadratic scoring rule.

*Up to a rescaling.

Simple alternative: Coarse MPL

"Elicitability" Azrieli, Chambers, Healy & Lambert Work in Progress

- **Goal:** elicit subjective p(E) for some event $E \subseteq \Omega$
- **Problem:** states $\omega \in \Omega$ are not observable! Only signals $y \in Y$.

Examples:

- Climate change
- Beliefs in repeated PD w/ private monitoring
- Vaccine effectiveness

Question: can we still learn beliefs over Ω using only Y?

Vaccine Example (of course)

State: efficacy. Agent: medical researcher. Principal: management. Signal: outcome of 1 trial. Info Structure:

$$\begin{split} & \omega \in \Omega = \{0, 1/2, 1\} \\ & \text{Has belief } p \in \Delta(\Omega) \\ & \text{Wants to learn about } p \\ & y \in Y = \{S, H\} \\ & \Pi(y|\omega) \end{split}$$

Induced Belief on Y:
$$p_{\Pi}(S) = \vec{p} \cdot \begin{pmatrix} 1 \\ 0.5 \\ 0 \end{pmatrix}$$

Vaccine Example: A Tale of Three Agents

	Sick (S)	Healthy (H)	
Ann's p	1/2	1/2	
0	1	0	
1	0.5	0.5	
0	0	1	

Bob's p	1/2	1/2
1/2	1	0
0	0.5	0.5
1/2	0	1

Charlie's p	1/2	1/2
1/3	1	0
1/3	0.5	0.5
1/3	0	1

Given Π , what can we learn about p?

Main Result:

Π generates a partition of Δ(Ω) based on $p_{Π}$. p and q can be distinguished iff $p_{Π} \neq q_{Π}$

Assumptions:

- 1. ∏ is known
- 2. p_{Π} is derived from p and Π via reduction
- 3. p_{Π} can be elicited (BQSR, MPL, ...)
Now suppose vaccine trial has two patients (iid) $Y = \{0, 1, 2\}$ gives # of Healthy patients

Three linearly independent columns! Π has full rank. $p_{\Pi} = \vec{p} \cdot \Pi \Longrightarrow p_{\Pi} \cdot \Pi^{-1} = \vec{p}!!$

Full rank \Rightarrow We can perfectly back out any belief!

In general, with k observations, you learn the first k moments of p

Three states: two moments is enough to learn p

 $|\Omega| = n$: then n - 1 observations gives you p

Other Stuff We Know

- Can elicit *median* of $\omega \Leftrightarrow$ can elicit entire p
- Can add covariates
 - Π_{man} and $\Pi_{woman}, Y = (Y_{man} \times Y_{woman})$
- Infinite states & signals
 - Gaussian linear model: $y = \beta_0 + \beta_1 x + \varepsilon$
 - Full rank! One observation gives entire p
 - Non-parametric linear model: $E[y|x] = \beta_0 + \beta_1 x$
 - One obs: $E_p[\beta_0]$, $E_p[\beta_1]$.
 - Two obs: $Var_p[\beta_0]$, $Var_p[\beta_1]$.
 - • •
 - Probit: $y =
 \mathbb{M}_{\{\beta_0 + \beta_1 x + \varepsilon > 0\}}$
 - Need infinite data to get $E_p[\beta_0]$, $E_p[\beta_1]$!!
- New ordering of Information Structures
 - " Π_2 elicits more than Π_1 "
 - Blackwell Dominance \Rightarrow Elicits More

• BQSR and MPL both work fine

- BQSR and MPL both work fine
- Manipulation doesn't seem to be a huge problem

- BQSR and MPL both work fine
- Manipulation doesn't seem to be a huge problem
- You can do coarse elicitation

- BQSR and MPL both work fine
- Manipulation doesn't seem to be a huge problem
- You can do coarse elicitation
- Unobservable states limits what we can learn
 - More observations helps

Sorry!!

Do Incentives Matter?

Overarching goal: Strict incentive compatibility of experiments

Why pay?

- Real payments \uparrow risk aversion
 - Smith & Walker (1993), Wilcox (1993), Beattie & Loomes (1997), Camerer & Hogarth (1999)
 - Holt & Laury (2005): hypothetical stake size doesn't matter
- - Sefton (1992); Forsythe, Horowitz, Savin, & Sefton (1994); Clot, Grolleau & Ibanez (2018)
- Real payments \uparrow correlation with Big 5
 - Lönnqvist et al. (2011)
- Hypothetical bias is real, hard to predict
 - Haghani et al. (2021); Laury & Holt (2008)
- · But there are arguments not to pay...
 - Rubinstein (2001,2013); Harbi et al. (2015); Falk et al. (2016); Ben-Ner et al. (2008)