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ABSTRACT. An alternative is a Condorcet winner if it beats all other alternatives in a

pairwise majority vote. A social choice correspondence is a Condorcet extension if it se-

lects the Condorcet winners—and nothing else—whenever a Condorcet winner exists.

It is well known that Condorcet extensions are not monotonic (hence, not Nash imple-

mentable) when all preferences are admissible, but are implementable when restricted

to a domain in which Condorcet winners always exist. We fill the gap by studying the

intermediate domains, and find that monotonicity is violated on all such domains.
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1. INTRODUCTION

An alternative is a Condorcet winner if does not lose to any alternative in a pairwise

majority vote. A social choice correspondence (SCC) is a Condorcet extension if it se-

lects exactly the set of Condorcet winners, whenever a Condorcet winner exists. No

restrictions are made when no Condorcet winner exists, except that the social choice

correspondence must pick something at every preference profile. We say that we can

(Nash) implement a Condorcet extension if there is a game form (or, mechanism) whose

Nash equilibrium outcomes always exactly coincide with the SCC.

In this paper we study the preference domains on which we can implement Condorcet

extensions. It is well known that Condorcet extensions are not Nash implementable

when all strict or all weak preferences are admissible (Jackson, 2001; Saijo, 1987, e.g.).

Maskin (1999) shows that Condorcet extensions are Nash implementable when only
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preferences that admit Condorcet winners are admissible.1 Our paper explores the in-

termediate cases, where more preferences may be admissible than just those that admit

Condorcet winners, but it is not assumed that all profiles are admissible. Our finding is

that if the domain of admissible preference profiles is any strict superset of those profiles

that admit Condorcet winners, then no Condorcet extension on that domain is Maskin

monotonic. Therefore, it will be neither strategy-proof nor Nash implementable by any

mechanism.

2. NOTATION & ENVIRONMENT

A set of N = {1, . . ., n} of n ≥ 3 agents are to select an outcome from a finite set of alterna-

tives X , where |X | (the number of elements of X ) is at least two. Denote by X the set of

non-empty subsets of X . Each agent has complete, reflexive, and transitive preferences

R i ⊆ X×X , where xR i y denotes that x is weakly preferred to y. Let Pi denote the asym-

metric part of R i (‘strict preferences’). We denote the profile of all agents’ preferences

by RN = (R1, . . . ,Rn). Let R be the space of all possible preferences over X and P be the

space of all strict preferences over X .

Given a set of admissible preference profiles D ⊆ R
n, a social choice correspondence

(SCC) is a mapping f : D →X that selects a set of alternatives for each profile RN . Note

that, by definition, f (RN) 6= ; for all RN ∈ D. If f is single valued, we refer to it as a

social choice function (SCF). For any subset A ⊆ D, let f |A be the restriction of f to

profiles in A .

Define N(x, y;RN) = |{i ∈ N : xPi y}| to be the number of agents who strictly prefer x

over y at profile RN . An alternative x is said to be a weak Condorcet winner at RN if,

for every y ∈ X \{x}, N(x, y;RN )≥ N(y, x;RN). In other words, a weak Condorcet winner

x does not lose a pairwise plurality vote against any other alternative, assuming indif-

ferent voters abstain. There are many preference profiles for which no weak Condorcet

winner exists. Let W = {RN ∈ R
n : (∃x ∈ X ) (∀y ∈ X ), N(x, y;RN) ≥ N(y, x;RN)} be the

set of preference profiles that admit a weak Condorcet winner. Define f W : W →X to be

the SCC that selects all weak Condorcet winners for any RN ∈W . A SCC f is said to be

a weak Condorcet extension if f (RN) = f W (RN) whenever RN ∈ W , and weak Condorcet

consistent if f (RN) ⊆ f W (RN ) whenever RN ∈ W . No restrictions are placed on weak

Condorcet extensions or weak Condorcet consistent SCCs outside of W .

