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I. INTRODUCTION

The behavioral game theory literature has produced several models of non-equilibrium
play in one-shot games. Prominent examples include Quantal Response Equilibrium
(McKelvey and Palfrey, 1995), the Level-k model (Stahl and Wilson, 1994; Nagel, 1995),
and the Cognitive Hierarchy model (Camerer et al., 2004). The goal of each of these
models is to explain and predict human behavior in strategic settings. Therefore, given
a dataset of actual game play, it is natural to ask which model best explains the data
we observe. To answer this, researchers often run a “horse race” of various models on
their dataset, using a model selection criterion such as the Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), or one of many cross-validation methods
to select a winning model. But how reliable is this exercise? Although these model selec-
tion criteria are known to have good large-sample properties, how well do they perform
for a typical small-sample experiment dataset with only a handful of observations? Even
in the starkest case where there is a true model that generated the data, would these
various model selection methods correctly identify the data generating process (DGP) as
the winning model?

To answer this question, we perform a model selection exercise on simulated data. We
consider seven behavioral game theory models and, for each model, generate a dataset of
3,000 simulated subjects who play twelve 3×3 one-shot games according to that model.
Thus, each model serves as the DGP for one dataset. For each subject in each dataset
we perform a model-selection exercise to see which of the seven models is selected as
the winning model for that subject. If the model selection exercise is successful then the
DGP should be selected as the winning model for the vast majority of subjects. If not,
then this raises serious concerns about the validity of the model selection exercise.

Our first result is that the models based on iterated best-reply make very similar
predictions, causing the model selection exercise to fail or to be inconclusive because
several models perform equally well.1

We then explore possible solutions to this problem. First, we note that these models
are better separated when game payoffs are smaller. This is because most models predict
that noise increases as payoff differences shrink, and it is this noise in behavior that
often distinguishes similar models. Unfortunately, we find that model selection is not
substantially improved by this change. And in some cases the performance is strictly
worse.

Our next solution is to restrict ourselves to comparing only two competing models,
and ensuring that those two models are well separated. Of our seven models, six are
based on levels of iterated best response, while Quantal Response Equilibrium (QRE) is

1García-Pola et al. (2020) make a similar observation in the context of centipede games.
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the only model that is not. Thus, we compare each levels-based model against QRE. For
those datasets generated by a levels-based model, we compare that model against QRE.
Then, for the QRE dataset we perform six separate model comparisons, each featuring
QRE against one of the six levels-based models.

Model selection performance improves substantially when comparing only two mod-
els. However, when using cross validation methods for selecting the winning model
we still find a handful of unexpected anomalies in which the wrong model wins for a
substantial fraction of subjects. We find that one of the biggest problems with cross val-
idation is that it is prone to “infinite penalties.” This happens when a model is flexible
enough to fit the training data perfectly, causing it to be estimated as a noiseless, deter-
ministic model. If this deterministic model ever makes an incorrect prediction then it
is penalized with a zero likelihood (or, a negative-infinity log likelihood) and will not be
selected. If this happens to the model that generated the data, then a “wrong” model will
necessarily be selected. The AIC and BIC avoid the infinite penalty problem, and thus
perform more reliably than cross validation in our simulated exercise. We also identify
two other kinds of failures that can occur with cross validation, both of which are again
avoided by switching to the AIC or BIC; see Section IV for details.

The twelve 3×3 games we study were adapted from past work and not necessarily
optimized to discriminate between these seven models. In Section V we ask if model
selection performance would be improved by using optimized games. We find that this
is the case, though the failures of cross validation identified in our original simulation
still appear with these optimized games. As an additional result, we show that having
subjects play twelve copies of a single game does not significantly affect the frequency
of these anomalies.

Increasing the number of games that each subject plays should also improve the model
selection performance. But here the infinite penalty problems that arise with cross
validation can actually cause it to perform better for smaller numbers of games. This
occurs because the non-DGP model is more likely to have a negative-infinity failure with
fewer games, giving the DGP an extra advantage when the number of games is small.
Again, the Bayesian and Akaike Information Criteria avoid this problem and behave
more predictably as the number of games is increased. We confirm these patterns by
varying the number of games used in our simulation.

Finally, a larger strategy space should allow for better model discernment, simply
because there are more available actions on which the models can differ. We test this
by switching to a simulation of two-person guessing games (Costa-Gomes and Crawford,
2006), which have continuum strategy spaces. We then restrict play to either a coarse
grid or a fine grid over those strategy spaces, where the fine grid has ten times as many
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available strategies as the coarse grid. With cross validation we find that moving to the
fine strategy space offers relatively small improvements, though they are significant for
some of the data generating processes.

With the BIC and AIC, however, results are more mixed and there are even two data
generating processes for which performance is significantly worse in the fine strategy
space. We conjecture that the BIC and AIC perform worse than the cross-validation
methods here because their overfitting penalties are too inflexible. Ideally the penalty
should vary as the strategy space changes, since this affects the propensity to overfit
the data. For example, it is much harder for a model to overfit data with a fine strategy
space, and so a smaller penalty may be appropriate. But the BIC and AIC penalties do
not adjust in this way, so their performance may vary across settings.

At first blush our results suggest that researchers should (1) avoid similar models,
and (2) use either the AIC or BIC to avoid problems with cross validation. But the AIC
and BIC don’t always behave as expected, either, as the penalties they impose may be too
rigid to apply uniformly across settings. Thus, our recommendation is that researchers
interested in performing model selection on their data should first run a simulation
similar to ours to verify that the criteria they plan to use will work well and feature the
expected comparative statics on the set of games they are studying.

Our simulations assume there always exists a true data generating process for any
dataset. This is necessary for us to declare unequivocally whether the “right” model was
selected for a given subject. Presumably, this provides an upper bound on the perfor-
mance of any model selection methodology: If a given criterion cannot identify the right
model when one exists, then it seems unlikely to identify the “better” model (suitably
defined) when none are correct.2 We leave the many complications of this question for
future research, and focus here on only the simplest case in which a correct model exists.

We compare seven behavioral game theory models: six levels-based models in the
spirit of Level-k (Nagel, 1995; Stahl and Wilson, 1994; Camerer et al., 2004; Costa-
Gomes and Crawford, 2006), and Quantal Response Equilibrium (McKelvey and Palfrey,
1995). But the point of our exercise is not specific to these models. Our main finding is
that similar models can cause problems, and that even when we avoid similar models
there can be peculiar situations where the wrong model wins for various reasons. Thus,
simulating the model selection exercise before applying it to real data can help identify
such failures.

2For example, one could imagine simulating a population of subjects in which 80% conform to one model
and 20% to another, and then asking whether the former model is selected when forcing only one model to
fit the entire population. This is different from our setting because we identify a winning model for each
individual subject.
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Similarly, the particular failures and comparative statics we observe may be specific
to the games we chose—which were adapted from Stahl and Wilson (1995) and Costa-
Gomes and Crawford (2006)—but again the general lesson that model selection should
be treated with caution is likely not. In all cases it is worthwhile to simulate the exercise
first to validate its use in any given setting.

To our knowledge, ours is the first simulation of model selection with one-shot plays of
games. Salmon (2001) performs a similar exercise by comparing various learning mod-
els on simulated datasets in which subjects play a single game repeatedly. His criterion
for success, however, differs in that he only asks whether estimates of model parameters
correctly or incorrectly rule out reinforcement learning versus belief learning. He finds
that models that should not fit a given data generating process often pass the test, in-
dicating serious type II (false positive) failures. In a similar vein, Feltovich (2000) finds
that, on actual experimental data, whether a reinforcement model or a belief learning
model fits better depends not only on the game, but also on the success criterion used.
Thus, model selection appears very sensitive in the learning domain, and prone to over-
fitting problems.

Carbone and Hey (1994a) test the discrimination between models of individual choice—
such as expected utility (EU) and several non-EU models—using simulated data. They
apply both the Akaike Information Criterion and the index developed in Carbone and
Hey (1994b), take EU as the null hypothesis, and ask how often it is rejected in favor of
another model. They find that when the data are truly generated by an EU maximizer
then the non-EU theories are rarely selected. But when the data are from a non-EU sub-
ject then EU is rejected in favor of multiple non-EU theories. Thus, the non-EU theories
appear hard to discriminate. Carbone (1997) extends this analysis to both binary choice
data and rank-order list data, and also finds that the “wrong” model can be selected
quite often, particularly when the data are generated from a non-EU model.3

In the domain of one-shot games, three examples of model selection exercises are
given by Breitmoser (2012), Wright and Leyton-Brown (2017), and García-Pola et al.
(2020). All three perform model selection exercises on actual experimental data. Bre-
itmoser (2012) compares level-k, logistic level-K , QRE, and noisy introspection (Goeree
and Holt, 2004) in p-beauty contests using a Vuong test, which is essentially identi-
cal to the BIC in terms of penalizing parameters. He finds that quantal response and
noisy introspection explain most play better than the level-k model. Wright and Leyton-
Brown (2017) compare level-k, quantal level-k, cognitive hierarchy, noisy introspection,
and QRE to each other and to a model based on Nash equilibrium by using 10 rounds
of 10-fold cross-validation. They find support for the quantal level-k model above all
3Jakusch (2013) applies this method to financial data and explores how variations in the assumed error
structure can affect the results.
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others. In neither paper is the reliability of the model selection criterion verified, so the
propensity for false positives is unclear.

