Updating Toward the Signal

Christopher P. Chambers

Paul J. Healy

Midwest Economic Theory Nov. 2007

• X = some random variable of interest

- $Z = X + \tilde{\varepsilon} =$ noisy signal of X
- $E[\tilde{\varepsilon}|X=x] = 0 \ \forall x$
- Care about E[X|Z = z]
- Often assumed that $E[X|z] = \alpha z + (1-\alpha)E[X]$
- When is this appropriate? Is it robust?

- X = some random variable of interest
- $Z = X + \tilde{\varepsilon} =$ noisy signal of X
- $E[\tilde{\varepsilon}|X=x] = 0 \ \forall x$
- Care about E[X|Z = z]
- Often assumed that $E[X|z] = \alpha z + (1-\alpha)E[X]$
- When is this appropriate? Is it robust?

- X = some random variable of interest
- $Z = X + \tilde{\varepsilon} =$ noisy signal of X
- $E[\tilde{\varepsilon}|X=x] = 0 \ \forall x$
- Care about E[X|Z = z]
- Often assumed that $E[X|z] = \alpha z + (1-\alpha)E[X]$
- When is this appropriate? Is it robust?

- X = some random variable of interest
- $Z = X + \tilde{\varepsilon} =$ noisy signal of X
- $E[\tilde{\varepsilon}|X=x] = 0 \ \forall x$
- Care about E[X|Z = z]
- Often assumed that $E[X|z] = \alpha z + (1-\alpha)E[X]$
- When is this appropriate? Is it robust?

- X = some random variable of interest
- $Z = X + \tilde{\varepsilon} =$ noisy signal of X
- $E[\tilde{\varepsilon}|X=x] = 0 \ \forall x$
- Care about E[X|Z = z]
- Often assumed that $E[X|z] = \alpha z + (1-\alpha)E[X]$
- When is this appropriate? Is it robust?

- X = some random variable of interest
- $Z = X + \tilde{\varepsilon} =$ noisy signal of X
- $E[\tilde{\varepsilon}|X=x] = 0 \ \forall x$
- Care about E[X|Z = z]
- Often assumed that $E[X|z] = \alpha z + (1-\alpha)E[X]$
- When is this appropriate? Is it robust?

• Healy & Moore (2007)

- X = avg score of the population a quiz
- Z = your score on quiz
- $z \text{ large} \Rightarrow E[X] < E[X|z] < z \text{ (overconfidence)}$
- Shapiro (1986) or Novshek & Sonnenschein (1982)
 - Oligopolist observes noisy signal of cost or demand
 - Good signal ⇒ competitive advantage
- Morris & Shin (2000, 2002, 2006)
 - Global Games: additive noise in information about state
 - Value of public info: welfare effects of signal precision
 - Uses normal distributions, guaranteein $E[X|z] = \alpha z + (1 - \alpha)E[X]$

• Healy & Moore (2007)

- X = avg score of the population a quiz
- Z = your score on quiz
- $z \text{ large} \Rightarrow E[X] < E[X|z] < z \text{ (overconfidence)}$
- Shapiro (1986) or Novshek & Sonnenschein (1982)
 - Oligopolist observes noisy signal of cost or demand
 - Good signal \Rightarrow competitive advantage
- Morris & Shin (2000, 2002, 2006)
 - Global Games: additive noise in information about state
 - Value of public info: welfare effects of signal precision
 - Uses normal distributions, guaranteein $E[X|z] = \alpha z + (1 - \alpha)E[X]$

- Healy & Moore (2007)
 - X = avg score of the population a quiz
 - *Z* = your score on quiz
 - $z \text{ large} \Rightarrow E[X] < E[X|z] < z \text{ (overconfidence)}$
- Shapiro (1986) or Novshek & Sonnenschein (1982)
 - Oligopolist observes noisy signal of cost or demand
 - Good signal ⇒ competitive advantage
- Morris & Shin (2000, 2002, 2006)
 - Global Games: additive noise in information about state
 - Value of public info: welfare effects of signal precision
 - Uses normal distributions, guaranteein $E[X|z] = \alpha z + (1 - \alpha)E[X]$

- Healy & Moore (2007)
 - X = avg score of the population a quiz
 - *Z* = your score on quiz
 - $z \text{ large} \Rightarrow E[X] < E[X|z] < z \text{ (overconfidence)}$
- Shapiro (1986) or Novshek & Sonnenschein (1982)
 - Oligopolist observes noisy signal of cost or demand
 - Good signal ⇒ competitive advantage
- Morris & Shin (2000, 2002, 2006)
 - Global Games: additive noise in information about state
 - Value of public info: welfare effects of signal precision
 - Uses normal distributions, guaranteein, $E[X|z] = \alpha z + (1 - \alpha)E[X]$

