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The Setting

X = some random variable of interest

Z = X + & = noisy signal of X

E[¢|X = x] =0 Vx

Care about E[X|Z = Z]

Often assumed that E[X|z] = az+ (1 — a) E[X]
When is this appropriate? Is it robust?
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Examples

¢ Healy & Moore (2007)

e X = avg score of the population a quiz
e 7/ = your score on quiz
e z large = E[X] < E[X]z] < z (overconfidence)

e Shapiro (1986) or Novshek & Sonnenschein (1982)

e Oligopolist observes noisy signal of cost or demand
e Good signal = competitive advantage

e Morris & Shin (2000, 2002, 2006)

e Global Games: additive noise in information about state
e Value of public info: welfare effects of signal precision
e Uses normal distributions, guaranteeing

EX|z] =az+ (1 —a)E[X]



Assumptions

e Assume all r.v.’s are real-valued and have cts densities & finite
means



Assumptions

e Assume all r.v.’s are real-valued and have cts densities & finite
means

e Consider families of error terms £



Assumptions

e Assume all r.v.’s are real-valued and have cts densities & finite
means

e Consider families of error terms £

e Questions: What conditions on X and £ guarantee
(1) EX|z] =az+ (1 —a)E[X]?

Does (1) imply anything about X or £7



Assumptions

Assume all r.v.'s are real-valued and have cts densities & finite
means

Consider families of error terms £

Questions: What conditions on X and & guarantee
(1) EX|z] =az+ (1 —a)E[X]?

Does (1) imply anything about X or £7
Relevant properties of r.v.'s:



Assumptions

Assume all r.v.'s are real-valued and have cts densities & finite
means

Consider families of error terms £

Questions: What conditions on X and & guarantee
(1) EX|z] =az+ (1 —a)E[X]?

Does (1) imply anything about X or £7
Relevant properties of r.v.'s:
o Symmetric: symmetric density about the mean



Assumptions

Assume all r.v.'s are real-valued and have cts densities & finite
means

Consider families of error terms £

Questions: What conditions on X and & guarantee
(1) EX|z] =az+ (1 —a)E[X]?

Does (1) imply anything about X or £7
Relevant properties of r.v.'s:

o Symmetric: symmetric density about the mean
e Quasiconcave: quasiconcave density (unimodal)



Definitions

Definition
X updates toward the signal w.r.t £ (UTS-E) if Ve € &, Vz
Ja € [0,1] s.t.

(2) EX|Z=z]=az+ (1 —a)E[X].
Definition

X updates in the direction of the signal w.r.t £ (UDS-) if
equation (2) holds with « > 0 V& € £.

Definition
X satisfies mean reinforcement with respect to £ (MR-E) if
VEe &

(3) E[X|z = E[X]] = E[X]
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Families of Error Terms

All error terms are continuous, mean-zero, and satisfy sym. dep.:

Definition
£ satisfies symmetric dependence if, for almost every ¢, a € R,
fz(e|z = E[X] + a) = fi(e|z = E[X] — a).

Es = all symmetric error terms.

Es @ = all symmetric, quasiconcave error terms.

Es .1 = all symmetric, quasiconcave error terms indep. of X.

Expt = all two-point distributions of the form
(=y.piy,1—p).
o &y = all uniform distributions of the form U[—y, y].

For any &, £ = the weak closure of £.
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The Normal-Normal Case
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X o

If X ~ N(0,2) and & ~ N(0,1) then E[X|z =2] = 1.6



Visualizing the Conditions
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MR: Sufficient Conditions

Proposition
If X is symmetric then X satisfies MR-Es

Proof.

See pictures...
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UDS: Sufficient Conditions

X symmetric & X UDS-Es.

Example

1(q_ Y _
Let fx (x) = 3<1 3) it oxe[-33]
0 otherwise

and € = (—2,3;2,1). Then E[X|z] = —z, so UDS fails.
To get UDS, need another restriction on errors:
Proposition

If X is symmetric then X satisfies UDS-Es ¢

Proof (Sketch).

See picture...
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UTS: Sufficient Conditions

X symmetric & X UTS-Es q.

Example
et g' if £c[-3,3]
0 otherwise
and X = (—2,1/2;2,1/2). Then E[X|z] = 2z, so UTS fails.
Proposition

If X is symmetric and quasiconcave then X satisfies UTS-Es ..
Proof (Sketch).

Already have UDS.
Need to show E[X|z] < z when z > 0.



Does d a sufficient condition weaker than independence??



Summary of Results

Family of Error Terms Prior Condition
Sym Sym = MR
Sym Sym # UDS
Sym QC Sym = uDS
Sym QC Sym # uTsS
Sym QC Ind* Sym QC = UTS
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MR: Necessary Conditions 1

Proposition
Pick any £ with Eypr C E.
If X satisfies MR-E then X is symmetric.

Proof.
Pick any y > 0 and let & ~ (—y, %;y, %)
z=0means x € {—y, y}.
Thus, E[X[z = 0] o« —yfx(—y) + yfx(y).
MR-E means —y fx(—y) + y fx(y) = 0 for every y > 0.
Thus, fx(y) = fx(—y), so X is symmetric.
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UDS: An Impossibility Result

Proposition
If Eopr C & then there does not exist an X such that X UDS-E

Proof.
Pick any x, > x; > 0 and let & ~ (—252,
If z=(x — x1)/2 then E[X]|z] x —x1fx(—x1) + x2fx (x2)

1. xit+x 1)
2 2 12

By symmetry (prev. proposition), this is
—x1fx(x1) + x2fx (x2).

UDS = >0, so X2fx(X2) > le(Xl)

But then xfx(x) is increasing, so E[X] = [ xfx(x)dx does

not exist
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MR: Necessary Conditions 2

Proposition
Pick any £ with £y C E.
If X satisfies MR-E then X is symmetric.

Proof.
Pick any y > 0 and let & ~ U[—y, y].

z =0 means x € [—y,y].

Thus, E[X|z = 0] ffyxfx(x) dx.

MR-E means ffyx fx (x) dx = 0 for every y.
Differentiate w.r.t. y to get y fx(y) =y fx(—y)
Thus, fx(y) = fx(—y) Yy > 0, so X is symmetric.

If £ C Es g then MR-£ = Sym Prior = UDS-£ = MR-E.
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UTS: Necessary Conditions

Proposition
Pick any € with &y C £.
If X satisfies UTS-E then X is symmetric and quasiconcave.

Proof (Sketch).
e UTS-£ = MR-£ = X symmetric. v/

e For quasiconcavity, see pictures...
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Not quasiconcave: fx is increasing on [2, 3]




z=25
3F 4
o z=25 1
E[X|z=25]
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If € ~ U[—2%,1] then E[X|z =25] >z =25. UTS-E fails.



Summary of Results

Family of Error Terms Prior Condition
Sym Sym = MR
Sym Sym # UDS
Sym QC Sym = uDS
Sym QC Sym - uTsS
Sym QC Ind* Sym QC = UTS
52pt - g Sym = MR
52pt - £ /H = ubDS
EyC€& Sym = MR
EyC€& Sym QC <« UTS
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Characterizations

Can form various ‘iff’ statements:
For Expt C £ C &, Sym X & MR-E
For Ey C € C Es.g, Sym X & MR-€ < UDS-&
For Ey CE C Es gy, Sym & q-c. X < UTS-E

e Bottom Line 1: Strength of updating assumption depends on
symmetry and quasiconcavity assumptions on distributions

e Bottom Line 2: Robustness of updating assumption depends
on robustness of sym. & q.-c. assumptions on distributions



