Incentives in Experiments: Theory and an Experimental Test

Theory: Yaron Azrieli (OSU), Chris Chambers (UCSD), P.J. Healy (OSU) **Experiment:** Alex Brown (Texas A&M), P.J. Healy (OSU)

> March 2015 UC Santa Barbara

2011 Publications:

	Only 1	None	One	Some	All	Rank-	
Payment:	Task	Paid	Random	Random	Paid	Based	Total
	Individual Choice Experiments						
' Top 5' <i>Exp.Econ</i> .	7	0	3	1	3	0	14
Exp.Econ.	3	0	1	0	2	0	6
	Muti-Person (Game) Experiments						
' Top 5' <i>Exp.Econ</i> .	9	0	1	0	8	0	18
Exp.Econ.	8	1	3	3	5	1	21
Total	27	1	8	4	18	1	59

LESSON: There is no convention on how to pay subjects.

Problematic Experiments

Pay-All Mechanism

- Problem 1: {beer,milk}
- Problem 2: {hot dog,chocolate cake}
- **(**) Any normal human: beer \succ milk, and cake \succ hot dog
- IRUTH: (beer,cake) \rightarrow {beer,chocolate cake}
- Solution $IE: (beer,hot dog) \rightarrow \{beer,hot dog\}$
- Solution Any normal human: LIE≻ TRUTH (Not "incentive compatible")

Other ways it can fail:

- Wealth effects
- Portfolio effects
- Hedging incentives
- ex post fairness concerns

Random Problem Selection (RPS) Mechanism ('pay one randomly') Let $L = (\frac{1}{2}, \$0; \frac{1}{2}, \$3)$.

- Problem 1: $\{L, \$1\}$
- ❷ Problem 2: {L,\$2}
- Subject: $L \succ \$1$, and $\$2 \succ L$.
- **②** TRUTH: $(L, \$2) \rightarrow (\frac{1}{2}, L; \frac{1}{2}, \$2) \longrightarrow^{\text{Red.}} (0.25, \$0; 0.5, \$2; 0.25, \$3)$
- **③** LIE: $(\$1, \$2) \rightarrow (0.5, \$1; 0.5, \$2)$
- **③** ∃ rank-dependent utility prefs. where LIE \succ TRUTH

Other ways it can fail:

- Ambiguity aversion
- ex ante fairness concerns

Pay-All Mechanism:

- Problem 1: {beer,milk}, Problem 2: {hot dog,chocolate cake}
- 2 Choice objects: $X = \{ beer, milk, hot dog, chocolate cake \}$
- Payment objects: P(X)={{beer,hot dog}, {beer,cake}, {milk,hot dog}, {milk,cake}}

RPS Mechanism:

- Problem 1: $\{L, \$1\}$, Problem 2: $\{L, \$2\}$
- 2 Choice objects: $X = {\text{simple lotteries}}$
- Solution Payment objects: $P(X) = \{\text{compound lotteries}\}$

LESSON: Incentives depend on \succeq over P(X), not X

- Experimenters interested in \succeq over X (choices).
- Suppose they have theory/hypotheses about \succeq on X.
- If theory does not extend to P(X), then we cannot judge incentive properties of experiment!

How many experimenters are being careful about P(X) vs. X?

The 31 papers from 2011 with multiple problems given:

	Mechanism	Discu	ssion of	Clearly				
	Not in Paper	None	Brief	Extensive	I.C.	Total		
	Individual Choice Experiments							
' Top 5 ' <i>Exp.Econ.</i>	1	6	0	1	0	7		
Exp.Econ.	0	2	0	1	0	3		
	Muti-Person (Game) Experiments							
' Top 5 ' <i>Exp.Econ.</i>	6	9	0	0	0	9		
Exp.Econ.	2	7	4	1	0	12		
Total	9	24	4	3	0	31		

Goal of theory paper w/ Azrieli & Chambers: Understand what assumptions about P(X) make each mech. I.C.

Goal of experimental paper w/ Brown: Test I.C. of a popular experimental protocol

- Invention of pay-one-randomly ('RPS') & I.C. under SEU: Wold (1952), Savage (1954), Allais (1953), Wallis.
- RPS not I.C. with non-EU: Holt (1986), Karni & Saffra (1987)
- Experiments showing RPS works: Camerer (1989), Loomes et al. (1991), Starmer & Sugden (1991), Beatte & Loomes (1997), Cubitt et al. (1998)
- Justification via prospect theory: Wakker et al. (1994), Cubitt et al. (1998)
- Experiments showing RPS fails: Cox et al. (2014a,b), Harrison & Swarthout (2014)
- Not IC with ambiguity: Baillon et al. (WP), Oechssler & Roomets (2014)

Take the viewpoint of a single subject.