- Healy & Moore (2007)
 - X = avg score of the population a quiz
 - *Z* = your score on quiz
 - $z \text{ large} \Rightarrow E[X] < E[X|z] < z \text{ (overconfidence)}$
- Shapiro (1986) or Novshek & Sonnenschein (1982)
 - Oligopolist observes noisy signal of cost or demand
 - Good signal \Rightarrow competitive advantage
- Morris & Shin (2000, 2002, 2006)
 - Global Games: additive noise in information about state
 - Value of public info: welfare effects of signal precision
 - Uses normal distributions, guaranteein $E[X|z] = \alpha z + (1 - \alpha)E[X]$

- Healy & Moore (2007)
 - X = avg score of the population a quiz
 - *Z* = your score on quiz
 - $z \text{ large} \Rightarrow E[X] < E[X|z] < z \text{ (overconfidence)}$
- Shapiro (1986) or Novshek & Sonnenschein (1982)
 - Oligopolist observes noisy signal of cost or demand
 - Good signal \Rightarrow competitive advantage
- Morris & Shin (2000, 2002, 2006)
 - Global Games: additive noise in information about state
 - Value of public info: welfare effects of signal precision
 - Uses normal distributions, guaranteein $E[X|z] = \alpha z + (1 - \alpha)E[X]$

- Healy & Moore (2007)
 - X = avg score of the population a quiz
 - *Z* = your score on quiz
 - $z \text{ large} \Rightarrow E[X] < E[X|z] < z \text{ (overconfidence)}$
- Shapiro (1986) or Novshek & Sonnenschein (1982)
 - Oligopolist observes noisy signal of cost or demand
 - Good signal \Rightarrow competitive advantage
- Morris & Shin (2000, 2002, 2006)
 - Global Games: additive noise in information about state
 - Value of public info: welfare effects of signal precision
 - Uses normal distributions, guaranteein $E[X|z] = \alpha z + (1 - \alpha)E[X]$

- Healy & Moore (2007)
 - X = avg score of the population a quiz
 - *Z* = your score on quiz
 - $z \text{ large} \Rightarrow E[X] < E[X|z] < z \text{ (overconfidence)}$
- Shapiro (1986) or Novshek & Sonnenschein (1982)
 - Oligopolist observes noisy signal of cost or demand
 - Good signal \Rightarrow competitive advantage
- Morris & Shin (2000, 2002, 2006)
 - Global Games: additive noise in information about state
 - Value of public info: welfare effects of signal precision
 - Uses normal distributions, guaranteeing $E[X|z] = \alpha z + (1 \alpha)E[X]$

- Healy & Moore (2007)
 - X = avg score of the population a quiz
 - *Z* = your score on quiz
 - $z \text{ large} \Rightarrow E[X] < E[X|z] < z \text{ (overconfidence)}$
- Shapiro (1986) or Novshek & Sonnenschein (1982)
 - Oligopolist observes noisy signal of cost or demand
 - Good signal \Rightarrow competitive advantage
- Morris & Shin (2000, 2002, 2006)
 - Global Games: additive noise in information about state
 - Value of public info: welfare effects of signal precision
 - Uses normal distributions, guaranteeing $E[X|z] = \alpha z + (1 \alpha)E[X]$

- Healy & Moore (2007)
 - X = avg score of the population a quiz
 - *Z* = your score on quiz
 - $z \text{ large} \Rightarrow E[X] < E[X|z] < z \text{ (overconfidence)}$
- Shapiro (1986) or Novshek & Sonnenschein (1982)
 - Oligopolist observes noisy signal of cost or demand
 - Good signal \Rightarrow competitive advantage
- Morris & Shin (2000, 2002, 2006)
 - Global Games: additive noise in information about state
 - Value of public info: welfare effects of signal precision
 - Uses normal distributions, guaranteeing $E[X|z] = \alpha z + (1 \alpha)E[X]$

- Healy & Moore (2007)
 - X = avg score of the population a quiz
 - *Z* = your score on quiz
 - $z \text{ large} \Rightarrow E[X] < E[X|z] < z \text{ (overconfidence)}$
- Shapiro (1986) or Novshek & Sonnenschein (1982)
 - Oligopolist observes noisy signal of cost or demand
 - Good signal \Rightarrow competitive advantage
- Morris & Shin (2000, 2002, 2006)
 - Global Games: additive noise in information about state
 - Value of public info: welfare effects of signal precision
 - Uses normal distributions, guaranteeing $E[X|z] = \alpha z + (1 \alpha)E[X]$

- Assume all r.v.'s are real-valued and have cts densities & finite means
- Consider *families* of error terms ${\mathcal E}$
- Questions: What conditions on X and \mathcal{E} guarantee

(1)
$$E[X|z] = \alpha z + (1-\alpha)E[X]?$$

- Relevant properties of r.v.'s:
 - Symmetric: symmetric density about the mean
 - Quasiconcave: quasiconcave density (unimodal)

- Assume all r.v.'s are real-valued and have cts densities & finite means
- Consider *families* of error terms ${\cal E}$
- Questions: What conditions on X and \mathcal{E} guarantee

(1)
$$E[X|z] = \alpha z + (1-\alpha)E[X]?$$

- Relevant properties of r.v.'s:
 - Symmetric: symmetric density about the mean
 - Quasiconcave: quasiconcave density (unimodal)

- Assume all r.v.'s are real-valued and have cts densities & finite means
- Consider *families* of error terms \mathcal{E}
- Questions: What conditions on X and \mathcal{E} guarantee

(1)
$$E[X|z] = \alpha z + (1-\alpha)E[X]?$$

Does (1) imply anything about X or \mathcal{E} ?

