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The Setting

• X = some random variable of interest

• Z = X + ε̃ = noisy signal of X

• E [ε̃|X = x ] = 0 ∀x
• Care about E [X |Z = z ]
• Often assumed that E [X |z ] = αz + (1− α)E [X ]
• When is this appropriate? Is it robust?
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Examples

• Healy & Moore (2007)
• X = avg score of the population a quiz
• Z = your score on quiz
• z large ⇒ E [X ] < E [X |z ] < z (overconfidence)

• Shapiro (1986) or Novshek & Sonnenschein (1982)
• Oligopolist observes noisy signal of cost or demand
• Good signal ⇒ competitive advantage

• Morris & Shin (2000, 2002, 2006)
• Global Games: additive noise in information about state
• Value of public info: welfare effects of signal precision
• Uses normal distributions, guaranteeing

E [X |z ] = αz + (1− α)E [X ]
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Assumptions

• Assume all r.v.’s are real-valued and have cts densities & finite
means

• Consider families of error terms E
• Questions: What conditions on X and E guarantee

(1) E [X |z ] = αz + (1− α)E [X ] ?

Does (1) imply anything about X or E?

• Relevant properties of r.v.’s:
• Symmetric: symmetric density about the mean
• Quasiconcave: quasiconcave density (unimodal)
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Definitions

Definition
X updates toward the signal w.r.t E (UTS-E) if ∀ε̃ ∈ E , ∀z
∃α ∈ [0, 1] s.t.

(2) E [X |Z = z ] = αz + (1− α)E [X ].

Definition
X updates in the direction of the signal w.r.t E (UDS-E) if
equation (2) holds with α ≥ 0 ∀ε̃ ∈ E .

Definition
X satisfies mean reinforcement with respect to E (MR-E) if
∀ε̃ ∈ E

(3) E [X |z = E [X ]] = E [X ]



Families of Error Terms

All error terms are continuous, mean-zero, and satisfy sym. dep.:

Definition
ε̃ satisfies symmetric dependence if, for almost every ε, a ∈ R,
fε̃(ε|z = E [X ] + a) = fε̃(ε|z = E [X ]− a).

• ES = all symmetric error terms.

• ES,Q = all symmetric, quasiconcave error terms.

• ES,Q,I = all symmetric, quasiconcave error terms indep. of X .

• E2pt = all two-point distributions of the form
(−y , p; y , 1− p).

• EU = all uniform distributions of the form U [−y , y ].

For any E , E = the weak closure of E .
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Visualizing the Conditions
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X

ε
f(x,ε)z = 2

f (x |z) = fε̃(z−x |x)fX (x)∫
fε̃(z−ξ|ξ)fX (ξ)dξ

so E [X |z ] =
∫ x fε̃(z−x |x)fX (x)∫

fε̃(z−ξ|ξ)fX (ξ)dξ
dx



The Normal-Normal Case
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X

ε

E[X|z=2]

z = 2

z = 0

E[X|z=E[X]] = E[X] E[X|z=2]

z = 2

z = 0

E[X|z=E[X]] = E[X]E[X|z=E[X]] = E[X]E[X|z=E[X]] = E[X] E[X|z=2]E[X|z=2]E[X|z=E[X]] = E[X]E[X|z=E[X]] = E[X]E[X|z=E[X]] = E[X] E[X|z=2]E[X|z=E[X]] = E[X]E[X|z=E[X]] = E[X]E[X|z=E[X]] = E[X]E[X|z=E[X]] = E[X]E[X|z=E[X]] = E[X]

If X ∼ N (0, 2) and ε̃ ∼ N (0, 1) then E [X |z = 2] = 1.6



Visualizing the Conditions
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∫ 0
−∞ −x fε̃(z − x |x)fX (x)dx ≤ ∫ ∞

0 x fε̃(z − x |x)fX (x)dx



Visualizing the Conditions
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f(x,ε)z = 2

Integrate on ε: E [X |z ] ≤ z ⇔ E [ε̃|z ] ≥ 0



MR: Sufficient Conditions

Proposition

If X is symmetric then X satisfies MR-ES

Proof.
See pictures...
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SYM. DEP.
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ERROR

∫ 0
−∞ −x fε̃(0− x |x)fX (x)dx =

∫ ∞
0 x fε̃(0− x |x)fX (x)dx



UDS: Sufficient Conditions

X symmetric 6⇒ X UDS-ES .

Example

Let fX (x) =

{
1
3

(
1− |x |

3

)
if x ∈ [−3, 3]

0 otherwise

and ε̃ = (−2, 1
2 ; 2, 1

2 ). Then E [X |z ] = −z , so UDS fails.