An experiment consists of:

- List of decisions to be made
- A payment rule

Researcher's objective: observe choice function over given decisions

(Our objective: avoid the 'theory-reality' gap)

Formally:

• Decision problems: $D = (D_1, \ldots, D_k)$

- $D_i \subseteq X =$ 'choice objects'. No structure.
- ► X, k finite
- Choice: \succ over X (complete & transitive). This talk: strict.
 - $\mu_i(\succ) = \{x \in D_i : (\forall y \in D_i) \ x \succ y\}$ "*True* favorite from D_i "
- Payment Mechanism: ϕ
 - Messages: $M = \times_i D_i$ ('announced choice')
 - Mechanism: $\phi: M \to P(X)$ (P(X) is TBD)
 - Payment: $\phi(m) \in P(X)$

Experiment: (D, ϕ)

Hypothesis: Dictator game giving correlates with risk preferences.

• First: 5-question Holt-Laury elicitation

$$\begin{array}{l} D_1 = \{(0.1,\$2;\$1.60), (0.1,\$3.85;\$0.10)\}, & m_1 = (0.1,\$2;\$1.60) \\ D_2 = \{(0.3,\$2;\$1.60), (0.3,\$3.85;\$0.10)\}, & m_2 = (0.3,\$2;\$1.60) \\ D_3 = \{(0.5,\$2;\$1.60), (0.5,\$3.85;\$0.10)\}, & m_3 = (0.5,\$2;\$1.60) \\ D_4 = \{(0.7,\$2;\$1.60), (0.7,\$3.85;\$0.10)\}, & m_4 = (0.7,\$3.85;\$0.10) \\ D_5 = \{(0.9,\$2;\$1.60), (0.9,\$3.85;\$0.10)\}, & m_5 = (0.9,\$3.85;\$0.10) \end{array}$$

- Next decision: dictator game $D_6 = \{(\$100, \$0), (\$99, \$1), \dots, (\$0, \$100)\}. m_6 = (\$90, \$10)$
- RPS mechanism w/ 6-sided die: Roll j, pay m_j
- Pay-all mechanism: Pay $\{m_1, m_2, \ldots, m_6\}$
- Mixed mechanism w/ 5-sided die: Roll *j*, pay $\{m_j, m_6\}$.

What are the possible payment objects?

- Bundles: $B(X) = \{\{m_1, \ldots, m_k\} : m_i \in D_i \ \forall i\}$
- Randomizing Device: Ω = {ω₁,..., ω_t}
 Conditional payment (Savage act): Ω → B(X)

Payment objects: $P(X) = B(X)^{\Omega}$

- Pay-all mechanism: $\Omega = \{\omega\}, \phi(m)(\omega) = \{m_1, \dots, m_k\}$ So P(X) = B(X)
- RPS mechanism: $\Omega = \{\omega_1, \dots, \omega_k\}, \phi(m)(\omega_i) = m_i$ So $P(X) = X^{\Omega}$.

Preference \succ over X extends to \succ^* over P(X)

I.C.:
$$(D, \phi)$$
 is IC if $\phi(\mu(\succ)) \succ^* \phi(m) \ \forall m \neq \mu(\succ)$.

What should we assume about \succ^* ?

Consistency: If $\phi(m)$ pays x in every state, and $\phi(m')$ pays y in every state, then $\phi(m) \succ^* \phi(m') \Leftrightarrow x \succ y$.

Theorem

If only consistency is assumed, then $IC \Leftrightarrow$ only one task.

"IC is never free."

Pay-all: $\Omega = \{\omega\}$. $\phi(m)(\omega) = \{m_1, m_2, \dots, m_k\} \leftarrow \text{`bundle' payment}$

No Complementarities at the Top (NCaT): For every $m \neq \mu(\succ)$,

$$\{\mu_1(\succ),\ldots,\mu_k(\succ))\succ^*\{m_1,m_2,\ldots,m_k\}$$

"Bundle of favorites is your favorite bundle."