• Relevant properties of r.v.'s:

- Symmetric: symmetric density about the mean
- Quasiconcave: quasiconcave density (unimodal)

- Assume all r.v.'s are real-valued and have cts densities & finite means
- Consider *families* of error terms \mathcal{E}
- Questions: What conditions on X and \mathcal{E} guarantee

(1)
$$E[X|z] = \alpha z + (1-\alpha)E[X]?$$

- Relevant properties of r.v.'s:
 - Symmetric: symmetric density about the mean
 - Quasiconcave: quasiconcave density (unimodal)

- Assume all r.v.'s are real-valued and have cts densities & finite means
- Consider *families* of error terms \mathcal{E}
- Questions: What conditions on X and \mathcal{E} guarantee

(1)
$$E[X|z] = \alpha z + (1-\alpha)E[X]?$$

- Relevant properties of r.v.'s:
 - Symmetric: symmetric density about the mean
 - Quasiconcave: quasiconcave density (unimodal)

- Assume all r.v.'s are real-valued and have cts densities & finite means
- Consider *families* of error terms \mathcal{E}
- Questions: What conditions on X and \mathcal{E} guarantee

(1)
$$E[X|z] = \alpha z + (1-\alpha)E[X]?$$

- Relevant properties of r.v.'s:
 - Symmetric: symmetric density about the mean
 - *Quasiconcave:* quasiconcave density (unimodal)

Definitions

Definition

X updates toward the signal w.r.t \mathcal{E} (UTS- \mathcal{E}) if $\forall \tilde{\epsilon} \in \mathcal{E}$, $\forall z \exists \alpha \in [0, 1] \text{ s.t.}$

(2)
$$E[X|Z=z] = \alpha z + (1-\alpha)E[X].$$

Definition

X updates in the direction of the signal w.r.t \mathcal{E} (UDS- \mathcal{E}) if equation (2) holds with $\alpha \geq 0 \ \forall \tilde{\epsilon} \in \mathcal{E}$.

Definition

X satisfies mean reinforcement with respect to \mathcal{E} (MR- \mathcal{E}) if $\forall \tilde{\varepsilon} \in \mathcal{E}$

$$(3) E[X|z = E[X]] = E[X]$$

All error terms are continuous, mean-zero, and satisfy sym. dep.:

Definition

 $\tilde{\varepsilon}$ satisfies **symmetric dependence** if, for almost every ε , $a \in \mathbb{R}$, $f_{\tilde{\varepsilon}}(\varepsilon|z = E[X] + a) = f_{\tilde{\varepsilon}}(\varepsilon|z = E[X] - a)$.

• \mathcal{E}_S = all symmetric error terms.

- $\mathcal{E}_{S,Q}$ = all symmetric, quasiconcave error terms.
- $\mathcal{E}_{S,Q,I}$ = all symmetric, quasiconcave error terms indep. of X.
- \mathcal{E}_{2pt} = all two-point distributions of the form (-y, p; y, 1-p).
- \mathcal{E}_U = all uniform distributions of the form U[-y, y].

All error terms are continuous, mean-zero, and satisfy sym. dep.:

Definition

 $\tilde{\varepsilon}$ satisfies **symmetric dependence** if, for almost every ε , $a \in \mathbb{R}$, $f_{\tilde{\varepsilon}}(\varepsilon|z = E[X] + a) = f_{\tilde{\varepsilon}}(\varepsilon|z = E[X] - a)$.

- \mathcal{E}_S = all symmetric error terms.
- $\mathcal{E}_{S,Q}$ = all symmetric, quasiconcave error terms.
- $\mathcal{E}_{S,Q,I}$ = all symmetric, quasiconcave error terms indep. of X.
- \mathcal{E}_{2pt} = all two-point distributions of the form (-y, p; y, 1-p).
- \mathcal{E}_U = all uniform distributions of the form U[-y, y].

All error terms are continuous, mean-zero, and satisfy sym. dep.:

Definition

 $\tilde{\varepsilon}$ satisfies **symmetric dependence** if, for almost every ε , $a \in \mathbb{R}$, $f_{\tilde{\varepsilon}}(\varepsilon|z = E[X] + a) = f_{\tilde{\varepsilon}}(\varepsilon|z = E[X] - a)$.