Fudenberg et al. (2020) and Fudenberg et al. (2022) attempt to quantify how prone
a given model is to overfitting. One characteristic of an overfitting model is that it
will have low prediction error regardless of the true data generating process (DGP).
Fudenberg et al. (2020) imagine randomly generating many different DGPs, and then
measuring how well the model fits each of these randomly-generated DGPs. If the model
is prone to overfitting then its average error will be small; this represents a lack of
restrictiveness for that model. In contrast, the completeness of a model (Fudenberg et al.,
2022) is a measure of the model’s error compared to the true DGP. An ideal model is one
that has a large value of completeness (it fits the actual DGP well) and also a large
value of restrictiveness (it wouldn’t fit other DGPs well). One can think of this approach
as defining (or informing) an intrinsic preference over models, which can be evaluated
without any data. In contrast, cross validation, AIC, and BIC all provide methods for
model selection when a dataset is given, and vary in how they penalize models that are
prone to overfitting.

García-Pola et al. (2020) compare the predictions of eleven behavioral models in cen-
tipede games played as normal-form games. They note that much of the past literature
on centipede games used payoffs that failed to properly distinguish these models. To
correct for this, they design 16 novel centipede games that vary only in their payoffs and
verify theoretically that the models are sufficiently discriminated.4 Instead of picking
a single winning model for each subject, García-Pola et al. (2020) estimate a mixture
model that allows each subject to play according to multiple models, each with some es-
timated probability; see McLachlan and Peel (2000) for details. Their results show that
a mixture of the Level-k and QRE models fits the data well.

One promising direction for model selection is to use non-choice data to further distin-
guish between models. Johnson et al. (2002), Costa-Gomes et al. (2001), Costa-Gomes
and Crawford (2006) and others gather data on what information subjects view while
making decisions. For example, if a subject does not collect enough information to cal-
culate their opponent’s best responses then that subject presumably cannot be a level-2
subject who is responding to their opponent’s best response. Chen et al. (2018) simi-
larly use eye-tracking to see how subjects mentally “calculate their strategy” in a novel
spatial beauty contest and use this data to infer how many levels of reasoning a given
subject must be using. To our knowledge, however, these methods have only been used
to help fit parameters within a given model, but have not been used to help select a
winning model from several contenders.
4They employ both a spike-logit and a spike-uniform error structure; see Section II for a description of
spike-logit errors.
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II. THE MODELS

A two-player game is given by (S1,S2,u1,u2), where S i is the (finite) strategy space of
player i ∈ {1,2} and ui : S1 ×S2 → R specifies the payoff to i for each strategy profile
(s1, s2) ∈S1 ×S2.5

A mixed strategy for player i is given by σi ∈∆(S i), where ∆(S i) is the space of all dis-
tributions over S i. For example, in a 3×3 game σi = (1/3,1/3,1/3) represents a uniform
mixture over player i’s three strategies. Following a common abuse of notation, let

ui(σ1,σ2)= ∑
(s1,s2)

σ1(s1)σ2(s2)ui(s1, s2);

ui(s1,σ2) and ui(σ1, s2) are defined similarly.
For any σ j let

BRSi(σ j)= argmax
si

ui(si,σ j)

be the set of best responses for i against σ j. Then define BRi(σ j) to be the mixed strategy
that uniformly randomizes over BRSi(σ j). Formally,

BRi(σ j)(si)=


1
#BRSi(σ j)

if si ∈ BRSi(σ j)

0 if si ̸∈ BRSi(σ j).

Each player plays a set of games G = {1, . . . ,G}; when needed we index a player’s
strategies by g ∈G .6

Many models use logistic response rather than best response. Formally, for any subset
of strategies S ′

i ⊆ S i, belief σ j, and precision parameter λ ≥ 0, the logistic response
(restricted to S ′

i ) of player i is given by the distribution

LRi(σ j|λ,S ′
i )(si)=


exp(λui(si ,σ j))∑

s′i∈S ′
i

exp(λui(s′i ,σ j))
if si ∈S ′

i

0 if si ̸∈S ′
i .

With this notation we can now describe the seven behavioral game theory models that
we include in our model selection exercise.

Level-k

Following the previous literature (Nagel, 1995; Stahl and Wilson, 1994, 1995; Costa-
Gomes and Crawford, 2006, etc.) we anchor the Level-k model on a “level 0” type that
uniformly randomizes over all possible actions. Level 1 then best responds to level 0,

5All of the models we consider do not differentiate between (objective) pecuniary payoffs and (subjective)
utility indices, so we take ui to represent pecuniary payoffs.
6Both ui and S i depend on g as well, but we ignore this in our notation. We also use i and j to index both
individuals in the experiment and player roles within a game.
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level 2 best responds to level 1, and so on. But this model makes deterministic predic-
tions (generically), which often leads to datasets with a zero likelihood. Thus, following
Costa-Gomes and Crawford (2006), we add a “spike-logit” error structure in which the
player plays according to their best response with probability 1− ϵ, and plays a logistic
response with probability ϵ. The logistic distribution has precision parameter λ, so the
model has three total parameters: k, ϵ, and λ.

We study two variants of the model that differ slightly in how they model these ϵ-
probability “trembles” from the best resopnse strategy. In the “double counting” version
of the model (denoted by “LK Double” or simply LKD) the logistic distribution puts
weight on all strategies, meaning that trembles can include best responses. In the “sin-
gle counting” version (LKS) the logistic distribution excludes best-response strategies,
meaning all trembles are strictly suboptimal.

In either version of the model the player does not believe their opponent will tremble.
To formalize the model we first define the best response strategy for each level induc-

tively, with

σLK
i (si|0)= 1

#S i
∀si ∈S i, and

σLK
i (·|k)= BRi

(
σLK

j (·|k−1)
)

∀k ∈ {1,2, . . .}.

For brevity, let
BRSk

i = BRSi(σLK
j (·|k−1)),

and for any S ′
i ⊆S i let 1S ′

i
(si) be the indicator function for si ∈S ′

i . The LKD and LKS
strategies are then defined (for each k > 0) by

σLKD
i (si|k,λ,ϵ)= 1BRSk

i
(si) · (1−ϵ) ·BRi

(
σLK

j (·|k−1)
)
(si)

+ϵ ·LRi

(
σLK

j (·|k−1)|λ,S i

)
(si)

and

σLKS
i (si|k,λ,ϵ)= 1BRSk

i
(si) · (1−ϵ) ·BRi

(
σLK

j (·|k−1)
)
(si)

+
(
1− 1BRSk

i
(si)

)
·ϵ ·LRi

(
σLK

j (·|k−1)|λ,S i \ BRSk
i

)
(si).

Again, the difference between these is whether the logistic-response tremble probabil-
ities are assigned to every strategy (LKD), or only those that are not best responses
(LKS).

Finally, we add a Nash type, denoted by k =∞. All of our games have a unique (though
possibly mixed) Nash equilibrium, so we can define the best response of the Nash type
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directly from the fixed point given by

σLK
i (·|∞) ∈ argmax

σi
ui(σi,σLK

j (·|∞)).

The LKD and LKS models then add logistic noise to this Nash strategy. Letting

BRS∞
i = BRSi(σLK

j (·|∞))

be the support of σLK
i (·|∞), we have

σLKS
i (si|∞,λ,ϵ)= 1BRS∞

i
(si) · (1−ϵ) ·σLK

i (si|∞)

+
(
1− 1BRS∞

i
(si)

)
·ϵ ·LRi

(
σLK

j (·|∞)|λ,S i \ BRS∞
i

)
(si)

and

σLKD
i (si|∞,λ,ϵ)= 1BRS∞

i
(si) · (1−ϵ) ·σLK

i (si|∞)

+ϵ ·LRi

(
σLK

j (·|∞)|λ,S i

)
(si).

For our simulations, the grid of parameter values is k ∈ {1,2,3}, λ ∈ {0.01,0.05,0.16,0.56,
1,1.4,1.8,2.2,2.3,2.4,2.45,2.55,2.6,2.7,3.2,4.2,4.7,5.2,6,8,9,10,11,12,13,14,15,16,17,18,
19,20,60}, and ϵ ∈ {0,0.05,0.1,0.15,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}.7

Poisson Cognitive Hierarchy

The Poisson Cognitive Hierarchy (PCH) model is similar to the Level-k model, but fea-
tures different subjective beliefs about the types of their opponents. Following Camerer
et al. (2004), the model assumes that type k’s belief over her opponents follows a trun-
cated Poisson distribution over lower types.

