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Research Question

A researcher is tasked with producing a statistical analysis.

He/She works from data that cannot be verified.

There is a conflict of interest and the researcher can manipulate the analysis.

Suppose we collect some data from an independent source and we can design payments
using, as input, the researcher’s report and the data.

What is the information we can elicit from the researcher?



Model



Model
Statistical Experiments

I There is an unknown parameter θ (belongs to parameter space Θ).

I The researcher performs Bayesian inference on the parameter.

I The elicitor collects data through statistical experiments.
An experiment is a family of probability distributions indexed by the parameter.
Formally a pair (Y, π):

� Y = set of possible outcomes.
� π = transition probability kernel from parameters to outcomes.
An outcome from Y is drawn at random according to π(·|θ).

Assumption: Parameter and outcome spaces are Polish spaces with their Borel σ-algebra.

An experiment is categorical if the outcome space is finite (e.g., probit, softmax, . . . ).
An experiment is identified when the parameter can be inferred from the outcome distribution.



Model
Elicitation Mechanisms

A (direct) elicitation mechanism for experiment (Y, π) is a mapping

ϕ : ∆(Θ)× Y → R

I Inputs: reported parameter distribution and outcome randomly generated by the experiment.

I Output: A payoff.

The mechanism is incentive compatible when Ep[ϕ(p, y)] ≥ Ep[ϕ(q, y)] (for all p, q).

In the sequel, ‘mechanism’ means direct incentive-compatible elicitation mechanism.



Model
Elicitability Criterion

An information partition of distributions is a partition P of the space ∆(Θ), defined by the
equivalence relation ∼P , where p ∼P q signifies that p and q belong to the same member.

Mechanism ϕ elicits information P when

p �P q =⇒ Ep[ϕ(p, y)] > Ep[ϕ(q, y)].

P is elicitable with an experiment when there is a mechanism for this experiment that elicits P.
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Example
Vaccine

We are interested in assessing the efficacy of a new vaccine.

A researcher is tasked with estimating the probability of getting sick after being vaccinated.

Statistical model is Bernoulli: Pr[y = 1] = p with p ∈ [0, 1].

What’s observable: sickness condition (y ∈ {0, 1}).

 We can elicit the mean of p with just one observation... but if we wanted to get the
median, we would need infinite data!

 With two observations, we elicit whether researcher knows p, and if applicable, elicit p.

 With n observations we elicit an O(1/n) mean-squared approximation of p’s density.
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Example
Cholesterol Medication

The researcher is tasked with evaluating the efficacy of a new cholesterol medication.

What’s observable: the amount of cholesterol in the blood (y ∈ R).

Let’s assume cholesterol levels depend on age (x) through a linear model.

I Gaussian linear model: y = β0 + β1x+ σε with ε ∼ N (0, 1).

 With a single observation we elicit the full parameter distribution.

I Non-parametric linear model: E[y|x] = β0 + β1x.
 With two observations we elicit the mean and variance of the parameters.

Suppose instead y ∈ {0, 1} and the model is probit: y =

{
1 if β0 + β1x+ ε > 0

0 otherwise.
 We need infinite data to elicit the means of β0, β1.
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Outline and Contribution

(1) Describe what we can elicit for a given model and a given dataset.

(2) Compare statistical experiments based on their elicitation power.
How is elicitation different from estimation?
How does this difference impact the design of experiments?

(3) Investigate relation elicitation power ⇐⇒ incentive structures.



Related Literature(s)

Elicitation of preferences, probabilities, and statistical functionals:
I Preferences/Probabilities: Allais (1953), Savage (1971), . . .

Elicitation of types/beliefs from multiple agents:
I Mechanism design: Crémer-McLean (1988), . . .
I Peer prediction: Prelec (2004), Miller et al. (2005), . . .

Statistical Theory:
I Testing forecasters: Olszewski-Sandroni (2008), Al-Najjar et al. (2010), . . .
I Identification: Teicher (1961), . . .
I Comparison of experiments: Blackwell (1953), . . .



Information Elicited
Case of a Single Observation



Case of a Single Observation

Consider an experiment (Y, π) with random outcome y.
Every parameter θ induces a distribution over outcomes π(·|θ).

Let P? be the information that captures the mean outcome distribution:

p ∼P? q ⇔ Ep[π(A|θ)] = Eq[π(A|θ)] ∀A ⊂ Y.