- \mathcal{E}_S = all symmetric error terms.
- $\mathcal{E}_{S,Q}$ = all symmetric, quasiconcave error terms.
- $\mathcal{E}_{S,Q,I}$ = all symmetric, quasiconcave error terms indep. of X.
- \mathcal{E}_{2pt} = all two-point distributions of the form (-y, p; y, 1-p).
- \mathcal{E}_U = all uniform distributions of the form U[-y, y].

All error terms are continuous, mean-zero, and satisfy sym. dep.:

Definition

 $\tilde{\varepsilon}$ satisfies **symmetric dependence** if, for almost every ε , $a \in \mathbb{R}$, $f_{\tilde{\varepsilon}}(\varepsilon|z = E[X] + a) = f_{\tilde{\varepsilon}}(\varepsilon|z = E[X] - a)$.

- \mathcal{E}_S = all symmetric error terms.
- $\mathcal{E}_{S,Q}$ = all symmetric, quasiconcave error terms.
- $\mathcal{E}_{S,Q,I}$ = all symmetric, quasiconcave error terms indep. of X.
- \mathcal{E}_{2pt} = all two-point distributions of the form (-y, p; y, 1-p).
- \mathcal{E}_U = all uniform distributions of the form U[-y, y].

All error terms are continuous, mean-zero, and satisfy sym. dep.:

Definition

 $\tilde{\varepsilon}$ satisfies **symmetric dependence** if, for almost every ε , $a \in \mathbb{R}$, $f_{\tilde{\varepsilon}}(\varepsilon|z = E[X] + a) = f_{\tilde{\varepsilon}}(\varepsilon|z = E[X] - a)$.

- \mathcal{E}_S = all symmetric error terms.
- $\mathcal{E}_{S,Q}$ = all symmetric, quasiconcave error terms.
- $\mathcal{E}_{S,Q,I}$ = all symmetric, quasiconcave error terms indep. of X.
- \mathcal{E}_{2pt} = all two-point distributions of the form (-y, p; y, 1-p).
- \mathcal{E}_U = all uniform distributions of the form U[-y, y].

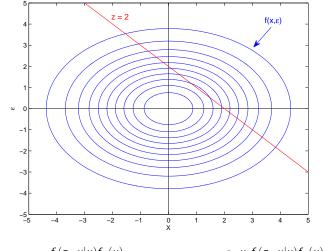
All error terms are continuous, mean-zero, and satisfy sym. dep.:

Definition

 $\tilde{\varepsilon}$ satisfies **symmetric dependence** if, for almost every ε , $a \in \mathbb{R}$, $f_{\tilde{\varepsilon}}(\varepsilon|z = E[X] + a) = f_{\tilde{\varepsilon}}(\varepsilon|z = E[X] - a)$.

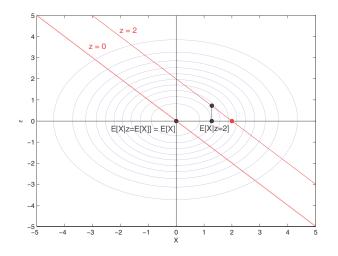
- \mathcal{E}_S = all symmetric error terms.
- $\mathcal{E}_{S,Q}$ = all symmetric, quasiconcave error terms.
- $\mathcal{E}_{S,Q,I}$ = all symmetric, quasiconcave error terms indep. of X.
- \mathcal{E}_{2pt} = all two-point distributions of the form (-y, p; y, 1-p).
- \mathcal{E}_U = all uniform distributions of the form U[-y, y].

Visualizing the Conditions



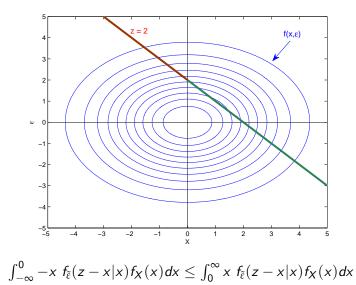
 $f(x|z) = \frac{f_{\tilde{\epsilon}}(z-x|x)f_X(x)}{\int f_{\tilde{\epsilon}}(z-\xi|\xi)f_X(\xi)d\xi} \text{ so } E[X|z] = \int \frac{x}{\int f_{\tilde{\epsilon}}(z-\xi|\xi)f_X(\xi)d\xi} dx$

The Normal-Normal Case

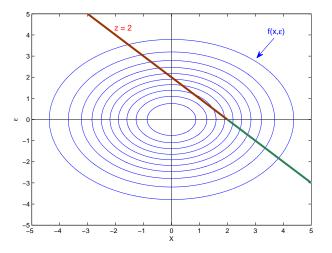


If $X \sim \mathcal{N}(0,2)$ and $ilde{\epsilon} \sim \mathcal{N}(0,1)$ then E[X|z=2]=1.6

Visualizing the Conditions



Visualizing the Conditions

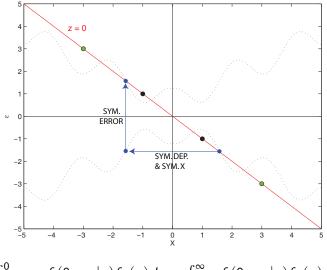


Integrate on ε : $E[X|z] \le z \Leftrightarrow E[\tilde{\varepsilon}|z] \ge 0$

MR: Sufficient Conditions

Proposition If X is symmetric then X satisfies $MR-\mathcal{E}_S$ Proof.

