Elicitability

Yaron Azrieli (OSU)

Christopher P. Chambers (Georgetown)

Paul J. Healy (OSU)

Nicolas Lambert (MIT)

ESA Tucson 2021

Belief Elicitation via Signals

- **Goal:** elicit subjective p(E) for some event $E \subseteq \Omega$
- **Problem:** states $\omega \in \Omega$ are not observable! Only signals $y \in Y$.

Examples of non-observable states w/ signals:

- Climate change
 - ω : Earth's temp in 100 years. y: Earth's temp in 10 years.
- Beliefs in repeated PD w/ private monitoring
 - ω : Actual action (C or D). y: Observed signal (c or d)
- Hot hand belief in basketball
 - ω : correlation parameter. y: next shot's outcome
- Linear regression model $y = \beta_0 + \beta_1 x + \varepsilon$
 - ω : parameters (β_0, β_1) . y: data $(x_i, y_i)_{i=1}^n$
- Vaccine effectiveness
 - ω : actual effectiveness in [0,1]. y: clinical trial in $\{0,1\}^n$
- Question: can we still learn beliefs over Ω using only Y?

Vaccine Example (of course)

State: efficacy. $\theta \in \Theta = \{0, 1/2, 1\}$

Agent: medical researcher. Has belief $p \in \Delta(\Theta)$

Principal: management. Wants to learn about *p*

Signal: outcome of 1 trial. $y \in Y = \{S, H\}$

Info Structure: $\Pi(y|\theta)$

Induced Belief on Y:
$$p_{\Pi}(S) = \sum_{\theta} p(\theta) \Pi(S|\theta) = \vec{p} \cdot \begin{pmatrix} 1 \\ 0.5 \\ 0 \end{pmatrix}$$

Method: elicit p_{Π} and try to infer what p must've been

Vaccine Example: A Tale of Three Agents

Α ,	Sick (S)	Healthy (H)
Ann's p	1/2	1/2
0	1	0
1	0.5	0.5
0	0	1
Bob's p	1/2	1/2
1/2	1	0
0	0.5	0.5
1/2	0	1
·		
Charlie's p	1/2	1/2
1/3	1	0
1/3	0.5	0.5
1/3	0	1

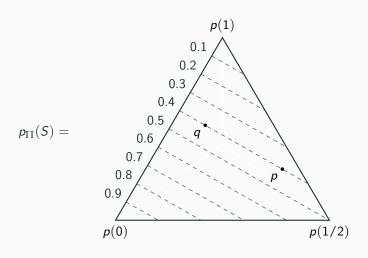
Vaccine Example

Ann	Bob	$p_{\Pi}(S)$	$p_{\Pi}(H)$
		1	0
\vec{p}	\vec{q}	0.5	0.5
		0	1

When are Ann and Bob indistinguishable?

$$\begin{split} \rho_{\Pi}(\mathcal{S}) &= q_{\Pi}(\mathcal{S}) \\ \iff \\ \vec{p} \cdot \begin{pmatrix} 1 \\ 0.5 \\ 0 \end{pmatrix} &= \vec{q} \cdot \begin{pmatrix} 1 \\ 0.5 \\ 0 \end{pmatrix} \\ \iff \\ \rho(0) + \frac{1}{2}p(1/2) &= q(0) + \frac{1}{2}q(1/2) \end{split}$$

Vaccine Example



The Question

Given Π , what can we learn about p?

Main Result:

 Π generates a partition of $\Delta(\Theta)$ based on p_{Π} . p and q can be distinguished iff $p_{\Pi} \neq q_{\Pi}$

Two Assumptions:

- 1. p_{Π} is derived from p and Π via reduction
- 2. p_{Π} can be elicited (BQSR, MPL, ...)

More General Insight

ullet Let Z_y be the column associated with each signal $y\in Y$

		Z_S	Z_H
	0	1	0
Θ	1/2	0.5	0.5
	1	0	1

- Reduction: $p_{\Pi}(y) = \vec{p} \cdot Z_y$
- So...

$$p_{\Pi}(y) = q_{\Pi}(y) \quad \forall y$$

$$\iff$$

$$\vec{p} \cdot Z_y = \vec{q} \cdot Z_y \quad \forall y$$

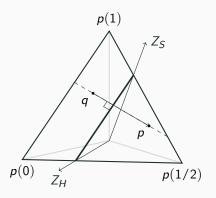
$$\iff$$

$$(\vec{p} - \vec{q}) \cdot Z_y = 0 \quad \forall y$$

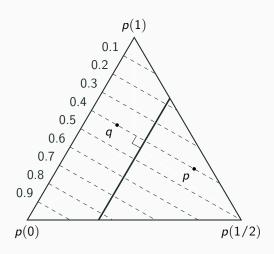
More General Insight

$$(\vec{p} - \vec{q}) \cdot Z_y = 0 \quad \forall y$$

" $(\vec{p}-\vec{q})$ is orthogonal to the column span of Π "