Specifically, if f (k|τ) = exp(−τ)τ
k

k! is the Poisson distribution with parameter τ, then
a player of type k believes that each type k′ ∈ {0,1, . . . ,k − 1} occurs with frequency
g(k′|k,τ)= f (k′|τ)/

∑k′−1
k′′=0 f (k′′|τ), and types k′ ≥ k never occur (g(k′|k,τ)= 0).8

7The parameters λ = 20 and λ = 60 give almost same strategies, so there is rarely a meaning-
ful difference between them. And for our main games the strategies calculated by MATLAB are
identical between λ = 60 and λ = ∞. For the small payoff games described later, we use λ ∈
{0.01,0.05,0.16,0.56,1,1.4,1.8,2.2,2.3,2.4,2.45,2.55,2.6,2.7,3.2,4.2,4.7,5.2,6,8,
9,10,11,12,13,14,15,16,17,18,19,20,100,200,300,400,500,600,700,800,900,1000,1100,1200,1300,
1400,1500,1600,1700,1800,1900,2000,6000}. This is because we need larger λ to have the same predic-
tion as λ=∞, and to have consistency in estimation with QRE.
8It is possible that players believe others perform more steps of reasoning than themselves, but since
they cannot conceive of what strategy such a person would play they lump these players together with
the level-0 behavior.
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Define the noiseless strategies inductively by

σPCH
i (si|0,τ)= 1

#S i
∀si ∈S i,

γ
k,τ
i =

k−1∑
k′=0

g(k′|k,τ) σPCH
j (·|k′,τ) ∀k ∈ {1,2, . . .},and

σPCH
i (·|k,τ)= BRi

(
γ

k,τ
i

)
∀k ∈ {1,2, . . .}.

Here, γk,τ
i is type k’s overall belief about the actions of their opponent, to which they

best respond.
As in the LK model we add spike-logit noise to these strategies, which can either be of

the single-counting (PCHS) or double-counting (PCHD) form. Define the best response
sets by

BRSk,τ
i = BRSi(γ

k,τ
i ).

The model’s strategies are then defined by

σPCHS
i (si|k,τ,λ,ϵ)= 1BRSk,τ

i
(si) · (1−ϵ) ·BRi

(
γ

k,τ
i

)
(si)

+
(
1− 1BRSk,τ

i
(si)

)
·ϵ ·LRi

(
γ

k,τ
i |λ,S i \ BRSk,τ

i

)
(si)

and

σPCHD
i (si|k,τ,λ,ϵ)= 1BRSk,τ

i
(si) · (1−ϵ) ·BRi

(
γ

k,τ
i

)
(si)

+ϵ ·LRi

(
γ

k,τ
i |λ,S i

)
(si).

The grid of parameter values used in our simulation is the same as in the Level-k
model, with the grid for the added parameter τ being τ ∈ {0.4,0.6,0.8,1.2,1.6,2,2.4,2.8,3.2,
3.6,4}.

Hierarchical Quantal Response

The hierarchical quantal response model (HQR) is similar to the level-k models (LKS
and LKD), but with two modifications: First, players use logistic response with no
“spike” on the pure best response. Second, players correctly believe that their opponent
plays a logistic response, rather than a pure best response.

Formally, the model is defined inductively by

σ
QR
i (si|0,λ)= 1

#S i
∀si ∈S i,and

σ
QR
i (·|k,λ)= LRi

(
σ

QR
j (·|k−1,λ)|λ,S i

)
∀k ∈ {1,2, . . .}.
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This model has only two parameters (k and λ) and the grids used for them are the
same as in the Level-k and PCH models.

HQR is a special case of Noisy Introspection (Goeree and Holt, 2004). Noisy intro-
spection allows for different values of λ and an infinite hierarchy of levels, while HQR
requires a common λ and only considers k ∈ {1,2,3}.

Quantal Level-k

Stahl and Wilson (1994) suggest the quantal level-k model (QLK), which takes only
the first two levels of the HQR model but allows level 2 to have a different precision
parameter than level 1, and for level 2 to have incorrect beliefs about the precision
parameter of level 1.

Let λ⃗= (λ1,λ2,λ1(2)) be the vector of precision parameters, where λ1 is level 1’s actual
precision, λ2 is level 2’s actual precision, and λ1(2) is level 2’s (degenerate) belief about
level 1’s precision. For each si ∈S i define

σ
QLK
i (si|0, λ⃗)= 1

#S i
,

σ
QLK
i (·|1, λ⃗)= LRi

(
σ

QLK
j (·|0, λ⃗)|λ1,S i

)
,

γ1(2)
i (·|⃗λ)= LRi

(
σ

QLK
j (·|0, λ⃗)|λ1(2),S i

)
,and

σ
QLK
i (·|2, λ⃗)= LRi

(
γ1(2)

i (·|⃗λ)|λ2,S i

)
,

where γ1(2)
i is level 2’s (possibly incorrect) belief about level 1’s strategies. Like HQR,

QLK is also a special case of the Noisy Introspection model of Goeree and Holt (2004),
but limited to only two levels.

This model has four total parameters. Following Stahl and Wilson (1994), we only
allow k ∈ {1,2}. The grid used for all three lambda parameters is the same as the grid
used for λ in the models described above.

Quantal Response Equilibrium

Finally, we consider the logit quantal response equilibrium (QRE) of McKelvey and Pal-
frey (1995). In this equilibrium model all players have correct beliefs but apply logistic
response (over the entire strategy space) rather than perfect best response. Thus, it is
a fixed point of the logistic response function, rather than the best response correspon-
dence.

Formally, a (logistic) QRE in a two-player game is a mixed strategy profile such that,
for each i ∈ {1,2},

σ
QRE
i (·|λ)= LRi

(
σ

QRE
j (·|λ)|λ,S i

)
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A game can have multiple quantal response equilibria; in that case we limit attention
only to the equilibrium on the principal branch, which exists for every λ (McKelvey and
Palfrey, 1995, Theorem 3). This is found using simple homotopy methods, starting at
the centroid (λ = 0) and numerically tracing the branch to the desired value of λ (see
Turocy, 2005, e.g.).

The QRE model has only one parameter, λ. We apply the same grid as in the other
models.

III. THE MODEL SELECTION EXERCISE

We perform a simulated model-selection exercise using the seven behavioral models de-
scribed in Section II. We have no human subjects; instead, we simulate players playing
12 two-player, symmetric 3×3 games adapted from Stahl and Wilson (1995). Six games
have pure strategy Nash equilibria and the other six have totally mixed Nash equilibria.
The payoff matrices are presented in Table I.

For each model we generate a dataset of 3,000 simulated subjects who each play the
12 games according to that model. We refer to this model as the DGP for that dataset.
Each simulated subject is assigned randomly-drawn parameters for that model. Param-
eter values are independently drawn from each grid with a distribution that’s roughly
uniform. The grids are not equally spaced, however; parameter values closer to those
estimated in prior research are sampled more frequently. Each simulated subject then
plays all 12 games in accordance with the model and their randomly-drawn parameter
values. If the model prescribes a mixed strategy for a subject then the computer ran-
domly draws one pure strategy from the specified mixed strategy distribution, and this
becomes the subject’s chosen pure strategy. A dataset therefore consists of a 3,000-by-12
matrix of actions. Each model has one such dataset for which it is the DGP.

Next, for each dataset we perform a model selection exercise. This simulates a re-
searcher who observes the dataset but does not know its true DGP. We perform model
selection at the individual level on all 3,000 simulated subjects. Specifically, we estimate
different parameters for each subject individually and use the four model selection cri-
teria to select the winning model for each subject. We use the same parameter grid for
estimation as was used to draw the DGP parameters, so that the “true” parameters are
available when estimating the model. If the model selection procedure is accurate then
the DGP will be selected as the winning model in the vast majority of the 3,000 subjects.
Our primary metric for success will therefore be the fraction of simulated subjects for
whom the DGP was selected.

There are several approaches to model selection. We compare four popular methods:
Leave-One-Out Cross Validation (LOOCV), 2-Fold Cross Validation (2FCV), Bayesian
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TABLE I. Game Payoffs: Baseline Simulation

Game 1 T M B
T 25 30 100
M 40 45 65
B 31 0 40

Game 2 T M B
T 30 50 100
M 40 45 10
B 35 60 0

Game 3 T M B
T 10 100 40
M 0 70 50
B 20 50 60

Game 4 T M B
T 30 100 50
M 40 0 90
B 50 75 29

Game 5 T M B
T 30 100 22
M 35 0 45
B 51 50 20

Game 6 T M B
T 40 15 70
M 22 80 0
B 30 100 55

Game 7 T M B
T 25 30 100
M 40 0 65
B 31 45 40

Game 8 T M B
T 10 100 40
M 0 70 60
B 20 50 50

Game 9 T M B
T 39 15 70
M 40 80 0
B 30 100 55

Game 10 T M B
T 30 50 100
M 40 60 10
B 35 45 0

Game 11 T M B
T 30 100 22
M 35 0 20
B 51 50 45

Game 12 T M B
T 40 80 60
M 23 25 0
B 30 100 55

Information Criterion (BIC), and Akaike Information Criterion (AIC). Each of these
methods selects a winning model by comparing the likelihood of the subject’s actions
under each model, but with a correction to avoid overfitting. In the BIC and AIC the
likelihood values are reduced by an explicit penalty that is increasing in the number of
parameters. The cross-validation methods instead estimate each model’s parameter val-
ues using one subset of the 12 games (the training set) and then evaluate each model’s
likelihood on the complementary set of games (the testing set). These methods therefore
correct for overfitting by using out-of-sample likelihoods as the criterion.

Formally, let si = (s1
i , . . . , s12

i ) be subject i’s observed strategies in the 12 games. Sup-
pose model M has r parameters, denoted by the vector θ. Fix a set of games A ⊆G and a
simulated subject i. For any value of θ the likelihood of observing a vector of strategies
sA

i = (sg
i )g∈A under model M is given by

LM(sA
i |θ)= ∏

g∈A
σM

i (sg
i |θ).
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The MLE estimate of θ for subject i is θ̂A
i = argmaxθ LM(sA

i |θ). When all games are used
(A =G ) we drop A from the notation.