Theorem

Assume NCaT and nothing else. Then ϕ is IC if and only if it is 'equivalent to' the pay-all mechanism.

In almost all applications, 'equivalent to' means 'equals'.

Examples of complementarities:

- Suppose each $D_i = \{x_i, y_i\}$, where x_i is safe, y_i is risky.
 - Wealth effect: $x_1 \succ y_1$ but $\{\$1000000, y_1\} \succ^* \{\$1000000, x_1\}$.
 - ▶ Portfolio effect: $x_i \succ y_i \forall i$, but $\{y_1, \ldots, y_k\} \succ^* \{x_1, \ldots, x_k\}$.
- Consumption goods: beer-hot dog example
- Fairness: \$10 Gary≻ \$10 Ryan, but {\$10 Gary,\$10 Ryan} ≻* {\$20 Gary}.

Consider RPS mechanism and (D_1, \ldots, D_k) . Suppose $\mu_i(\succ) = x_i$ in every D_i .

	Die Roll ('state')								
Strategy	1	2	3	4	• • •	k			
Truth:	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	•••	x_k			
Lie:	<i>x</i> ₁	y_2	<i>y</i> ₃	<i>x</i> ₄	• • •	x_k			

Monotonicity: If $\phi(m)(\omega) \succ \phi(m')(\omega) \ \forall \omega$ then $\phi(m) \succ^* \phi(m')$.

Theorem

If \succ^* satisfies monotonicity, then RPS is IC.

Examples where RPS fails must violate monotonicity.

Theorem

If we assume monotonicity and nothing more, then RPS is essentially the only IC mechanism.

Example of a non-RPS IC mechanism

•
$$D_1 = \{x, y\}, D_2 = \{y, z\}, D_3 = \{x, z\}.$$

RPS:

State:	ω_1	ω_2	ω_3
$\phi(m)(\omega)$:	m_1	m_2	m_3

• Rationalizable: m = (x, y, x) reveals $x \succ y \succ z$.

• Non-rationalizable: m' = (x, y, z) reveals $x \succ y \succ z \succ x!$

• If *m* is rationalizable:

State:	ω_1	ω_2	ω_3	ω_4
$\phi(m)(\omega)$:	m_1	m_2	m_3	revealed favorite in $\{x, y, z\}$

• If *m* not rationalizable:

State:	ω_1	ω_2	ω_3	ω_4
$\phi(m)(\omega)$:	x	y	x	Z

Problem: Rarely can this be done in practice. So, RPS is it.

Healy

Monotonicity is weak on its own... But becomes strong with other axioms!

On Monotonicity & Reduction

- Suppose $\{\omega_1, \ldots, \omega_k\} \mapsto (p_1, \ldots, p_k)$ (prob. sophistication)
- RPS mechanism creates lottery $(p_1, m_1; p_2, m_2; \ldots; p_k, m_k) \in P(X)$.
- Monotonicity: $x_1 \succ y_1 \Rightarrow (\alpha, x_1; 1 \alpha, z_2) \succ^* (\alpha, y_1; 1 \alpha, z_2)$ Linear indifference curves in P(X)!
- The 'reduced mixture' is $\sum_i p_i \cdot m_i \in X$. (Need X convex.)

Reduction:

 $(p_1, m_1; \ldots; p_k, m_k) \succ^* (p'_1, m'_1; \ldots; p'_k, m'_k) \iff \sum_i p_i m_i \succ \sum_i p'_i m'_i$

Basically says $\succ = \succ^*$.

Observation

Monotonicity + Reduction \Rightarrow linear indifference curves on X.

イロト 不得下 イヨト イヨト 二日

If X is space of simple lotteries:

Observation Monotonicity + Reduction $\Rightarrow \succ$ on X is expected utility.

If X is space of (possibly ambiguous) acts:

Observation

Monotonicity + Reduction $\Rightarrow \succ$ on X is ambiguity neutral.

LESSON: RPS probably not IC under reduction.

What about Holt, Karni-Safra, Cox et al., Harrison & Swarthout ...?

The Bipolar Behaviorist Claim

You cannot test non-EU theories using the RPS mechanism.

Our Claim

If you want to test non-EU theories using the RPS mechanism, you need to assume reduction is violated.

Evidence for reduction: mostly against.