To get UDS, need another restriction on errors:

Proposition

If X is symmetric then X satisfies UDS-ES,Q

Proof (Sketch).

See picture...
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z ≥ 0 ⇒ ∫ ∞
0 xf (x |z)dx ≥ − ∫ 0

−∞ xf (x |z)dx



UTS: Sufficient Conditions

X symmetric 6⇒ X UTS-ES,Q .

Example

Let fε̃ (ε) =

{
1
3

(
1− |ε|

3

)
if ε ∈ [−3, 3]

0 otherwise
and X = (−2, 1/2; 2, 1/2). Then E [X |z ] = 2z , so UTS fails.

Proposition

If X is symmetric and quasiconcave then X satisfies UTS-ES,Q,I .

Proof (Sketch).

1 Already have UDS.

2 Need to show E [X |z ] ≤ z when z ≥ 0.
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X

ε

z ≥ 0

Does ∃ a sufficient condition weaker than independence??



Summary of Results

Family of Error Terms Prior Condition

Sym Sym ⇒ MR
Sym Sym 6⇒ UDS
Sym QC Sym ⇒ UDS
Sym QC Sym 6⇒ UTS
Sym QC Ind∗ Sym QC ⇒ UTS



MR: Necessary Conditions 1

Proposition

Pick any E with E2pt ⊆ E .
If X satisfies MR-E then X is symmetric.

Proof.

1 Pick any y > 0 and let ε̃ ∼ (−y , 1
2 ; y , 1

2 ).
2 z = 0 means x ∈ {−y , y}.
3 Thus, E [X |z = 0] ∝ −yfX (−y) + yfX (y).
4 MR-E means −y fX (−y) + y fX (y) = 0 for every y > 0.

5 Thus, fX (y) = fX (−y), so X is symmetric.
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UDS: An Impossibility Result

Proposition

If E2pt ⊆ E then there does not exist an X such that X UDS-E .

Proof.

1 Pick any x2 > x1 > 0 and let ε̃ ∼ (− x1+x2
2 , 1

2 ; x1+x2
2 , 1

2 )
2 If z = (x2 − x1)/2 then E [X |z ] ∝ −x1fX (−x1) + x2fX (x2)
3 By symmetry (prev. proposition), this is
−x1fX (x1) + x2fX (x2).

4 UDS ⇒ ≥ 0, so x2fX (x2) ≥ x1f (x1)
5 But then xfX (x) is increasing, so E [X ] =

∫
xfX (x)dx does

not exist
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MR: Necessary Conditions 2

Proposition

Pick any E with EU ⊆ E .
If X satisfies MR-E then X is symmetric.

Proof.

1 Pick any y > 0 and let ε̃ ∼ U [−y , y ].
2 z = 0 means x ∈ [−y , y ].
3 Thus, E [X |z = 0] ∝

∫ y
−y x fX (x) dx .

4 MR-E means
∫ y
−y x fX (x) dx = 0 for every y .

5 Differentiate w.r.t. y to get y fX (y) = y fX (−y)
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UTS: Necessary Conditions

Proposition

Pick any E with EU ⊆ E .
If X satisfies UTS-E then X is symmetric and quasiconcave.

Proof (Sketch).

• UTS-E ⇒ MR-E ⇒ X symmetric. X
• For quasiconcavity, see pictures...
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Summary of Results

Family of Error Terms Prior Condition

Sym Sym ⇒ MR
Sym Sym 6⇒ UDS
Sym QC Sym ⇒ UDS
Sym QC Sym 6⇒ UTS
Sym QC Ind∗ Sym QC ⇒ UTS

E2pt ⊆ E Sym ⇐ MR

E2pt ⊆ E 6 ∃ ⇐ UDS

EU ⊆ E Sym ⇐ MR

EU ⊆ E Sym QC ⇐ UTS



Characterizations

Can form various ‘iff’ statements:

1 For E2pt ⊆ E ⊆ ES , Sym X ⇔ MR-E
2 For EU ⊆ E ⊆ ES,Q , Sym X ⇔ MR-E ⇔ UDS-E
3 For EU ⊆ E ⊆ ES,Q,I , Sym & q.-c. X ⇔ UTS-E
• Bottom Line 1: Strength of updating assumption depends on

symmetry and quasiconcavity assumptions on distributions

• Bottom Line 2: Robustness of updating assumption depends
on robustness of sym. & q.-c. assumptions on distributions
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