Theorem

P is elicitable with (Y, π) if and only if P is a (weak) coarsening of P?. proof

P? is the most refined information that we can elicit with one observation from (Y, π).



Corollary

Let g : Θ→ R.
If there exists an unbiased estimator for g, then the mean of g is elicitable.

Proof: If Y is finite then
g(θ) = E[w(y) | θ]

=
∑
y

w(y)π(y|θ)

Ep[g(θ)] =
∑
y

w(y) Ep[π(y|θ)]

=⇒ elicitation of mean probabilities implies elicitation of the mean of g.

The converse is true if the experiment is categorical.
Example: the mean parameters of the probit model cannot be elicited with finite data.



Example: German Tank Problem

There is a finite population with an unknown number of units numbered consecutively starting
from 1.

I θ is the population size.

I Consider the experiment where one unit is drawn and its number observed: Y = {1, 2, . . . }
and

π(k|θ) =

{
1/θ if k ≤ θ,
0 if k > θ.

With this experiment we elicit the full distribution over population sizes.



Proof: For m a positive integer, let

wm(k) =


1 if k ≤ m,
−m if k = m+ 1,

0 if k > m+ 1.

Apply corollary with:

gm(θ) =

∞∑
k=1

wm(k)π(k|θ)

=⇒ We elicit the mean of every gm.

But E[gm(θ)] = Pr[θ ≤ m], so we elicit the c.d.f. of θ.
�



Example: Bernoulli Model

The researcher is tasked with assessing the fraction of the population on which a new vaccine is
effective. The elicitor gets data from independent clinical trials.

I θ is the fraction of the population on which the vaccine is effective.

I Consider the experiment corresponding to a single trial:

Y = {0, 1} and
π(1|θ) = θ,

π(0|θ) = 1− θ.

This experiment elicits the mean fraction of the population on which the vaccine is effective, and
no further information.

more examples



Information Elicited
Adding Data Points



Case of Multiple Observations

Consider experiments (Y1, π1), . . . , (Yn, πn) that respectively generate outcomes y1, . . . , yn
independently conditionally on the parameter.

The product experiment is the compound experiment that corresponds to observing (y1, . . . , yn).

Theorem

If (Yi, πi) elicits the mean of gi : Θ→ R, then under regularity conditions,1 the product
experiment elicits the mean of g1 × · · · × gn.

1If either
(1) Θ is compact, each (Yi, πi) is continuous, each gi is continuous,
(2) or each (Yi, πi) is categorical.



Applications

I Consider an experiment and g : Θ→ R. If the mean of g is elicitable with n observations,
then the variance is elicitable with 2n observations, the skewness is elicitable with 3n
observations, etc.

I Consider any categorical experiment that is identified. If the parameter space is infinite, then
the full parameter distribution cannot be elicited with finite data. But if the parameter space
is finite of size n, then we can always elicit the full parameter distribution with n− 1
observations.

I With two observations from an identified experiment, we can elicit two pieces of information:
Whether the researcher knows the parameter, and, if applicable, the value of the parameter.

skip next application details
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Applications
On the Elicitation of Statistical Functionals

Let the parameter space be finite.

Fix an arbitrary experiment, and a finite dataset.

I If the median is elicitable, then the full parameter distribution is also elicitable.

I If the mode is elicitable, then the full parameter distribution is also elicitable.



Assume Θ = {θ1, . . . , θn} and Y = {y1, . . . , ym}.

Interpret π(y|θ) as an n×m Markov matrix, and ∆(Θ) ⊂ Rn.

p ∼P? q ⇔ Ep[π(yi|θ)] = Eq[π(yi|θ)] (∀i) ⇔ pπ = qπ.

=⇒ So p ∼P? q iff p = q + v where v ∈ kerπᵀ (a linear space).
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Applications
More Than Two Observations

Consider a categorical experiment (Y, π) with Y of size m.

If it is identified, we can identify Θ with the (m− 1)-simplex of Rm.

Suppose the researcher privately estimates a Lipschitz-continuous density function f over Θ.

Then with n observations, we can infer from the researcher’s report a function f̂ that
approximates f according to ∫

Θ
|f(θ)− f̂(θ)|2 dθ = O(1/n).