The BIC and AIC are based on MLE estimates over all games in G , with a penalty for
the number of parameters r. Formally, the BIC for subject i (with 12 observations) is
given by

BICM(si)= ln(LM(si|θ̂i))− ln12
2

r.

The AIC is
AICM(si)= ln(LM(si|θ̂i))− r.

The model with the highest BICM(si) or AICM(si) is then declared the winning model
for subject i.

The AIC provides an estimate of the expected information loss when using an incor-
rect model, as measured by the Kullback-Leibler divergence between the incorrect model
and the true model (Akaike, 1974). The BIC (Schwarz, 1978) was instead designed to
be an estimate that is proportional to a Bayesian researcher’s posterior belief about the
model being the true model, which becomes prior-independent when the sample size
grows large.9 For regression models, the probability of selecting the true model (when
it exists) goes to one for the BIC, but not for the AIC. Small-sample properties of the
AIC and BIC are known for linear models, where it is generally accepted that the AIC
over-rewards models with many parameters (Hurvich and Tsai, 1989, e.g.). Our mod-
els are neither regression models nor linear models, so it is less clear which criterion is
more desirable. Yang (2005) writes that, for finite-dimensional models, the consensus
view is that BIC is preferred over AIC for model selection. For our simulation with 12
games the BIC does provides a stronger penalty on the number of parameters, since
(ln12)/2≈ 1.242 is greater than one.

Two-Fold Cross Validation (2FCV) instead takes si = (s1
i , . . . , s12

i ) and randomly splits
it into two vectors of six observations each. Each subject’s split may be different. Denote
the split for subject i by A i and Bi, where A i∪Bi =G . Here, sA i

i is the training data and
sBi

i is the testing data. Parameters are estimated as θ̂A i
i = argmaxθ LM(sA i

i |θ) using the
training set A i, and then the log-likelihood value used for model selection is

2FCV M(si)= ln
(
LM(sBi

i |θ̂A i
i )

)
,

which uses the testing set Bi. The winning model for subject i is that with the highest
value of 2FCV M(si).

9The result for the AIC requires model errors to be Gaussian. The result for the BIC assumes the models
come from an exponential family. Neither assumption is satisfied by all of the models we test, so we cannot
interpret them as estimators. Regardless, it is common to use these criteria even when the assumptions
are violated.
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LOOCV performs 12 cross-validation estimations, one for each observation. Let ι ∈
{1, . . . ,12} index the twelve estimations. In each step the ιth game alone is used as the
testing set, so let sBι

i = (sιi). The other eleven observations form the training set sAι

i .
Estimated parameters for model M in step ι are given by θ̂

Aι

i = argmaxθ LM(sAι

i |θ), and
the likelihood value on the ιth testing set is LM(sBι

i |θ̂Aι

i ). The log-likelihood values of the
12 estimations are then averaged. The model with the highest value of

LOOCV M(si)= 1
12

12∑
ι=1

ln
(
LM(sBι

i |θ̂Aι

i )
)

is declared the winning model for subject i.
Assuming only some differentiability conditions, Stone (1977) shows that the LOOCV

criterion converges to the AIC as the sample size grows large. Shao (1997) provides a
similar asymptotic equivalence between the BIC and 2FCV, but only for linear models.10

For each model we count the number of subjects for which that model wins. In some
cases multiple models may be selected as the winner. For example, LK Double and LK
Single become identical when ϵ̂= 0; if that is the case then these two models necessarily
must give the same likelihood values. We report separately how often each model wins
uniquely and how often each model wins in a tie with other models.

When simulating the 3,000 subjects for each model we draw parameters from each
grid using a method that generates a roughly uniform distribution over the parameter
grid. Recall, however, that the grids are finer in regions where parameter values are
more plausible, meaning we oversample parameter values that are closer to those es-
timated in past work. Also, our procedure for randomly generating parameter vectors
unintentionally led to an additional oversampling of lower values of ϵ and λ on the grids,
and a significant (but small) negative correlation between λ and ϵ. This is true for all
models except QRE. In Appendix C we describe these deviations from uniformity. We
then re-run our simulation using parameters that are truly uniform on the grids and
without correlation. Qualitatively all results are the same, indicating that our results
are robust to small changes in the distributions of parameters.

We will occasionally be interested in what parameter estimates we observe for each
subject. With cross-validation the parameters are estimated using subsamples of the
data, which is not an efficient estimate. Thus, after a winning model is selected we
re-estimate its parameter values using the entire sample, giving an overall parameter
estimate of θ̂i = argmaxθ LM(si|θ).

10Specifically, asymptotic equivalence is achieved for linear models when |A i| (the size of the training set)
is n/(ln(n)−1), which is roughly eight games for n = 12. Since our focus is neither on asymptotics nor on
linear models, we only examine 2FCV with equal splits of the data since this is by far the most common
practice.
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DGP # Parameters LOOCV 2FCV BIC AIC
LK Double 3 0.83 0.83 0.7 0.93
LK Single 3 44.93 35.2 57.6 59.1
PCH Double 4 3.7 8.23 12.13 14.07
PCH Single 4 15.13 10.43 31.33 35.97
QLK 4 1.73 2.27 4.8 5.1
HQR 2 2.43 1.5 92.5 92.87
QRE 1 19.13 44.5 94.33 92.13

TABLE II. Frequency with which each data generating process wins
uniquely.

Recall that our primary metric of success for each method is how frequently that
method chooses the true DGP model as the winning model. Hurvich and Tsai (1989)
and Rao et al. (2008) use similar metrics when analyzing their simulated data.

IV. MAIN RESULTS

Table II shows for each DGP the percentage of observations in which that DGP is se-
lected as the unique winning model. Our first result is that model selection exercise
largely fails, regardless of the criterion used.11 The only cases where the DGP wins
more than 75% of the time occur when the DGP has only one or two parameters and the
AIC or BIC are used. For the cross-validation methods the average accuracy across all
models is 24.7% for LOOCV and 34.7% for 2FCV. The BIC and AIC have slightly higher
average accuracy (44.4% and 45.3%, respectively), but with much higher variance across
models.

If we view each model as a hypothesis, then the DGP is a null hypothesis being tested
against six alternative hypotheses. The typical significance threshold of 5% for hypoth-
esis tests would mean that the entries in Table II should be greater than 95%. In fact
none are, so one interpretation is that none of these model selection exercises provides
a test that has an adequate significance threshold.

Indeed, some perform very poorly. LK Double is correctly selected in less than 1%
of the subjects, while HQR and QRE (which have the fewest parameters) are correctly
selected in over 90% of subjects. It is apparent that the parameter punishments in the
AIC and BIC are excessive here, favoring only those models with the fewest parameters.

Lesson 1. No model selection criterion guarantees high accuracy across all models.

A major reason for the model selection exercise to fail is because several of the models
are similar, and in fact can become identical under certain parameter values. This leads
11On the other hand, we can reject the null of completely random model selection. Under that hypothesis
95% of the winning percentages would be in the interval [13.0%,15.5%].
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DGP # Parameters LOOCV 2FCV BIC AIC
LK Double 3 92.97 93.1 0.03 0
LK Single 3 23.13 20.33 0 0
PCH Double 4 71.23 71.07 25.77 25.77
PCH Single 4 20.7 17.5 8.47 8.47
QLK 4 84.93 63.83 0.1 0.07
HQR 2 84.93 89.6 0 0
QRE 1 0 0.07 0 0

TABLE III. Frequency with which each DGP wins in a tie with another
model.

to a high frequency of ties between models. Table III reports how frequently models
win in a tie.12 From this table we see that with cross validation ties can happen very
frequently, often for a large majority of subjects.

To illustrate how ties happen, suppose the DGP for a given subject is LK Double with
k = 2 and ϵ small. Then it is reasonably likely that this subject will play a perfect level-
2 best response (without noise) in all 12 games. In that case both LK Double and LK
Single will have parameter estimates k̂ = 2 and ϵ̂= 0, leading to 100% likelihood for both
models. PCH Double and PCH Single will also achieve 100% likelihood on this data by
having τ̂ large enough, while QLK and HQR will achieve 100% likelihood by having λ̂,
λ̂1(2), and λ̂2 all large enough. In other words, these models are not identifiable for this
subject’s data.

The BIC and AIC largely avoid these ties because the parameter penalty serves as
a tie-breaking rule when two models generate the same likelihood but have different
numbers of parameters. Whether this tie-breaking rule correctly selects the DGP de-
pends entirely on whether the DGP happens to have the fewest parameters among the
models that tie.