There can be multiple weak Condorcet winners at a given preference profile. For

example, if all agents are indifferent over all alternatives, then all alternatives are weak

1The domain restriction in Maskin’s paper is not discussed explicitly, but clear from the proof.
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Condorcet winners. Define x ∈ X to be a strong Condorcet winner at RN if, for every

y ∈ X \ {x}, N(x, y;RN) > N(y, x;RN). Strong Condorcet winners must be unique when

they exist. Let S ⊆R
n be the preference profiles for which a strong Condorcet winner

exists, and f S : S → X to be the SCF that selects the strong Condorcet winner at every

RN ∈ S . A SCC f is a strong Condorcet extension (or, equivalently, strong Condorcet

consistent) if f (RN) = f S(RN) whenever RN ∈ S . Obviously, S ⊂ W .2 Furthermore,

every weak Condorcet extension is a weak Condorcet consistent SCC, and every weak

Condorcet consistent SCC is a strong Condorcet extension, but the opposite relations do

not hold.

To define monotonicity, we first say that an alternative x ∈ X maintains position from

RN to R′
N

if, for every i ∈ N, xR i y implies xR′
i
y. In other words, x maintains position

if, for every i, everything x was beating under R i continues to be beaten by x under R′
i
.

A SCC f is monotonic if, whenever x ∈ f (RN) and x maintains position from RN to R′
N

,

then x ∈ f (R′
N

).

A mechanism Γ= (S, g) consists of a strategy space S =×n
i=1

S i and an outcome func-

tion g : S → X . A strategy profile s∗ is a (pure strategy) Nash equilibrium of Γ at RN if,

for every i ∈ N and si ∈ S i, g(s∗)R i g(si, s∗
−i

). For any RN , let µΓ(RN) identify the set of

pure-strategy Nash equilibria of Γ at RN . The mechanism Γ Nash implements a SCC f

if, for every RN , g(µΓ(RN))= f (RN). In that case we say that f is Nash implementable.

The following theorem, due to Maskin (1999), shows that monotonicity is an impor-

tant necessary condition for a SCC to be Nash implementable.

Theorem (Maskin, 1999). If a SCC f : D → X is not monotonic, then it is not Nash

implementable.

Maskin (1999) also proves that, with at least three agents, monotonicity is sufficient

for Nash implementation when the ‘No Veto Power’ axiom is added. Formally, f satisfies

No Veto Power if |{i ∈ N : xR i y ∀y ∈ X }| ≥ n−1 implies x ∈ f (RN).

Theorem (Maskin, 1999). If n ≥ 3 and f : D → X satisfies monotonicity and No Veto

Power then f is Nash implementable.

We state and prove our result in the following section.

2The ⊂ operator is strict, meaning S 6=W .
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3. THE MAIN RESULT

Theorem. If D ⊆S ⊂W , then

(1) all strong Condorcet extensions are monotonic and Nash implementable,

(2) all weak Condorcet consistent SCCs are monotonic and Nash implementable,

and

(3) all weak Condorcet extensions are monotonic and Nash implementable.

If D ⊆W , then

(4) strong Condorcet extensions may or may not be monotonic,

(5) weak Condorcet consistent SCCs may or may not be monotonic, and

(6) all weak Condorcet extensions are monotonic and Nash implementable.

If S ⊂W ⊂D, then

(7) no strong Condorcet extension is monotonic,

(8) no weak Condorcet consistent SCC is monotonic, and

(9) no weak Condorcet extension is monotonic.

Maskin (1999) essentially proves results 1–3 and 6. The novelty of our theorem is in

the impossibility of Nash implementation when W ⊂ D (results 7–9). The argument is

simple: Following result 9, suppose f is a weak Condorcet extension. Take any RN 6∈W ,

where no weak Condorcet winner exists (e.g., panel A of Table I). For every x ∈ f (RN),

there is some y that strictly beats x in a pairwise majority vote at RN . Now consider the

profile R
{x,y}

N
that is identical to RN , except x and y are ‘floated’ to the top of each agent’s

preference ranking (panel B of Table I). Here, y is the unique (strong) Condorcet winner.