Proof idea:

(1) Consider the Bernoulli model: Y = {0, 1}, Θ = [0, 1].

(2) Let C = collection of polynomials of degree ≤ n.
(3) Let Q0, . . . , Qn be an orthonormal basis of C:

∫ 1
0 QiQj = 1{i = j}.

(4) Since θ = π(y = 1|θ), with n observations, we elicit the means of all Qk(θ).

(5) Hence from the researcher’s report we can infer the polynomial

Q̂ =

n∑
k=0

(∫
Θ
Qk(θ)f(θ) dθ

)
Qk

Q̂ is the orthogonal projection of f on C.

(6) Jackson’s inequality: inf
Q∈C

∫
Θ
|f −Q|2 ≤ γ/n =⇒

∫
Θ
|f − Q̂|2 ≤ γ/n = O(1/n)



Applications
Optimal Sampling

Consider the Bernoulli model: Y = {0, 1}, Θ = [0, 1].

With n observations, the most refined elicitable information is P?.

Suppose observations are costly. Can we elicit P∗ by collecting fewer observations?

Yes: An ‘optimal’ sampling strategy consists in collecting observations until

I we observe outcome 1, or

I we already have collected n observations.

details



Applications
Optimal Sampling

Proof idea (sufficiency):

Any information we elicit with n observations is inferred from the mean of each θk(1− θ)n−k.

Under the suggested sampling strategy:

I From the 1st observation, we elicit the mean of θ and 1− θ.
I From the 2nd observation, we elicit the mean of θ2 and θ(1− θ).
I . . .

I From the kth observation, we elicit the mean of θk and θk−1(1− θ).

The linear span of these polynomials is the set of polynomials of degree ≤ n, so we can infer the
mean of each θk(1− θ)n−k =⇒ we elicit as much information as with all the n observations.



Information Elicited
Adding Covariates

details



Comparison of Experiments
In the sequel, all experiments are categorical unless mentioned otherwise.



Blackwell Dominance

An experiment (Y, πY ) dominates an experiment (Z, πZ) in the sense of Blackwell if

z = h(y, ε)

with ε an independent random noise (equality is in distribution).

This is equivalent to the existence of an Y × Z Markov matrix M s.t.

πZ(z|θ) =
∑
y∈Y

M(z|y)πY (y|θ) (πZ = πYM in matrix notation).



Elicitation Dominance
An experiment (Y, πY ) dominates an experiment (Z, πZ) in the sense of elicitation if for every P
that can be elicited by (Z, πZ), P can be elicited by (Y, πY ).

Lemma

The mean of g is elicitable with (Y, πY ) if and only if, for some w : Y → R,

g(θ) =
∑
y

w(y)π(y|θ).

proof

So, domination is equivalent to the existence of an Y × Z matrix M s.t.

πZ(z|θ) =
∑
y∈Y

M(z|y)πY (y|θ) (πZ = πYM in matrix notation).

=⇒ Blackwell dominance implies Elicitation dominance, but not conversely.



Noisy Transforms

Call (Y, πY ) a noisy transform of (Z, πZ) if

I Y = Z.

I With positive probability, y = z, and with the complementary probability, y = ε where ε is
an independent random variable.

Noisy transformations preserve the information that can be elicited, because πY = πZM with M
invertible, so πZ = πYM

−1.



Blackwell and Elicitation Orders

The elicitation order is the transitive closure of the union of two orders:

I The Blackwell order.

I The order induced by noisy transformations.

Proposition

(Y, πY ) dominates (Z, πZ) in the sense of elicitation if and only if (Y, πY ) dominates a
noisy transform of (Z, πZ) in the sense of Blackwell.

fast forward



Proof idea:

Suppose (Y, πY ) dominates (Z, πZ) in the sense of elicitation.
Then πZ = πYM for some matrix M .
Choose M so that each row sums to one (always possible).

Fix λ ∈ (0, 1).
I (Z ′, π′Z) = noisy tranform of (Z, πZ) where:

z′ = z with probability λ and z′ is uniformly drawn with probability 1− λ.
I U = Markov matrix that transforms each y into a uniformly distributed outcome of Z.

π′Z = λπZ + (1− λ)πU

= λπYM + (1− λ)πY U

= πY (λM + (1− λ)U)

= πYN with N = λM + (1− λ)U

Each row of N sums to one, and N has positive entries if λ is small enough.
=⇒ N is a Markov matrix, so (Y, πY ) Blackwell-dominates (Z ′, π′Z).