Table IV provides finer detail for this result, showing the winning frequency of every
model for every DGP. It separates cases where each model wins uniquely (“solo”) from
those cases where it ties either with the DGP (and possibly other models; “tie-DGP”), or
where it ties with other non-DGP models (“tie-others”). Here we focus only on LOOCV;
tables for the other methods appear in the appendix. We can see from the main diagonal
of the table that almost all of the six levels-based models win in a tie far more often than
they win solo. In fact, four of them almost never win solo. If instead we ask whether
the DGP wins more frequently than any other model (regardless of its absolute winning
frequency), then only one model—LK Single—succeeds according to this metric. The
high incidence of ties indicates that these games do not provide adequate discrimination
between these levels-based models.
12The DGP’s total win frequency is the sum of the values from Tables II and III.
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DGP win type LK Double LK Single PCH Double PCH Single QLK HQR QRE
solo 0.83 0.73 0.4 0.37 0.63 0.47 2.6

LK Double tie-DGP N/A 92.83 62.13 62.1 62.1 92.93 0.5
tie-others 92.97 0.07 0.77 0.83 0.17 0.17 0

solo 3.43 44.93 2.63 4.23 2.2 3.97 10.23
LK Single tie-DGP 21.87 N/A 16.63 17.9 16.63 21.83 1.57

tie-others 2.87 23.13 1.83 0.2 2.73 2.93 0
solo 3.1 1.57 3.7 1.7 7.4 4.47 4.6

PCH Double tie-DGP 47.07 47.03 N/A 71.13 48.13 47.1 1.33
tie-others 1.53 0.07 71.23 0.07 0.7 2.1 0

solo 5.4 19.87 4.6 15.13 6.3 8 14.17
PCH Single tie-DGP 11.93 13.17 19.47 N/A 12.53 11.93 0.6

tie-others 3.73 0.1 1.97 20.7 2.67 3.5 0
solo 1.23 2.03 0.63 0.57 1.73 1.07 6.2

QLK tie-DGP 82.6 82.47 84.03 84.03 N/A 83.23 0.4
tie-others 1.13 0.43 0.2 0.47 84.93 0.97 0

solo 1.13 0.63 0.87 0.63 1.07 2.43 5.9
HQR tie-DGP 84 83.1 54.9 54.83 55.9 N/A 0.17

tie-others 0.17 0.43 1.97 2.23 0.03 84.93 0
solo 42.53 0.9 0.53 0.67 1.6 1.73 19.13

QRE tie-DGP 0 0 0 0 0 0 N/A
tie-others 31.43 31.47 1.13 1.23 0.83 0.83 0

TABLE IV. For each DGP (row) and model (column), the percentage of
subjects for which the model wins uniquely (“solo”), wins in a tie with the
DGP (and possibly other models; “tie-DGP”), and wins in a tie with other
non-DGP models (“tie-others”).

We conclude that a researcher interested in comparing various models should be wary
of the identification problem that arises when comparing similar models. And one sim-
ple way to identify whether two models are similar is to perform a simulation exercise
similar to ours to check how frequently the models cannot be discriminated.

Lesson 2. When selecting among similar models it is important to verify how frequently
they can be discriminated.

One solution to the non-identification problem is to alter the structure of the games in
a way that increases model identification. The main difference between the levels-based
models is how noise is modeled, and games in which strategies are closer to indifferent
(according to the beliefs given by the model) should lead to more noise and therefore
greater discriminatory power. Since the level of noise depends on the size of the payoffs,
we should observe noisier play when payoffs are lower. Therefore we scale our 3×3 game
payoffs by 1/100 to increase the noise in play. Noise also enters into beliefs in the QLK,
QR, and QRE models, so a reduction in payoffs can actually change the ordinal ranking
of strategies for these models, but not for the Level-k or PCH models. For both reasons
we expect that lower payoffs will improve model identification.
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DGP win type LK Double LK Single PCH Double PCH Single QLK HQR QRE
solo 8.07 5.7 4.73 2.7 3.5 5.17 10

LK Double tie-DGP N/A 53.97 38.2 36.6 36.93 54.4 1.83
tie-others 56.3 0.83 1.23 2.03 1.8 1.8 0

solo 9.27 27.37 5.57 5.43 4.73 6.9 14.03
LK Single tie-DGP 15.47 N/A 10.97 15.93 10.97 15.47 1.43

tie-others 3.67 20.43 3.57 0.37 2.53 2.53 0
solo 7.77 4.77 4.87 5.23 5.63 6.67 14.57

PCH Double tie-DGP 27.77 25.67 N/A 45.23 25.67 25.73 1.2
tie-others 1.33 0.73 47.33 0.53 1.5 2.3 0

solo 9.3 15.27 4.83 11.9 6.63 8.47 15.47
PCH Single tie-DGP 7.77 11.97 15.53 N/A 7.77 7.77 0.8

tie-others 6.1 0.07 5.1 19.73 2.9 3.5 0
solo 8.33 7.57 3.2 5.77 5.87 14.17 17.23

QLK tie-DGP 25.57 24.93 25.2 24.93 N/A 28.1 0.33
tie-others 3.9 0.53 6.77 5.63 28.33 2.43 0

solo 7.3 7 3.43 4.5 3.7 14.93 15.17
HQR tie-DGP 38.4 36.7 24.77 24.4 27.33 N/A 0

tie-others 1.6 0.97 1.7 1.27 0.2 41.1 0
solo 24.07 6.57 4.1 6.1 6.3 11.4 25.63

QRE tie-DGP 0 0 0 0 0 0 N/A
tie-others 13.93 12.7 1.23 0.77 1.67 1.87 0

TABLE V. A replication of Table IV when game payoffs are scaled by
1/100.

Table V provides the win and tie frequencies of each DGP and each model when the
payoffs in the games are divided by 100. Although identification is somewhat improved
we still see from the main diagonal of the table that most DGPs win much more often
in ties than solo. Other patterns—such as single-counting error out-performing double-
counting error and LK Double beating QRE—remain similar to those found with the
larger payoff scale.

Overall we conclude that a structural change in the games is not enough to achieve
satisfactory identification with our set of models.

Lesson 3. Structural changes to the games may not be enough to overcome the identi-
fication problems that arise when comparing similar models.

Our second solution to the identification problem is simply to omit similar models. In
our original exercise (Table IV) we see that the six levels-based models frequently tie
with other levels-based models, but when QRE is the DGP it never ties with any other
model. Interestingly, however, it still only wins for 19.13% of subjects. The LK Double
model wins 74% of the time, with 42.5% of wins being solo and another 31.4% being ties
with LK Single. So it is not immediately clear that omitting similar models will fix the
model selection problem.
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DGP\EST LK Double LK Single PCH Double PCH Single QLK HQR QRE
LK Double 95.13 4.87
LK Single 76.35 23.65
PCH Double 77.52 22.48
PCH Single 45.73 54.27
QLK 89.27 10.73
HQR 89.68 10.32
QRE QRE wins: 24.32 48.92 96.23 96.8 96.03 93.43

other wins: 75.68 51.08 3.77 3.2 3.97 6.57

TABLE VI. LOOCV winning frequency of each model versus only QRE in
the 3 ×3 games with the original payoffs.

To test this, we perform six pairwise model-selection exercises on each levels-based
model versus QRE. Specifically, for each of the six levels-based models (LKD, LKS,
PCHD, PCHS, QLK, and HQR) we set that model as the DGP and compare it head-to-
head against QRE using LOOCV. Then we set QRE as the DGP and run it head-to-head
against each of the other six models.

The results are shown in Table VI. For the first six rows the main diagonal gives
the success rate of the DGP while the last column gives the failure rate, which is the
frequency with which QRE wins. In the bottom row QRE is the DGP. The top number
in each cell is the success rate while the bottom is the failure rate. Now we see much
stronger identification, with the DGP winning in well over 75% of instances for most
models. Though the more stringent requirement of a 95% success rate (based on a 5%
hypothesis testing significance level) is only satisfied in four of the 21 comparisons. Tests
of QRE as the DGP perform the best: it wins more than 93% of the time against all
models except the LK models.

There are, however, three anomalous cases in which the DGP does not overwhelm-
ingly win the two-horse horse race. These are italicized in Table VI and we explain each
below.

Anomaly 1: PCH Single vs. QRE

Consider the case where PCH Single is the DGP. Note that its extra parameter (τ) allows
it to have a wider variety of best response profiles, compared to the LK models. For
example, if we look at the vector of best responses across the 12 games, LK level 2 has
a unique vector of best responses, while PCH level 2 has six possible vectors that can be
best responses, depending on τ. This flexibility results in over-fitting problems that can
be quite severe. In particular, it makes it more likely that the model is estimated to be
a deterministic model (for example, with ϵ̂= 0 or λ̂=∞), which gets an infinite penalty
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DGP: LK Double LK Single PCH Double PCH Single QLK HQR
# Losses: 138 682 636 1605 316 307

% with −∞: 71.0% 91.5% 81.0% 84.5% 62.7% 52.8%

TABLE VII. Of those subjects for whom the DGP loses to QRE, the per-
centage that have (approximately) −∞ likelihood values.

if that model’s predictions turn out to be wrong in the testing data. We now detail three
scenarios that can generate this problem.

First, suppose that a subject happens to play the best response profile of some PCH
parameter combination (k,τ) for all 11 training games. In this case, ϵ̂ = 0 for both the
double and single counting models. If the subject does not play the best response in the
testing game then the log likelihood value will be −∞. If this happens even once out of
the 12 cross-validation folds then the PCH model cannot win.

Second, suppose that the subject always plays a non-best response for the 11 training
games for some (k,τ). In this case ϵ̂= 1. If the subject then chooses the best response in
the testing game then the log likelihood value will also be −∞.