This means R
{x,y}

N
∈S ⊂D, so f is defined at R

{x,y}

N
. In fact, we know f (R

{x,y}

N
)= {y} since f

is a weak Condorcet extension. Now, can f be monotonic? By construction, x (which is in

f (RN)) maintains position from RN to R
{x,y}

N
, so monotonicity would require x ∈ f (R

{x,y}

N
).

But we’ve just shown that f (R
{x,y}

N
) = {y}, so f cannot be monotonic. A similar example

proves results 7 and 8. Arguments such as this are common in past work; see Amorós

(2009), for example.

Details are provided in the following proof.

Proof of the Theorem. For results 1–3, consider f ≡ f S|D , which is the unique strong

Condorcet extension, the unique weak Condorcet consistent SCC, and the unique weak

Condorcet extension on D. Pick any RN ,R′
N
∈D ⊆S . If the element x such that f (RN)=

{x} maintains position from RN to R′
N

, then N(x, y;R′
N

) ≥ N(x, y;RN) ≥ N(y, x;RN) ≥

N(y, x;R′
N

) for all y. Thus, f (R′
N

) = {x}, as required by monotonicity. This SCC also
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R1 R2 R3

z x y

y z x

x y z

R
{x,y}

1
R

{x,y}

2
R

{x,y}

3

y x y

x y x

z z z

(A) (B)

TABLE I. Example preferences illustrating the proof.

satisfies No Veto Power since n−1 agents ranking x as top-ranked at RN guarantees

that x is the strong Condorcet winner at RN , and therefore f (RN)= {x}. Thus, f is Nash

implementable.

For results 4 and 5, consider an example in which X = {x, y} and D = S ∪ {R′
N

,R′′
N

},

where R′
N
∈W is any profile such that N(x, y;R′

N
)= N(y, x;R′

N
) and R′′

N
∈W is the profile

where all agents are indifferent between x and y. Note that f W (R′
N

) = f W (R′′
N

) = {x, y}.

Suppose f |S ≡ f S, f (R′
N

)= {x}, and f (R′′
N

)= {y}. Then f is a strong Condorcet extension

and a weak Condorcet consistent SCC, but is not a weak Condorcet extension. It is

also not monotonic: x is chosen at R′
N

and x maintains position from R′
N

to R′′
N

, but

x 6∈ f (R′′
N

). Thus, monotonicity fails for some strong Condorcet extensions and some

weak Condorcet consistent SCCs. To show there exists monotonic strong Condorcet

extensions and weak Condorcet consistent SCCs, let f ≡ f W |D . Here, if x ∈ f (RN) for

some RN ∈D ⊆W then x is a weak Condorcet winner at RN . If x maintains position from

RN to R′
N
∈ D, then N(x, y;R′

N
) ≥ N(x, y;RN) ≥ N(y, x;RN) ≥ N(y, x;R′

N
) for all y. Thus,

x is a weak Condorcet winner at R′
N

and so x ∈ f (R′
N

), as required by monotonicity. All

weak Condorcet extensions on such a domain must satisfy f ≡ f W |D , so this also proves

result 6.

To show results 7–9, recall that assume W ⊂ D. Pick any RN ∈ D \ W and any x ∈

f (RN). Since there is no weak Condorcet winner at RN , then there is some y ∈ X such

that N(y, x;RN) > N(x, y;RN). Now consider the preference relation R
{x,y}

N
where, for

each i,

(1) xR i y⇒ xR
{x,y}

i
yP

{x,y}

i
z for every z 6∈ {x, y},

(2) yR ix⇒ yR
{x,y}

i
xP

{x,y}

i
z for every z 6∈ {x, y}, and

(3) wR i z ⇒ wR
{x,y}

i
z for all w, z 6∈ {x, y}.