See pictures...



 $\int_{-\infty}^{0} -x f_{\tilde{e}}(0-x|x) f_{X}(x) dx = \int_{0}^{\infty} x f_{\tilde{e}}(0-x|x) f_{X}(x) dx$

UDS: Sufficient Conditions

X symmetric \Rightarrow X UDS- \mathcal{E}_{S} . Example Let $f_{X}(x) = \begin{cases} \frac{1}{3} \left(1 - \frac{|x|}{3}\right) & \text{if } x \in [-3, 3] \\ 0 & \text{otherwise} \end{cases}$

and $\tilde{\varepsilon} = (-2, \frac{1}{2}; 2, \frac{1}{2})$. Then E[X|z] = -z, so UDS fails.

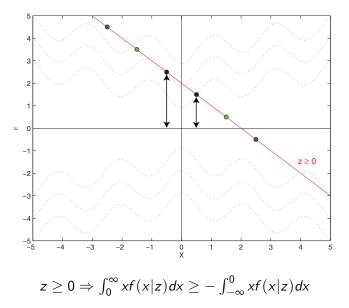
To get UDS, need another restriction on errors:

Proposition

If X is symmetric then X satisfies UDS- $\mathcal{E}_{S,Q}$

Proof (Sketch).

See picture...



UTS: Sufficient Conditions

X symmetric \Rightarrow X UTS- $\mathcal{E}_{S,Q}$.

Example

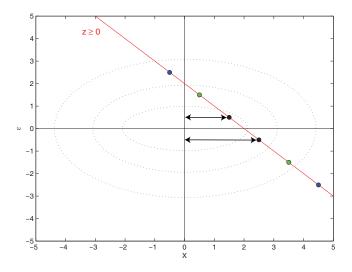
Let $f_{\tilde{\varepsilon}}(\varepsilon) = \begin{cases} \frac{1}{3}\left(1 - \frac{|\varepsilon|}{3}\right) & \text{if } \varepsilon \in [-3, 3] \\ 0 & \text{otherwise} \end{cases}$ and X = (-2, 1/2; 2, 1/2). Then E[X|z] = 2z, so UTS fails.

Proposition

If X is symmetric and quasiconcave then X satisfies UTS- $\mathcal{E}_{S,Q,I}$.

Proof (Sketch).

Already have UDS. Need to show $E[X|z] \leq z$ when $z \geq 0$.



Does \exists a sufficient condition weaker than independence??

Summary of Results

Famil	Family of Error Terms			Prior		Condition
Sym			Sym		\Rightarrow	MR
Sym			Sym		≯	UDS
Sym	QC		Sym		\Rightarrow	UDS
Sym	QC		Sym		\Rightarrow	UTS
Sym	QC	Ind^*	Sym	QC	\Rightarrow	UTS

Proposition

Pick any \mathcal{E} with $\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}}$. If X satisfies MR- \mathcal{E} then X is symmetric.

Proof.

Pick any y > 0 and let $\tilde{\epsilon} \sim (-y, \frac{1}{2}; y, \frac{1}{2})$. z = 0 means $x \in \{-y, y\}$. Thus, $E[X|z=0] \propto -yf_X(-y) + yf_X(y)$. MR- \mathcal{E} means $-yf_X(-y) + yf_X(y) = 0$ for every y > 0. Thus, $f_X(y) = f_X(-y)$, so X is symmetric.

Proposition

Pick any \mathcal{E} with $\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}}$. If X satisfies MR- \mathcal{E} then X is symmetric.

Proof.

Pick any y > 0 and let $\tilde{\varepsilon} \sim (-y, \frac{1}{2}; y, \frac{1}{2})$. z = 0 means $x \in \{-y, y\}$. Thus, $E[X|z=0] \propto -yf_X(-y) + yf_X(y)$. MR- \mathcal{E} means $-y f_X(-y) + y f_X(y) = 0$ for every y > 0. Thus, $f_X(y) = f_X(-y)$, so X is symmetric.

Proposition

Pick any \mathcal{E} with $\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}}$. If X satisfies MR- \mathcal{E} then X is symmetric.

Proof.

Pick any y > 0 and let $\tilde{\epsilon} \sim (-y, \frac{1}{2}; y, \frac{1}{2})$. z = 0 means $x \in \{-y, y\}$. Thus, $E[X|z=0] \propto -yf_X(-y) + yf_X(y)$. MR- \mathcal{E} means $-yf_X(-y) + yf_X(y) = 0$ for every y > 0. Thus, $f_X(y) = f_X(-y)$, so X is symmetric.