- No assumptions: IC \iff one task.
- NCaT: IC \iff pay-all.
- Monotonicity: IC \iff RPS
 - Monotonicity + Reduction \Rightarrow linear indiff. on X.
- Pay multiple randomly: mix of monotonicity & NCaT.

How To Test for IC

Given any experiment (D, ϕ) , we can test for IC directly:

- Recruit large number of subjects.
- Randomly split into (k+1) treatments.
- Treatment 0: Original experiment $((D_1, \ldots, D_k), \phi)$.
- Treatment *i*: "*i*th IC-testing treatment" $((D_1, \ldots, D_k), \phi_i^I)$, where $\phi_i^I(m) = m_i$ for some fixed *i*.
- $\rho_i^i(x)$ is frequency of subjects choosing $x \in D_i$ in Trt *i*.
- $\rho_i^0(x) =$ frequency of subjects choosing $x \in D_i$ in Trt 0.
- k Fisher (or χ^2) tests for $\rho^i_i \equiv \rho^0_i$.
 - ► Assumes independence across *D_i*. Or, do Bonferoni-type correction.
- Controls framing effects.
- Power is not good.
- Can test "IC on D_i " by doing Trt 0 vs Trt i only.

Shift to experimental designs & data.

- Cox Sadiraj & Schmidt (2014a)
 - Trt 1: $\{\$4, (\frac{1}{2}, \$10)\}$
 - Trt 2: $\{\$3, (\frac{1}{2}, \$12)\}$ and $\{\$4, (\frac{1}{2}, \$10)\}$. RPS.
 - Decoy effect causes framing effect. NOT a violation of IC.
- Cubitt Starmer Sugden (1998 Exp.1)
 - ▶ Trt 1: $(D_1, \ldots, D_{18}, D_{19}, D_{20})$. RPS on 19,20. n = 57.
 - ▶ TRT 2: $(D_1, \ldots, D_{18}, D_{19}, D'_{20})$. RPS on 19,20'. n = 62.
 - Test on D_{19} : 0.924. No framing.

- Beattie & Loomes (1997)
 - Group 0: (D_1, D_2, D_3, D_4) . Paid via RPS. n = 49.
 - Group *i*: (D_i) . Paid for D_i . n = 48.
 - p-values: 0.36, 0.82, 0.74, 0.064. (Do reject reduction.)
- Cubitt Starmer Sugden (1998 Exp.2)
 - Group 0: $(D_1, \ldots, D_{18}, P', P'')$. RPS over P', P''. n = 51.
 - Group 1: $(D_1, \ldots, D_{18}, D_{19}, P')$. Paid only P'. n = 53.
 - ▶ *p*-value: 0.720.

• Cox Sadiraj & Schmidt (2014b)

- Trt 0: (D_1, \ldots, D_5) . RPS. n = 40
- Trt *i*: (D_i) . Pay only D_i . n = 46.2 avg.
- ▶ *p*-values: 0.24, <0.001, 0.15, 0.50, 0.28
- Similar results for 3 variations on RPS.
- Harrison & Swarthout (2014)
 - Trt 0: (D_1, \ldots, D_{30}) . RPS. n = 208.
 - ▶ Trt R: One randomly-chosen D_i . Paid only D_i . n = 75.
 - Estimate RDU functions, adding demographics.
 - Estimates differ between Trt 0 and Trt R.

Starmer Sugden (1991):

•
$$P' = \{S', R'\}$$
. $P'' = \{S'', R''\}$.

- Group A: $(D_1, ..., D_{20}, P', P'')$. Paid only for P''. n = 40.
- Group B: $(D_1, \ldots, D_{20}, P', P'')$. RPS over P' and P'' only. n = 40.
- Group C: $(D_1, ..., D_{20}, P'', P')$. RPS over P'' and P' only. n = 40.
- Group D: $(D_1, ..., D_{20}, P'', P')$. Paid only for P''. n = 40.

Their test *p*-values:

- *P*'' in A vs (B+C): 0.223
- *P'* in D vs (B+C): 0.0516
- Results borderline. Admit low power. (Reduction violated.)