Incentives

fast forward



Elicitation Power and Incentives Structure

I If an experiment (Y, πY ) dominates (Z, πZ) in the sense of elicitation, then for any
mechanism for (Z, πZ), there exists a payoff-equivalent mechanism for (Y, πY ).

=⇒ If two experiments elicit the same information, the incentives we can design are the same
with both, even if one is a strict garbling of the other.

I If we can elicit some information with a given number of observations from an experiment,
collecting more data does not help to strengthen incentives to elicit this information
(provided we fix the payoffs of truthful reports).

I For any two experiments (Y, πY ), (Z, πZ), if for any mechanism for (Z, πZ) with
non-negative payoffs there exists a payoff-equivalent mechanism for (Y, πY ) with
non-negative payoffs, then (Y, πY ) dominates (Z, πZ) in the sense of Blackwell.

details
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Summary



Summary

The problem: eliciting information on a researcher’s belief about the parameter of a statistical model,
when we collect independent outcome realizations and incentive provision is done via transfers that
depend on reported information and outcome realizations.

(1) We characterize the information that can be elicited with a given experiment/dataset.
Small differences in information can make elicitation as hard as estimation.

(2) We propose an ordering of experiments based on their elicitation power.
It is connected to, but different from, the canonical Blackwell ordering.

(3) We relate elicitation power with flexibility in incentives design.
More elicitation power =⇒ more flexibility (except under limited liability).
More data does not help to strengthen incentives (except under limited liability).



Appendix



Proof of Theorem 1



Proof idea:

(1) Any parameter distribution p induces outcome distribution µp with

µp(A) = Ep[π(A|θ)].
This mean outcome distribution is the most we can elicit.

(2) Hahn–Kolmogorov extension theorem implies existence of Ai ⊂ Y , i ∈ N, such that
outcome distributions are identified on the A′is.

(3) From report p ∈ ∆(Θ) and realized outcome y, the following protocol elicits the mean
outcome distribution:
(a) Draw i ∈ N at random according to a full support distribution.
(b) Pay 1− (µp(Ai)− 1{y ∈ Ai})2.

� back



Poisson Model



Example: Poisson Model
An investor lends money to a population of borrowers.
A risk officer is tasked with estimating the default rate.

I θ captures the default rate over the period of interest.
I Consider the experiment that reveals the number of loan defaults over a given period:
Y = {0, 1, 2, . . . } and

π(k|θ) =
θk

k!
e−θ.

With this experiment we elicit the full distribution over default rates.

Proof: For t ∈ R, let wt(k) = (1 + it)k with i=imaginary unit. Apply theorem with

gt(θ) =
∞∑
k=0

wt(k)π(k|θ) = e−θ
∞∑
k=0

(θ + itθ)k

k!
= eitθ.

We elicit expected value of every eitθ = the characteristic function of θ, and so we
elicit its distribution. � back
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Details on Applications of Product
Experiments



Applications
Finite vs. Infinite Parameter Space

I If the parameter space is infinite, then the full parameter distribution cannot be elicited with
finite data.

I If the parameter space is finite of size n, then we can always elicit the full parameter
distribution with n− 1 observations.

Proof: Let (Y, π) be the product experiment that corresponds to a fixed number of observations.

If the parameter space is finite, π corresponds to a Markov matrix.

If |Θ| > |Y | the matrix has more rows than columns.
=⇒ two distinct parameter distributions induce the same outcome distribution.

�



Applications
Finite vs. Infinite Parameter Space

I If the parameter space is infinite, then the full parameter distribution cannot be elicited with
finite data.

I If the parameter space is finite of size n, then we can always elicit the full parameter
distribution with n− 1 observations.

Proof: Enumerate Θ = {1, . . . , n}. There exists g : Θ→ R that is one-to-one whose mean is
elicitable with one observation.

With n− 1 observations we elicit the mean of (1, g, g2, . . . , gn−1). The mapping from
Rn to Rn defined as

(p1, . . . , pn) 7→
n∑

i=1

pi


1
g(i)
...

gn−1(i)


is invertible =⇒ the mean outcome distribution identifies the parameter distribution.