Proposition

Pick any \mathcal{E} with $\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}}$. If X satisfies MR- \mathcal{E} then X is symmetric.

Proof.

Pick any y > 0 and let $\tilde{\epsilon} \sim (-y, \frac{1}{2}; y, \frac{1}{2})$. z = 0 means $x \in \{-y, y\}$. Thus, $E[X|z=0] \propto -yf_X(-y) + yf_X(y)$. MR- \mathcal{E} means $-yf_X(-y) + yf_X(y) = 0$ for every y > 0. Thus, $f_X(y) = f_X(-y)$, so X is symmetric.

Proposition

Pick any \mathcal{E} with $\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}}$. If X satisfies MR- \mathcal{E} then X is symmetric.

Proof.

Pick any y > 0 and let $\tilde{\varepsilon} \sim (-y, \frac{1}{2}; y, \frac{1}{2})$. z = 0 means $x \in \{-y, y\}$. Thus, $E[X|z=0] \propto -yf_X(-y) + yf_X(y)$. MR- \mathcal{E} means $-yf_X(-y) + yf_X(y) = 0$ for every y > 0. Thus, $f_X(y) = f_X(-y)$, so X is symmetric.

Proposition

If $\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}}$ then there does not exist an X such that X UDS- \mathcal{E} . Proof.

Pick any $x_2 > x_1 > 0$ and let $\tilde{\epsilon} \sim \left(-\frac{x_1+x_2}{2}, \frac{1}{2}; \frac{x_1+x_2}{2}, \frac{1}{2}\right)$ If $z = (x_2 - x_1)/2$ then $E[X|z] \propto -x_1 f_X(-x_1) + x_2 f_X(x_2)$ By symmetry (prev. proposition), this is $-x_1 f_X(x_1) + x_2 f_X(x_2)$. UDS $\Rightarrow \ge 0$, so $x_2 f_X(x_2) \ge x_1 f(x_1)$ But then $x f_X(x)$ is increasing, so $E[X] = \int x f_X(x) dx$ does not exist

Proposition

If $\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}}$ then there does not exist an X such that X UDS- \mathcal{E} . Proof.

Pick any $x_2 > x_1 > 0$ and let $\tilde{\varepsilon} \sim \left(-\frac{x_1+x_2}{2}, \frac{1}{2}; \frac{x_1+x_2}{2}, \frac{1}{2}\right)$ If $z = (x_2 - x_1)/2$ then $E[X|z] \propto -x_1 f_X(-x_1) + x_2 f_X(x_2)$ By symmetry (prev. proposition), this is $-x_1 f_X(x_1) + x_2 f_X(x_2)$. UDS $\Rightarrow \ge 0$, so $x_2 f_X(x_2) \ge x_1 f(x_1)$ But then $x f_X(x)$ is increasing, so $E[X] = \int x f_X(x) dx$ does not exist

Proposition

If $\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}}$ then there does not exist an X such that X UDS- \mathcal{E} . Proof.

Pick any $x_2 > x_1 > 0$ and let $\tilde{\varepsilon} \sim \left(-\frac{x_1+x_2}{2}, \frac{1}{2}; \frac{x_1+x_2}{2}, \frac{1}{2}\right)$ If $z = (x_2 - x_1)/2$ then $E[X|z] \propto -x_1 f_X(-x_1) + x_2 f_X(x_2)$ By symmetry (prev. proposition), this is $-x_1 f_X(x_1) + x_2 f_X(x_2)$. UDS $\Rightarrow \ge 0$, so $x_2 f_X(x_2) \ge x_1 f(x_1)$ But then $x f_X(x)$ is increasing, so $E[X] = \int x f_X(x) dx$ does not exist

Proposition

If $\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}}$ then there does not exist an X such that X UDS- \mathcal{E} . Proof.

Pick any $x_2 > x_1 > 0$ and let $\tilde{\epsilon} \sim \left(-\frac{x_1+x_2}{2}, \frac{1}{2}; \frac{x_1+x_2}{2}, \frac{1}{2}\right)$ If $z = (x_2 - x_1)/2$ then $E[X|z] \propto -x_1 f_X(-x_1) + x_2 f_X(x_2)$ By symmetry (prev. proposition), this is $-x_1 f_X(x_1) + x_2 f_X(x_2)$. UDS $\Rightarrow \ge 0$, so $x_2 f_X(x_2) \ge x_1 f(x_1)$ But then $x f_X(x)$ is increasing, so $E[X] = \int x f_X(x) dx$ does not exist

Proposition

If $\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}}$ then there does not exist an X such that X UDS- \mathcal{E} . Proof.