Finally, suppose that a subject in the training games plays the best responses for
some (k,τ) in n1 (0≤ n1 < 11) games and the “second best” response for (k,τ) in the other
11−n1 games (meaning, the strategy with the second-highest expected payoff). In this
case, λ̂ = ∞ in the single counting model. This is because the 11− n1 plays must be
considered trembles, but the error structure precludes playing the true best response
when trembling, so an infinite λ correctly predicts that the subject will always play the
“second best” response. If the subject actually plays the “third best” response for (k,τ)
in the testing game then the PCH-Single likelihood is −∞. For the double counting
model this cannot happen; λ̂ would remain finite, preventing the model from making
deterministic predictions.

In our simulation PCH Single loses to QRE in 1,605 out of 3,000 subjects (excluding
ties). We find that 84.49% of these failures are explained by one of the above three cases.

In fact, −∞ likelihood problems are the leading cause of losses for all six levels-based
DGPs. Table VII shows that, while PCH Single losses are far more common, the fraction
of losses caused by a −∞ likelihood is high for the other models as well.

At which parameter values does this anomaly occur most frequently? Although it is
observed to some degree at every parameter vector, it is most frequent when the subject’s
true ϵ is close to one. Given the single-counting error structure, this means the subject
very often trembles away from the best response action. This makes it very likely that
ϵ̂= 1, as in the second case described above.

The second-most frequent occurrence of this anomaly is when ϵ is close to zero. Here
the estimated parameter is often ϵ̂= 0, giving rise to the first case described above. The
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third case arises roughly equally across parameter values. We don’t find that the true
values of λ, τ, or k have a significant impact on the frequency of this anomaly. See the
online appendix for details of these results.

Lesson 4. When a DGP can be estimated to be deterministic, cross validation methods
can suffer from “infinite penalty” failures.

Anomaly 2: QRE vs. Both LK Models

Consider the case where QRE is the DGP and is competing against either LK model (the
first two columns of the bottom row in Table VI). Since our baseline game payoffs are
relatively large the QRE DGP often generates strategies consistent with Nash equilib-
rium, even for modest levels of λ. In that case the LK models can exactly predict this
behavior since they include a Nash type. For example, in Game 6 if we exclude ties then
LK Double beats QRE in 87.64% of cases. Of those, the LK Double model estimates the
player to be the Nash type 94.79% of the time. And 80.11% of these are estimated to be a
“noiseless” Nash type. By this we mean either that ϵ̂= 0 so that trembles never happen
or, for the case of LK Double, λ̂ is large enough so that “trembles” become noiseless best
replies.

Now, one might expect that QRE should also be able to perfectly imitate noiseless
Nash play by having a large estimated λ̂. But recall that six of the games have a totally
mixed Nash equilibrium, and suppose the realized strategy of a subject in one game
has a relatively low (but positive) Nash equilibrium probability. In that case a lower λ̂
actually gives a higher likelihood for QRE since the realized strategy is more likely to
come from trembles than from Nash play. This is what we see: despite perfect Nash
play being very frequent in the dataset, the QRE noise parameter λ̂ is estimated to be
small (weakly less than one) for 85.8% of subjects. And this causes it to predict worse
than the LK models on the testing data, because the testing data is most likely to be a
pure-strategy or high-probability Nash equilibrium action.

Anomaly 3: QRE vs. LK Double

In addition to the previous anomaly, LK Double gains a second advantage over QRE
that is unique to its double-counting error structure.

First, we establish that in the LK Double model with a Nash type, even if all real-
ized strategies are consistent with Nash equilibrium it still might be that the estimated
weight on trembles is positive (ϵ̂ > 0). To see why, suppose games 1–11 are used as
the testing set and each of player i’s realized strategies are all in the support of the
Nash equilibrium. Let sg be the realized strategy in each game g, suppose games 1–6
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have a pure strategy Nash equilibrium, and games 7–12 have a totally mixed equilib-
rium. Then the log-likelihood for the LK Double’s Nash type in game g can be written
simply as log[(1−ϵ) ·NE(sg)+ϵLR(sg)], where NE(sg) is the Nash probability of the re-
alized strategy sg and LR(sg) is the logistic response probability assuming the opponent
plays Nash noiselessly. If game g has a pure strategy equilibrium then NE(sg) = 1 and
LR(sg) < 1, and if g has a totally mixed equilibrium then NE(sg) < 1 and LR(sg) = 1/3
because the opponent’s mixed Nash strategy makes the player indifferent between all
three strategies. Thus, the likelihood function becomes

6∑
g=1

log[(1−ϵ)+ϵLR(sg)]+
12∑

g=7
log[(1−ϵ)NE(sg)+ϵ/3].

The first sum is always decreasing in ϵ since LR(sg)< 1 for all sg. If NE(sg)> 1/3 for
all games 7 through 11 then the second sum would also be decreasing in ϵ, giving ϵ̂= 0.
But if NE(sg) < 1/3 for some games then the second sum is increasing, so an interior
solution for ϵ̂ may obtain. In the LK Single model, however, the LR and 1/3 terms are
replaced with zeros, giving ϵ̂= 0 as the only possible solution.

Now, suppose the testing game (g = 12) has a totally mixed equilibrium and NE(s12)<
1/3. For the QRE model the likelihood will be close to NE(s12), especially for larger λ̂.
But for LK Double the likelihood will be

(1−ε) NE(s12)+ε 1
3
≥ NE(s12),

with strict inequality of ε > 0. It is in these situations that LK Double gains an extra
advantage over QRE due to its double-counting error structure, and this explains why
it beats QRE even more frequently than LK Single.

How often does this happen? It requires that (1) the subject plays the pure-strategy
Nash equilibrium in the five or six games in the training set that have a pure-strategy
equilibrium, and (2) NE(sg)< 1/3. Since QRE converges quickly to Nash equilibrium in
games with a pure strategy equilibrium but not for games with mixed equilibria, we find
that both conditions are reasonably likely for moderate ranges of λ. For example, for λ=
0.56 the subject has a roughly 99% chance of playing a pure-strategy Nash equilibrium
in each game that has one, but in games with mixed-strategy equilibria they can play a
strategy such that NE(sg)< 1/3 with as much as 50% probability.13

In our simulation 74% of our subjects satisfy these two conditions in at least one of
the twelve iterations of the LOOCV procedure. And in the other 11 iterations the two
models either tie or else LK Double wins for the reason described in Anomaly 2. Thus,

13For example, in game g = 4 we have NE = (0.53,0.17,0.30), so two strategies have NE(sg) < 1/3. But
the QRE probabilities when λ= 0.56 are (0.51,0.19,0.30), which gives a 49% chance of playing an sg with
NE(sg)< 1/3.
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DGP\EST LK Double LK Single PCH Double PCH Single QLK HQR QRE
LK Double 97.53 2.47
LK Single 93.07 6.93
PCH Double 92.17 7.83
PCH Single 76.7 23.3
QLK 93.5 6.5
HQR 93.97 6.03
QRE QRE wins: 98.57 97.7 98.37 97.6 98.87 97.1

Model wins: 1.43 2.3 1.63 2.4 1.13 2.9

TABLE VIII. BIC winning frequency of each model versus only QRE in
the 3 ×3 games with the original payoffs

LK Double ultimately wins over QRE in these cases. In the online appendix we show
that this is true across almost all values of λ except the smallest, which is exactly where
Nash play becomes infrequent.

Lesson 5. When a model (such as Nash) generates a low-probability action, many mod-
els will estimate higher levels of noise, thus reducing fit on the higher-probability ac-
tions.

BIC vs. LOOCV

While cross-validation is often seen as the gold standard for model selection, we’ve seen
that there can be cases where it fails. In particular, if a very flexible model’s parameters
are estimated such that its predictions become deterministic, and if those determinis-
tic predictions prove to be wrong, then the model is infinitely penalized. This infinite
penalty is impossible under the BIC and AIC since the models are never asked to make
out-of-sample predictions. Here we show that this in fact makes the BIC superior to
LOOCV in our domain.

Table VIII shows the result of the binary model selection exercise using BIC instead
of LOOCV.14 Indeed, it performs better in every case, compared to LOOCV (Table VI).
All winning frequencies are now above 75%, and seven of the 12 are above 95%. Simply
put, the BIC provides fewer false negatives because its overfitting penalty is generally
less extreme.

For example, if QRE is the DGP and we simply compare unadjusted likelihood values
then LK Double beats QRE for 60.1% of subjects. This reflects the LK Double model
overfitting the data. After the BIC adjustment, however, LK Double wins in less than 2%
of cases. Similarly, LK Single beats QRE in 48.1% of cases using unadjusted likelihoods,
but in only 2.3% of cases after the BIC adjustment.

14Due to numerical limitations we regard log-likelihood values less than -7 (averaged across all 12 cross-
validation folds) as being −∞.
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In Section V, however, we will show that the BIC penalty may be less optimal as we
move to different types of games or different numbers of games. So although the BIC
outperforms LOOCV for our base games, it should still be used with caution because its
penalty only depends on the number of parameters and not on other factors that might
also affect the degree of overfitting.

V. ROBUSTNESS AND SENSITIVITY

In this section we explore whether the failures of LOOCV that we have identified will
persist as the number of games changes, when the size of the strategy space changes,
and when the games’ payoffs are chosen to maximize the distance between the various
models’ predictions.

Choosing Payoffs to Maximize Model Differentiation

The 12 games we chose were adapted from Stahl and Wilson (1995). Some games are
taken directly from the original paper, while others are modified to be as “close” to the
original games as possible while ensuring six have a unique pure strategy equilibrium
and six have a unique mixed strategy equilibrium. But these twelve games were not
specifically designed to maximize the discrimination between the seven models we con-
sider.15 Here we ask whether model selection performance would improve if the games’
payoffs were chosen to separate maximally the various models’ predictions. Doing so
should reduce the number of ties between models. But what’s less clear is whether the
anomalies we identify with LOOCV would be mitigated with these optimized games.