Vaccine Example



Vaccine Example: Two Subjects

Now suppose vaccine trial has two patients (iid)

 $Y = \{0, 1, 2\}$ gives # of Healthy patients

		Y		
		0	1	2
	0	1	0	0
Θ	1/2	0.25	0.50	0.25
	1	0	0	1

Three linearly independent columns! Π has full rank.

$$p_{\Pi} = \vec{p} \cdot \Pi \Longrightarrow p_{\Pi} \cdot \Pi^{-1} = \vec{p}!!$$

Full rank \Rightarrow We can perfectly back out any belief!

Random Variables

One observation:

θ	Z_S	Z_H		
0	1	0		
1/2	0.5	0.5		
1	0	1		

- $Z_H = \theta$
- Elicit $\vec{p} \cdot Z_H = E_p[Z_H]$
- Can learn $E_p[\theta]$

Two observations:

$$\begin{array}{c|ccccc} \theta & Z_0 & Z_1 & Z_2 \\ 0 & 1 & 0 & 0 \\ 1/2 & 0.25 & 0.50 & 0.25 \\ 1 & 0 & 0 & 1 \\ \end{array}$$

- $Z_2 = \theta^2$ and $(Z_2 + \frac{1}{2}Z_1) = \theta$
- Elicit $E_p[Z_2]$ and $E_p[Z_1]$
- Can learn $E_p[\theta^2]$ and $E_p[\theta]$ Thus, can learn $Var_p[\theta]$

In general, with k observations, you learn the first k moments of θ

This example: two moments is enough to learn p

General: If $|\Theta| = n$ then n-1 observations gives you p

The Power of Randomization

"Mixture Experiment"

- 99% chance: use 1 observation. $Y_1 = \{S, H\}$
- 1% chance: use 100 observations. $Y_{100} = \{0, 1, \dots, 100\}$
- Elicit beliefs before randomizing

There are now 103 possible signals! $Y = Y_1 \cup Y_{100}$

	Y_1			Y ₁₀₀	
	Z_S	Z_H	Z_0	Z_1	 Z_{100}
		:		:	 :
θ	0.99(1- heta)	0.99θ	$0.01(1-\theta)^{100}$	$1.00\theta(1-\theta)^{99}$	 $0.01 \theta^{100}$
	:	:	:	:	 :

Can elicit 100 moments of θ at a low (expected) cost

Other Stuff We Know

- Eliciting *median* of $\theta \Leftrightarrow$ you can elicit entire p
- Can add covariates
 - Π_{man} and Π_{woman} , $Y = (Y_{man} \times Y_{woman})$
- Infinite states & signals
 - Gaussian linear model: $y = \beta_0 + \beta_1 x + \varepsilon$
 - Full rank! One observation gives entire p
 - Non-parametric linear model: $E[y|x] = \beta_0 + \beta_1 x$
 - One obs: $E_p[\beta_0]$, $E_p[\beta_1]$.
 - Two obs: $Var_p[\beta_0]$, $Var_p[\beta_1]$.
 - ...
 - Probit: $y = \mathbb{1}_{\{\beta_0 + \beta_1 \times + \varepsilon > 0\}}$
 - Need infinite data to get $E_p[\beta_0]$, $E_p[\beta_1]!!$
- New ordering of Information Structures
 - " Π_2 elicits more than Π_1 "
 - Blackwell Dominance ⇒ Elicits More

An Experimental Application

Repeated Prisoners' Dilemma with Private Monitoring

- j's actual action: C_j or D_j
- i's signal: c_j or d_j
 (actual action will never be shown to i)
- Signal accuracies: r > 0.5 and s > 0.5

П		Y		
		c_j	d_j	
Θ	C_{j}	r	1-r	
O	D_j	1-s	5	

- Π has full rank since $r \neq 1-s$ \Rightarrow can elicit p_{Π} and back out p
- Recall: assumes reduction

Summary

- ullet What you can learn about p depends on Π
 - Full rank \Rightarrow entire p w/ one obs
 - In general, you learn $E_p[Z_y]$ for each column Z_y
 - More observations \Rightarrow more $Z_v \Rightarrow$ learn more!
 - Can use mixtures to create more (possible) observations

17

Fin