Pick any $x_2 > x_1 > 0$ and let $\tilde{\varepsilon} \sim \left(-\frac{x_1+x_2}{2}, \frac{1}{2}; \frac{x_1+x_2}{2}, \frac{1}{2}\right)$ If $z = (x_2 - x_1)/2$ then $E[X|z] \propto -x_1 f_X(-x_1) + x_2 f_X(x_2)$ By symmetry (prev. proposition), this is $-x_1 f_X(x_1) + x_2 f_X(x_2)$. UDS $\Rightarrow \ge 0$, so $x_2 f_X(x_2) \ge x_1 f(x_1)$ But then $x f_X(x)$ is increasing, so $E[X] = \int x f_X(x) dx$ does not exist

Proposition Pick any \mathcal{E} with $\mathcal{E}_U \subseteq \overline{\mathcal{E}}$. If X satisfies MR- \mathcal{E} then X is symmetric.

Proof.

Pick any y > 0 and let $\tilde{\epsilon} \sim U[-y, y]$. z = 0 means $x \in [-y, y]$. Thus, $E[X|z=0] \propto \int_{-y}^{y} x f_X(x) dx$. MR- \mathcal{E} means $\int_{-y}^{y} x f_X(x) dx = 0$ for every y. Differentiate w.r.t. y to get $y f_X(y) = y f_X(-y)$ Thus, $f_X(y) = f_X(-y) \forall y > 0$, so X is symmetric.

Proposition Pick any \mathcal{E} with $\mathcal{E}_U \subseteq \overline{\mathcal{E}}$. If X satisfies MR- \mathcal{E} then X is symmetric.

Proof.

Pick any y > 0 and let $\tilde{\epsilon} \sim U[-y, y]$. z = 0 means $x \in [-y, y]$. Thus, $E[X|z=0] \propto \int_{-y}^{y} x f_X(x) dx$. MR- \mathcal{E} means $\int_{-y}^{y} x f_X(x) dx = 0$ for every y. Differentiate w.r.t. y to get $y f_X(y) = y f_X(-y)$ Thus, $f_X(y) = f_X(-y) \forall y > 0$, so X is symmetric.

Proposition Pick any \mathcal{E} with $\mathcal{E}_U \subseteq \overline{\mathcal{E}}$. If X satisfies MR- \mathcal{E} then X is symmetric.

Proof.

Pick any
$$y > 0$$
 and let $\tilde{\varepsilon} \sim U[-y, y]$.
 $z = 0$ means $x \in [-y, y]$.
Thus, $E[X|z = 0] \propto \int_{-y}^{y} x f_X(x) dx$.
MR- \mathcal{E} means $\int_{-y}^{y} x f_X(x) dx = 0$ for every y .
Differentiate w.r.t. y to get $y f_X(y) = y f_X(-y)$
Thus, $f_X(y) = f_X(-y) \forall y > 0$, so X is symmetric.

Proposition Pick any \mathcal{E} with $\mathcal{E}_U \subseteq \overline{\mathcal{E}}$. If X satisfies MR- \mathcal{E} then X is symmetric.

Proof.

Pick any y > 0 and let $\tilde{\epsilon} \sim U[-y, y]$. z = 0 means $x \in [-y, y]$. Thus, $E[X|z=0] \propto \int_{-y}^{y} x f_X(x) dx$. MR- \mathcal{E} means $\int_{-y}^{y} x f_X(x) dx = 0$ for every y. Differentiate w.r.t. y to get $y f_X(y) = y f_X(-y)$ Thus, $f_X(y) = f_X(-y) \forall y > 0$, so X is symmetric.

Proposition Pick any \mathcal{E} with $\mathcal{E}_U \subseteq \overline{\mathcal{E}}$. If X satisfies MR- \mathcal{E} then X is symmetric.

Proof.

Pick any y > 0 and let $\tilde{\epsilon} \sim U[-y, y]$. z = 0 means $x \in [-y, y]$. Thus, $E[X|z=0] \propto \int_{-y}^{y} x f_X(x) dx$. MR- \mathcal{E} means $\int_{-y}^{y} x f_X(x) dx = 0$ for every y. Differentiate w.r.t. y to get $y f_X(y) = y f_X(-y)$ Thus, $f_X(y) = f_X(-y) \forall y > 0$, so X is symmetric.

Proposition Pick any \mathcal{E} with $\mathcal{E}_U \subseteq \overline{\mathcal{E}}$. If X satisfies MR- \mathcal{E} then X is symmetric.

Proof.

Pick any
$$y > 0$$
 and let $\tilde{\epsilon} \sim U[-y, y]$.
 $z = 0$ means $x \in [-y, y]$.
Thus, $E[X|z = 0] \propto \int_{-y}^{y} x f_X(x) dx$.
MR- \mathcal{E} means $\int_{-y}^{y} x f_X(x) dx = 0$ for every y .
Differentiate w.r.t. y to get $y f_X(y) = y f_X(-y)$
Thus, $f_X(y) = f_X(-y) \ \forall y > 0$, so X is symmetric.

UTS: Necessary Conditions

Proposition Pick any \mathcal{E} with $\mathcal{E}_U \subseteq \overline{\mathcal{E}}$. If X satisfies UTS- \mathcal{E} then X is symmetric and quasiconcave.

Proof (Sketch).