To that end, we first need a metric of how well a given game separates two models.
Specifically, if model Ma generates a predicted mixed strategy distribution σ

Ma
i (·|θa) for

game g at parameter vector θa and model Mb generates σMb
i (·|θb) for game g at param-

eter vector θb, then we need a measure of distance between σ
Ma
i (·|θa) and σMb

i (·|θb). And
we need to account for the fact that this distance will depend on which parameter values
are used.

For our distance metric we opt for the simple Euclidean (or, L2) distance given by

D2
g(Ma, Mb;θa,θb)= 1p

2

√ ∑
si∈Si

(
σ

Ma
i (si|θa)−σMb

i (si|θb)
)2

,

which ranges from zero to one. Then, to average this measure across possible pa-
rameter values, we generate 1,000 randomly-drawn parameter vectors of the form θ =

15Indeed, most of these models didn’t exist in 1995 when the original experiment was run.
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(θLKd, . . . ,θQRE) and calculate the average value of D2
g(Ma, Mb;θa,θb) over these 1,000 θ

values.16 We denote this “expected discrimination” for game g by EθD2
g(Ma, Mb).

Many papers use the Kullback-Leibler (KL) divergence to measure the distance be-
tween two models’ predictions; see for example El-Gamal and Palfrey (1996) or Balietti
et al. (2021).17 One difficulty, however, is that if one of the models puts zero (or very low)
probability on a certain action while the other does not then the KL divergence becomes
infinite. If this happens for even one parameter vector then the expected discrimination
cannot be calculated.18 We opted for the simpler L2 distance to avoid this complication.

Next we need to assess whether EθD2
g(Ma, Mb) is relatively large or small. To do that,

we generate 1,000 random 3×3 games, calculate the expected discrimination for each,
and see how the expected discrimination for our 12 games compare to the distribution
of 1,000 random games. If our games are near the top of this distribution then arguably
they are nearly optimal for discriminating between these models.

But we need to make sure the randomly-drawn games are roughly comparable to the
original 12 in terms of the magnitude of payoffs. We therefore draw the payoffs for the
1,000 random games with replacement from the set of payoffs used in the original twelve
games.19 The rationale for this is that the average payoffs in the random games should
be, on average, the same as the original 12 games. This mimics a researcher with a fixed
budget and a uniform prior about the play of subjects. And it also makes sure that the
random games don’t perform better or worse than the original games simply because of
differences in payoff magnitudes.

Fix two models Ma and Mb. To compare the expected discrimination of our original
12 games to that of the 1,000 randomly generated games, we calculate for each original
game g ∈ {1, . . . ,12} the percentage of randomly-drawn games that have a weakly lower
expected discrimination than game g. Formally, if Fab(·) is the empirical cdf of expected
discrimination for the 1,000 random games, we calculate Fab(EθD2

g(Ma, Mb)). If game g
is unusually good at differentiating Ma and Mb then this value will be close to one.

16The 1,000 parameter vectors are drawn (with replacement) from the same support as in the main
simulation process and with the same distribution.
17Balietti et al. (2021) actually measure the distance between multiple models simultaneously across
multiple games. We focus here on discriminating only pairs of models, given our conclusions above, and
do so for each game separately.
18Taking the median KL distance among the 1,000 parameter vectors, rather than the mean, doesn’t en-
tirely solve the problem since infinite distances are quite common and can affect the median. Conclusions
then become very sensitive to how often these infinite distances occur.
19Specifically, for every payoff entry in a random game, we randomly and uniformly select one cell from
one of the original 12 games and use that payoff entry. This process is done with replacement, and the
payoff entries in the random game need not all come from the same original game. Recall that the games
are symmetric, so each cell has only one payoff entry.
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Model 1\Model 2 LK Single PCH Double PCH Single QLK HQR QRE
LK Double 0.985 0.996 0.992 0.997 0.998 0.915
LK Single 0.994 0.988 0.995 0.97 0.92
PCH Double 0.998 0.98 0.975 0.94
PCH Single 0.991 0.973 0.929
QLK 0.975 0.924
HQR 0.914

TABLE IX. maxg∈{1,...,12} Fab(EθD2
g(Ma, Mb)) for each pair of models Ma

and Mb.

DGP\EST LK Double LK Single PCH Double PCH Single QLK HQR QRE
PCH Single 74.55 25.45
QRE QRE wins: 51.83 52.37

Model wins: 48.17 47.63

TABLE X. LOOCV winning frequency of the DGP for 12 games with the
highest D2(m1,m2;θ1,θ2). Only models with anomalies are shown.

Figures III and IV in Appendix B show the entire distribution Fab and the values of
Fab(EθD2

g(Ma, Mb)) for each of our 12 original games. For the 12-game experiment to be
successful at discriminating Ma from Mb we may not need all 12 games to score highly.
Even if only one or two games are successful at discriminating then the model selection
exercise can still succeed. Thus, in Table IX we report the maximum of these 12 values
for each pair of models. If the games we chose were randomly selected then we would
expect this maximum to be 12/13≈ 0.923. For most pairs of models our best game ranks
far higher than this, though for the comparisons against QRE our best game appears no
better on average than the best of any random 12 games.20 In other words, our games
achieve unusually high discrimination among the levels-based models, but have only
average discrimination when comparing those models to QRE.21

Again, achieving good theoretical separation between models doesn’t necessarily mean
that the anomalies we identified with LOOCV will disappear. To test that, we re-run our
simulation, replacing our original 12 games with the 12 random games that achieved
the best discrimination between a given pair of models. Table X shows that the winning
frequency of the DGP does improve, but the anomalies do not disappear. For the PCH
Single anomaly the winning frequency increases from 44.07% to 74.55%, while for the

20Figures III and IV reveal that our games are clearly different from a random set of 12 games—for
example the minimum is almost never as low as 1/13 ≈ 0.077—, so this result is only a statement about
the best game, not all 12 games.
21Figures III and IV also show that which game is best varies from one pair of models to the next. And
that for each of our games there is at least one pair of models where that game is important in achieving
separation. Thus, each game plays a role in achieving discrimination between the seven models.
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DGP\EST LK Double LK Single PCH Double PCH Single QLK HQR QRE
PCH Single 77.5 22.5
QRE QRE wins: 51.23 51.18

Model wins: 48.77 48.82

TABLE XI. LOOCV winning frequency of the DGP for 12 repetitions of
the one game with the highest D2(m1,m2;θ1,θ2). Only models with anom-
alies are shown.

two QRE anomalies it increases from 24.32% to 51.83% and from 48.92% to 52.37%, re-
spectively. Thus, optimizing the games based on model discrimination appears to help,
but does not completely eliminate the problems associated with LOOCV.

Finally, we ask whether model selection would be improved and anomalies reduced
if subjects played the same game 12 times, rather than playing 12 different games. To
answer this, we re-run our simulation, this time replacing our original 12 games with
12 copies of the one random game that achieved the best separation. We did this for
each pair of models. The results appear in Table XI. The winning frequencies are very
similar to those in Table X, suggesting that very little is gained by having subjects play
the same game repeatedly.

Number of Games

In the limit, model selection should become more accurate as the number of games is
increased. For a researcher facing time and budget constraints, a natural question is
how much improvement is achieved by adding an additional game. To address this, we
re-run our simulation on subsets of the original 12 games. Specifically, for each DGP we
have all 3,000 subjects play a random subset of four games, compare that DGP against
QRE (or QRE against each of the other models), and look at the fraction for whom the
DGP is correctly identified. We then repeat this exercise for random subsets of six, eight,
and ten games.

The results for LOOCV are shown in Figure I. The graphs show that the success rates
of the models (panel a) are surprisingly insensitive to the number of games. There are
two interesting phenomena to notice here: First, the winning frequency of PCH Double
actually decreases in the number of games. Second, when the DGP is QRE (panel b) its
winning frequencies against LK Double and LK Single both decrease in the number of
games.

For the first case of PCH Double, there are two major forces. The first comes from
deviations from the best response strategy of a given level. When the number of games
is small it is reasonably likely that a PCH Double player will perfectly best respond in
every game. This is particularly likely with the double-counting error structure, since



MODEL SELECTION IN BEHAVIORAL GAME THEORY 29

(a) (b)

FIGURE I. Winning frequencies when using LOOCV. Panel (a): Winning
frequencies of each model as the DGP. Panel (b): Winning frequency of
QRE as the DGP against each model.

even when a player trembles they may still play the best response strategy. When all
realized strategies are consistent with the best responses then the PCH Double model
gets a likelihood value of one (with ϵ̂ = 0) and so it beats QRE. But as the number of
games grows this becomes less likely and PCH Double loses this advantage. Indeed, the
fraction of subjects that best respond in all games drops by 25% as we move from four
games to twelve.

For PCH Single more games proves helpful. This is because the probability of per-
fectly best responding to all game is still decreasing, but now the probability is (1− ϵ)g.
Thus, the probability decreases more slowly compared to the first case, so the effect is
smaller. Also the over-fitting problem is less likely to happen. First, this can be due to a
higher probability of deviations and second, due to the absence of τ, which allows PCH
to have more diverse prediction. Thus, the over-fitting effect dominates the perfectly
best response effect, which results in the opposite comparative static, compared to PCH
Double.