In other words, R
{x,y}

i
is identical to R i except the pair {x, y} is ‘bubbled up’ to the top

of R i. Note that N(y, x;R
{x,y}

N
) > N(x, y;R

{x,y}

N
) since N(y, x;RN) > N(x, y;RN), and also

n = N(y, z;RN) > N(z, y;RN) = 0 for all z 6∈ {x, y}. Thus, the unique weak Condorcet

winner at R
{x,y}

N
is y, which also verifies that R

{x,y}

N
∈ S ⊆ D. If f is a weak Condorcet
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extension, weak Condorcet consistent, or a strong Condorcet extension, it must be that

f (R
{x,y}

N
)= {y}.

Now we ask whether f can be monotonic. By construction, x ∈ f (RN) maintains posi-

tion from RN to R
{x,y}

N
, so monotonicity would require that x ∈ f (R

{x,y}

N
). But we have just

derived that f (R
{x,y}

N
)= {y}, a contradiction, so f cannot be monotonic. �

Remark 1. If D does not contain all of W but does contain some profiles outside of W

then the impossibility result remains true as proven as long as, for every RN ∈ D \ W ,

there is some R′
N

that plays the same role as R
{x,y}

N
in the proof.

Remark 2. We assume n ≥ 3. If n = 2 then every preference profile admits a weak

Condorcet winner (W =R
2), but there are weak Condorcet extensions that are not Nash

implementable when D is large enough. Examples can be constructed easily using the

necessary conditions from Dutta and Sen (1991).

4. RELATED WORK

As stated in the introduction, the impossibility result under the special cases of D =P
n

and D = R
n is well-studied. Assuming |X | ≥ 3 and D ⊇ P

n, (all strict preferences are

admissible), Muller and Satterthwaite (1977) prove that if f is monotonic and satis-

fies citizens’ sovereignty (the range of f equals X ) then f must be dictatorial. Since a

weak Condorcet extension on P
n satisfies citizen sovereignty and is not dictatorial, this

proves that it cannot be monotonic.

Amorós (2009) defines the unequivocal majority of a social choice function to be the

minimal number of agents such that if that many agents rank an alternative x at the

top of the preferences, then the social choice function picks x. For weak Condorcet ex-

tensions the unequivocal majority is n/2. Assuming all strict preferences are admissible

(D = P
n), Amorós shows that if the unequivocal majority of a social choice correspon-

dence is less than n− (n−1)/m (where m is the number of alternatives) then it cannot

be Maskin monotonic. Since n/2+1< n− (n−1)/m, this also shows that weak Condorcet

extensions are not monotonic when all strict preferences are admissible.

Ozkal-Sanver and Sanver (2007) also show the impossibility of implementing weak

Condorcet extensions when all preferences are admissible. Their approach differs in

that they take the (non-transitive) majority relation as primitive, but the result is equiv-

alent.
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All of these results require that all strict preferences be admissible, and are therefore

more restrictive (more likely to generate an impossibility result) than any of the cases

covered in our theorem.

If the complete indifference profile is admissible, Saijo (1987) shows that Maskin

monotonicity of a (single-valued) SCF implies that the SCF is constant. Thus, if D

contains the indifference profile and two other profiles in W that have non-overlapping

sets of weak Condorcet winners, then any weak Condorcet consistent SCF defined on D

would be non-constant and therefore not monotonic. Such a domain could be a subset

of W , in which case Saijo’s result is a special case of (5) above. Or it could be that D

is neither a superset nor a subset of W , in which case Saijo’s impossibility result is not

covered by our theorem.

Positive results on implementation can be obtained if a stronger equilibrium concept

is used (see Palfrey and Srivastava, 1991; Peress, 2008; and Bag et al., 2009, for exam-

ple). If preferences are single-peaked (Moulin, 1980, e.g.) then implementation is also

no problem, because D ⊂S .
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