�



Applications
Case of Two Observations

With two observations from an identified experiment, we can elicit two pieces of information:

(1) Whether the researcher knows the parameter. . .

(2) . . . and, if applicable, the value of the parameter.

Proof idea:

There exists g : Θ→ R that is one to one and whose mean is elicitable with one observation.

=⇒ with two observations we elicit the variance of g.

Remark that: I The researcher knows the parameter iff the variance of g is non-zero.

I If the variance of g is zero, then the mean of g identifies the parameter.

� back
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Covariates



Case of Covariates
Suppose each observation is associated with a dependent variable y ∈ Y (e.g. cholesterol level)
and also a covariate x ∈ X (e.g. age and weight). Assume the distribution of covariates is known.

The experiment for one random observation can be decomposed into two parts:
I The randomization on x.
I Given the covariate, the randomization on y. Assume it is captured by (Y, πx).

Suppose information Px is elicitable with (Y, πx).

Theorem

Let x1, x2, . . . , be covariates drawn independently according to λ, and P be an information
partition on parameter distributions.

If, with positive probability, the join of Px1 ,Px2 , . . . , is a (weak) refinement of P, then
P is elicitable.

back



Gaussian Linear Models
Suppose each observation is associated with a dependent variable y ∈ R (e.g., cholesterol level)
and also a vector of covariates x = (x1, . . . , xK) ∈ RK (e.g., age and weight).

A Gaussian linear model postulates a linear relationship

y = β0 + β1x1 + · · ·+ βKxK + σε

with ε a standard normal error.

The parameter is θ = (β0, . . . , βK , σ) ∈ Rn+1 × R+.

The associated experiment can be decomposed in two parts.

I The randomization on the covariates (x1, . . . , xK) (arbitrary).

I Given the covariates, the randomization on the outcome y

y ∼ N (β0 + β1x1 + · · ·+ βKxK , σ
2).

back



Applications
Gaussian Linear Models

Suppose the vector of covariates x = (x1, . . . , xK) is distributed according to λ (known).

If:

(1) the support of λ has non-empty interior, and

(2) (β0, . . . , βK , σ) takes value in compact set,

then with a single observation, we can elicit the full distribution of the parameters.

Proof idea:

I For a fixed x, y is Gaussian, and mixtures of Gaussians whose mean and variance belong to
a compact set are identified.

I The distribution over (β0, . . . , βK , σ) is determined by the distribution of its
one-dimensional projections.

back
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I For a fixed x, y is Gaussian, and mixtures of Gaussians whose mean and variance belong to
a compact set are identified.

I The distribution over (β0, . . . , βK , σ) is determined by the distribution of its
one-dimensional projections.
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Applications
Non-Parametric Linear Models

The parameter specifies the probabilities of y ∈ R given a vector of covariates
x = (x1, . . . , xK) ∈ RK .

The shape of the probability distribution is free, but the joint probability of (x, y) satisfies:

E[y|x] = β0 + β1x1 + · · ·+ βKxK ,

var[y|x] = σ2.

Under regularity conditions:

I With one observation, we can elicit the mean of each βi.

I With two observations, we can elicit the mean and variance of each βi, and the mean of σ2.

I With four observations, we can elicit the mean and variance of each βi, and of σ2.
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Elicitation with Categorical
Experiments



Proof idea (finite parameter space):

(1) Assume Θ = {θ1, . . . , θn} and Y = {y1, . . . , ym}.
(2) Interpret π(y|θ) as an n×m Markov matrix, and ∆(Θ) ⊂ Rn.
(3) p ∼P? q ⇔ Ep[π(yi|θ)] = Eq[π(yi|θ)] (∀i) ⇔ pπ = qπ.

=⇒ So p ∼P? q iff p = q + v where v ∈ kerπᵀ (a linear space).

(4) Take g : Θ→ R. Interpret g as a vector of Rn.

(5) If we elicit the mean of g, then p ∼P? q implies Ep[g(θ)]︸ ︷︷ ︸
p·g

= Eq[g(θ)]︸ ︷︷ ︸
q·g

.

(6) Hence g ⊥ kerπᵀ.

(7) Standard linear algebra: (img π)⊥ = kerπᵀ.

=⇒ Hence g ∈ img π.