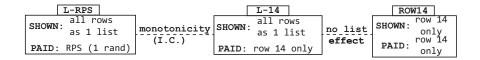
Our tests (no framing confound):

- P" in A vs B: 0.356
- P' in D vs C: 0.043

- Group A: $(D_1, D_2, D_3, \dots, D_{20})$. Paid only D_1 . n = 49.
- Group B: $(D_1, D_2, D_3, \dots, D_{20})$. Paid only D_2 . n = 56.
- Group C: $(D_1, D_2, D_3, \dots, D_{20})$. RPS over 1,2. n = 52
- p-values: A vs C: 0.685. B vs C: 0.120.

Issues with existing tests.

- Confound with framing (except SS91 and CSS98 Exp3)
- 2 Lack of power
- Oversampling common-ratio test lotteries, etc.
- Added hypothetical questions (piloting).



- Holt-Laury questions
- Andreoni-Sprenger formatting
- Standard Ohio State subject pool.
- Between-subjects.
- Computerized.
- Physical randomizing devices (die, bingo cage)
- No other tasks in the experiment.
- 60–63 subjects per treatment.
- List format: rows must be answered sequentially.

The List

Row #	Option A			Option B		
1	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Ball 1 pays \$15 (5% chance of \$15)	Balls 2-20 pay \$0 (95% chance of \$0)	
2	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Balls 1-2 pay \$15 (10% chance of \$15)	Balls 3-20 pay \$0 (90% chance of \$0)	
3	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Balls 1-3 pay \$15 (15% chance of \$15)	Balls 4-20 pay \$0 (85% chance of \$0)	
4	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Balls 1-4 pay \$15 (20% chance of \$15)	Balls 5-20 pay \$0 (80% chance of \$0)	
	Balle 1-10 page \$10	Balls 11,20 may \$5		Balle 1-5 pay \$15	Rolle 6-20 nov \$0	

10	(50% chance of \$10)	(50% chance of \$5)	01	(90% chance of \$15)	(10% chance of \$0)
19	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Balls 1-19 pay \$15 (95% chance of \$15)	Ball 20 pays \$0 (5% chance of \$0)
20	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	All Balls pay \$15 (100% chance of \$15)	(0% chance of \$0)

:

:

• • • • • • • • • • • • • •

Click Here When Finished

:

∃ ⊳

:

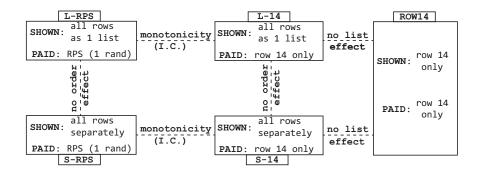
- Showing whole list makes them switcher earlier (Closer to the middle.)
 - Not quite significant.
- Using RPS mechanism makes them switch later. (More thoughtful? Switching inertia?)
 - Statistically significant.

Hypothesis

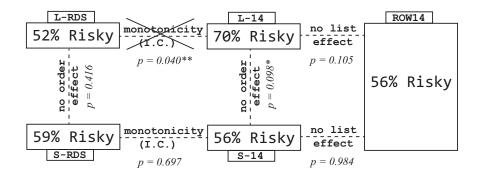
- Subjects are combining the decisions in a reduction-like way. E.g.: 'When to switch?'.
- The 'combining' can be broken by separating the decisions.

'Separated' treatments.

- Same 20 rows.
- Each shown on separate screen.
- Order randomized for each subject.
- Still comparing RPS to Pay-14-Only.
- Still must answer every row, in order given.
- Still 60-63 observations per cell, between subjects.



-



B-to-A switches are an indirect violation of monotonicity in \succ (not \succ^*).

*Risky*₁₅ dominates *Risky*₁₄, but *Risky*₁₄ \succ *Safe* \succ *Risky*₁₅

∦ B-to-A	L-RPS	S-RPS
Switches	(List)	(Separated)
Zero	95.0%	67.2%
One	0%	29.5%
Two	0%	0%
Three	1.7%	3.3%
Four or more	3.3%	0%
$\chi^2 p$ -value	0.0	0013***

Hypothesis: B-A switches occur 'later'

- Result: they occur earlier!
- ▶ 4.5% in first choice, 1.5% in last choice.
- List-Framing result does become significant in regressions controlling for gender & Big-5.

To-Do List:

- Speed of decisions.
- Other suggestions?

- RPS can fail.
- RPS has its best shot when decisions are separated.
- Separation may come at a cost.
- Future work: How to minimize inconsistency with separation?
 - Question: should we be 'forcing' consistency?

Thank You.

э.

・ロト ・日子・ ・ ヨト