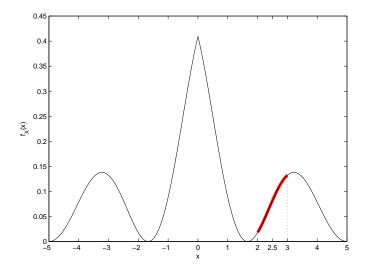
- UTS- $\mathcal{E} \Rightarrow MR$ - $\mathcal{E} \Rightarrow X$ symmetric. \checkmark
- For quasiconcavity, see pictures...

UTS: Necessary Conditions

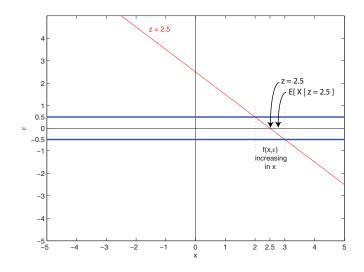
Proposition Pick any \mathcal{E} with $\mathcal{E}_U \subseteq \overline{\mathcal{E}}$. If X satisfies UTS- \mathcal{E} then X is symmetric and quasiconcave.

Proof (Sketch).

- UTS- $\mathcal{E} \Rightarrow MR$ - $\mathcal{E} \Rightarrow X$ symmetric. \checkmark
- For quasiconcavity, see pictures...



Not quasiconcave: f_X is increasing on [2, 3]



If $\tilde{\epsilon} \sim U[-\frac{1}{2}, \frac{1}{2}]$ then E[X|z=2.5] > z = 2.5. UTS- \mathcal{E} fails.

Summary of Results

Family of Error Terms	Prior		Condition
Sym	Sym	\Rightarrow	MR
Sym	Sym	\Rightarrow	UDS
Sym QC	Sym	\Rightarrow	UDS
Sym QC	Sym	\Rightarrow	UTS
Sym QC Ind^*	Sym QC	\Rightarrow	UTS
$\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}}$	Sym	\Leftarrow	MR
$\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}}$	A	\Leftarrow	UDS
${\mathcal E}_U \subseteq \overline{{\mathcal E}}$	Sym	\Leftarrow	MR
${\mathcal E}_U\subseteq\overline{{\mathcal E}}$	Sym QC	\Leftarrow	UTS

Characterizations

Can form various 'iff' statements:

For $\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}} \subseteq \mathcal{E}_{S}$, Sym $X \Leftrightarrow MR-\mathcal{E}$ For $\mathcal{E}_{U} \subseteq \overline{\mathcal{E}} \subseteq \mathcal{E}_{S,Q}$, Sym $X \Leftrightarrow MR-\mathcal{E} \Leftrightarrow UDS-\mathcal{E}$ For $\mathcal{E}_{U} \subseteq \overline{\mathcal{E}} \subseteq \mathcal{E}_{S,Q,I}$, Sym & q.-c. $X \Leftrightarrow UTS-\mathcal{E}$

- Bottom Line 1: Strength of updating assumption depends on symmetry and quasiconcavity assumptions on distributions
- Bottom Line 2: Robustness of updating assumption depends on robustness of sym. & q.-c. assumptions on distributions

Characterizations

Can form various 'iff' statements:

For $\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}} \subseteq \mathcal{E}_{S}$, Sym $X \Leftrightarrow MR-\mathcal{E}$ For $\mathcal{E}_{U} \subseteq \overline{\mathcal{E}} \subseteq \mathcal{E}_{S,Q}$, Sym $X \Leftrightarrow MR-\mathcal{E} \Leftrightarrow UDS-\mathcal{E}$ For $\mathcal{E}_{U} \subseteq \overline{\mathcal{E}} \subseteq \mathcal{E}_{S,Q,I}$, Sym & q.-c. $X \Leftrightarrow UTS-\mathcal{E}$

- Bottom Line 1: Strength of updating assumption depends on symmetry and quasiconcavity assumptions on distributions
- Bottom Line 2: Robustness of updating assumption depends on robustness of sym. & q.-c. assumptions on distributions

Characterizations

Can form various 'iff' statements:

For $\mathcal{E}_{2pt} \subseteq \overline{\mathcal{E}} \subseteq \mathcal{E}_{S}$, Sym $X \Leftrightarrow MR-\mathcal{E}$ For $\mathcal{E}_{U} \subseteq \overline{\mathcal{E}} \subseteq \mathcal{E}_{S,Q}$, Sym $X \Leftrightarrow MR-\mathcal{E} \Leftrightarrow UDS-\mathcal{E}$ For $\mathcal{E}_{U} \subseteq \overline{\mathcal{E}} \subseteq \mathcal{E}_{S,Q,I}$, Sym & q.-c. $X \Leftrightarrow UTS-\mathcal{E}$

- Bottom Line 1: Strength of updating assumption depends on symmetry and quasiconcavity assumptions on distributions
- Bottom Line 2: Robustness of updating assumption depends on robustness of sym. & q.-c. assumptions on distributions