� back



Sufficient Statistics for Elicitation



Sufficient Statistics
Sufficiency in the Classical Sense

Consider an experiment (Y, π) that generates outcome y.

A statistic (for this experiment) is a function of the observation T (y).

The experiment induced by the statistic is written (T (Y ), T (π)).

The statistic is sufficient in the classical sense if

Pr[y|θ, T (y)] = Pr[y|θ′, T (y)] ∀θ 6= θ′.

If T is a sufficient statistic in the classical sense, (Y, π) is Blackwell equivalent to (T (Y ), T (π)).
=⇒ If T is a sufficient statistic, we elicit the same information with (Y, π) as with

(T (Y ), T (π)).
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Sufficient Statistics
Sufficiency in the Classical Sense

Consider an experiment (Y, π) that generates outcome y.

A statistic (for this experiment) is a function of the observation T (y).

The experiment induced by the statistic is written (T (Y ), T (π)).
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=⇒ If T is a sufficient statistic, we elicit the same information with (Y, π) as with

(T (Y ), T (π)).
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Sufficient Statistics
Sufficiency in Elicitation

Suppose we get n observations y1, . . . , yn.

Statistic (for the product experiment) is now T (y1, . . . , yn).

Cost of T = the minimum number of observations needed to compute T .
 Formally cost C(y1, . . . , yn) = minimum index j such that T (y1, . . . , yj , y

′
j+1, . . . , y

′
n)

does not depend on y′j+1, . . . , y
′
n.

T is a sufficient statistic in the elicitation sense if, when we can elicit P with (Y, π), we can also
elicit P with (T (Y ), T (π)).

Sufficiency in the classical sense =⇒ sufficiency in the elicitation sense, but not conversely.

Sufficient statistic T is optimal when there does not exist a sufficient statistic T ′ such that
C ′ ≤ C and for some y1, . . . , yn, C ′(y1, . . . , yn) < C(y1, . . . , yn).
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Optimal Sampling Strategy

Enumerate Y = {1, . . . ,m}.

Below, y captures the current observation.

Starting with the 1st observation, apply the following algorithm:

I If y = 1 then keep observing until y 6= 1 (or we have n observations).
If we have collected n observations we stop, else we continue below.

I If y = 2 then keep observing until y 6= 2 (or we have n observations).
If we have collected n observations we stop, else we continue below.

I . . .

I If y = m− 1 then keep observing until y 6= m− 1 (or we have n observations).
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Incentives



Elicitation Power and Incentive Structures

Here we consider general mechanisms ϕ :M× Y → R.

If an experiment (Y, πY ) dominates an experiment (Z, πZ) in the sense of elicitation, then for
every general mechanism ϕZ for (Z, πZ), there exists a general mechanism ϕY for (Y, πY ) such
that

Ep[ϕY (m, y)] = Ep[ϕZ(m, z)] (for all m, p).

=⇒ If (Y, πY ) is equivalent to (Z, πZ) in the sense of elicitation, then the incentives we
can design are the same with both—even if one is a strict garbling of the other.
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Elicitation Power and Incentive Structures

Fix an experiment. Suppose we can elicit information P with n observations.

Q: Does collecting more data help strengthen incentives to elicit P?

A: No (fixing the payoffs of the truthful reports).
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Elicitation Power and Incentive Structures

Assume that, for every general mechanism ϕZ for (Z, πZ) with ϕZ ≥ 0, there exists a general
mechanism ϕY for (Y, πY ) with ϕY ≥ 0,

Ep[ϕY (m, y)] = Ep[ϕZ(m, z)] (for all m, p).

Then, (Y, πY ) dominates (Z, πZ) in the sense of Blackwell.

The converse is true.
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BDM Representation

Consider an experiment (Y, π) with Y = {1, . . . ,m} and the (m− 1)-simplex as parameter space
that captures the outcome distribution (e.g., Bernoulli model).

Let ϕ be a (direct, IC) mechanism. Assume:

For parameter θ∗: Ep[θ] = λθ∗ + (1− λ) Eq[θ] =⇒ Eθ∗ [ϕ(p, y)] ≥ Eθ∗ [ϕ(q, y)].

Under smootness conditions, we can write

ϕ(p, y) = s0(y) +

m∑
i=1

∫ Ep[θi]

0
(1{y = i} − t)wi(t) dt

where s0(y) and wi(t) are arbitrary.
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