For the second case (panel b), consider QRE versus LK Double when there are only
four games. Of the subjects for whom QRE performs better, 73% have a −∞ likelihood
value for LK Double. This happens because the QRE DGP often plays Nash equilibrium
in three of the four games, in which case LK Double is estimated to be a deterministic
model (ϵ̂ = 0). As the number of games grows, however, it becomes less likely that LK
Double is so severely penalized, causing it to win (and QRE to lose) more frequently.

Figure II shows the same graphs when we apply BIC. Here a larger number of games
is always helpful. This again is due to severeness of punishment for LOOCV. For BIC,
as we increase the number of games, each model and QRE become more distinctive
from each other, leading to improvements in model selection without being tainted by
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(a) (b)

FIGURE II. Winning frequencies when using BIC. Panel (a): Winning fre-
quencies of each model as the DGP. Panel (b): Winning frequency of QRE
as the DGP against each model.

severe penalties. One thing to notice is that for any number of games, the performance
is better when the DGP is QRE. This is because the BIC punishes based on the number
of parameters and QRE has uniquely the smallest number of parameters.

Number of Strategies

Intuitively, games with a larger strategy space should allow for better model distinction.
To test this, we switch from 3×3 games to two-person guessing games (Costa-Gomes and
Crawford, 2006) that have an interval strategy space. We can then study the effect of
the strategy space by placing a grid on the interval and varying only the coarseness of
that grid.

Briefly, in a two-person guessing game each player i is given the interval [ai,bi] and
target pi. They select a guess si ∈ [ai,bi] and are paid based on how far their guess is
from pis j, which is their target times the other’s guess. Closer guesses receive higher
payments. Iterative logic is natural here, so levels-based models typically perform well
(Costa-Gomes and Crawford, 2006), though there is evidence that parameters are not
stable across games (Georganas et al., 2015). Further details about these games appear
in the appendix.

We first repeat our simulation exercise on guessing games with a fine strategy space,
meaning subjects can pick any integer in [ai,bi]. Simulated subjects play 12 such games
that vary in their intervals and targets. The intervals vary in width from 200 to 800.
Then we repeat the exercise with a coarse strategy space in which subjects must pick
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DGP\EST LK double LK single PCH double PCH single QLK HQR
LK double 86.7

83.4
LK single 89.2

84.0
PCH double 82.1

82.2
PCH single 81.8

77.1
QLK 76.0

75.8
HQR 72.5

71.9
QRE 77.6 85.0 94.3 94.4 94.7 93.6

71.0 77.2 95.2 94.3 94.9 94.3

TABLE XII. LOOCV winning frequency of each model versus QRE in
the guessing games. Top number: Fine strategy space. Bottom number:
coarse strategy space. Bottom row: QRE as the DGP versus each model.
Bold: Significant difference with p < 0.01. Italics: Significant with p ∈
[0.01,0.05).

numbers that are multiples of ten. Thus, the coarse strategy spaces have between 21
and 81 strategies.

The winning frequencies of each model as the DGP versus QRE are shown in Table
XVI, with QRE as the DGP in the bottom row. The top number in each cell represents
the result with the fine strategy sets and the bottom number shows the results for coarse
strategy sets. The bold numbers indicate that the difference between fine strategy sets
and coarse strategy sets is significant at the 1% level according to a Fisher’s exact test.22

One might guess that the games with fine strategy sets would provide significantly
better model identification. While this is generally true, more than half of the differences
(7 out of 12) are not significant. Thus, increasing the number of strategies often did not
substantially improve model selection performance in our simulations.

Table XIII shows the results when we compare with BIC. Bold entries are significantly
different at the 1% level and italicized entries are significant at the 5% level. Like
with LOOCV, the fine strategy space significantly improves performance in 5 of the 12
comparisons. Unlike LOOCV, there are actually two cases where the fine strategy space
performs significantly worse under BIC. Comparing across methods, however, the BIC
does perform better than LOOCV for all models except QLK and HQR. This echos our
finding that BIC generally performs better than LOOCV, but seems to benefit less from
having a larger strategy space.

22All other results are not significant, even at the 10% level.
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DGP\EST LK double LK single PCH double PCH single QLK HQR
LK double 98.3

96.9
LK single 98.2

96.4
PCH double 87.4

92.5
PCH single 87.1

91.7
QLK 65.8

65.8
HQR 69.3

69.4
QRE 98.0 96.4 99.7 99.7 99.6 98.7

97.0 95.7 99.1 99.0 99.5 98.1

TABLE XIII. A replication of Table XVI with the BIC instead of LOOCV.

The fact that the BIC does not always perform better on larger strategy spaces may
reflect the fact that the overfitting penalty ideally should adjust as the strategy space
changes, but the BIC penalty does not. Results for the AIC appear in the appendix and
are very similar to the BIC.

Lesson 6. The ability of models to overfit data can depend on the size of the strategy
space, but the BIC and AIC overfitting penalties do not account for this.

VI. DISCUSSION

In this paper, we investigate whether model selection can correctly identify the behav-
ioral game theory model that generated a given dataset. We find that ties between
models can generate significant identification problems, leading to failures in model se-
lection. In our case, simply rescaling the payoffs was not sufficient to avoid the problem.
Instead, restricting the model selection exercise to only two competing models proved
largely successful. There were, however, a handful of noticeable failures when using
cross validation, even in the absence of ties. These failures were specific to the cross val-
idation methods used and the models under consideration. Most often failures occurred
when one model was infinitely penalized because it was estimated to be a deterministic
model whose out-of-sample (pure strategy) prediction then proved wrong.

The infinite-penalty problem can be avoided mechanically by restricting the parame-
ter grids when estimating the models. For example, requiring ϵ≥ 0.1 and λ≤ 10 prevents
the models from making deterministic out-of-sample predictions. We find this solution
undesirable, however, because the parameter bounds would be ad hoc and may artifi-
cially penalize one model over another. In addition, many researchers are particularly
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interested in those subjects whose play perfectly fits a deterministic model. Much of
the analysis of Costa-Gomes and Crawford (2006), for example, is focused on those play-
ers that always play according to a given level. Ruling out extreme parameters would
misidentify these subjects. Finally, such parameter grid restrictions would only address
the first anomaly, but not the second or third.

Another possible solution would be to incorporate regularization, in which model pa-
rameters are penalized for fitting “extreme observations.” For example, a model’s param-
eters could be penalized when the resulting model generates deterministic (or, nearly
deterministic) predictions. Of course, which regularization penalty is added will depend
on which anomalies one seeks to avoid in their model selection exercise; a necessary first
step is therefore to identify the problematic anomalies that need to be avoided.

Given that the BIC and AIC outperform LOOCV in our simulations, perhaps one
should eschew cross-validation methods in favor of the BIC or AIC. Although these do
perform better in our 3×3 games when comparing only two models, they do not perform
predictably as the size of the strategy space changes in guessing games. This suggests
that the overfitting penalty ideally should adjust as the strategy space changes, but the
BIC and AIC are inflexible and thus their performance can vary noticeably. A benefit
of cross validation is that its overfitting “penalty” is endogenous: models are implicitly
penalized for failing to predict ouf-of-sample, and this penalty naturally varies as the
strategy space (and thus, the degree of overfitting) changes.

Given that cross validation and BIC/AIC methods both suffer weaknesses, our best
recommendation is that researchers simulate the model selection exercise in their own
setting to see which issues are potentially problematic. Only then can they know if
their models face serious identification challenges, if cross validation suffers by exces-
sively penalizing some models, and if the BIC and AIC perform appropriately for their
environment.
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APPENDIX A. GUESSING GAME STRUCTURES

Here we describe the two-person guessing games from Georganas et al. (2015) and
Costa-Gomes and Crawford (2006). Two-person guessing games are described as fol-
lows. Each player i is given the interval [ai,bi] and target pi. si ∈ [ai,bi] denotes a
strategy or a guess and payment is determined by how far i’s guess from i’s target times
j’s guess. Specifically, let e i = |si − pis j|. Then the payoff function is,

ui(e i)=


15− 11

200 e i if e i ≤ 200

5− 1
200 e i if e i ∈ [200,1000)

0 otherwise

We use the following intervals and targets for each game.

TABLE XIV. Two-Person Guessing Games

Player’s Limits & Targets Opponent’s Limits & Targets
Game 1 ([100,500], 0.7) ([100,900], 1.3)
Game 2 ([100,500], 0.5) ([300,900], 1.3)
Game 3 ([300,500], 1.5) ([100,500], 1.5)
Game 4 ([100,500], 0.7) ([100,500], 1.5)
Game 5 ([300,500], 0.7) ([100,900], 1.3)
Game 6 ([300,900],1.3) ([100,900], 1.5)
Game 7 ([100,900],1.3) ([100,500], 0.7)
Game 8 ([300,900], 1.3) ([100,500], 0.5)
Game 9 ([100,500], 1.5) ([300,500], 1.5)

Game 10 ([100,500], 1.5) ([100,500], 0.7)
Game 11 ([100,900], 1.3) ([300,500], 0.7)
Game 12 ([100,900], 1.5) ([100,900], 1.3)

APPENDIX B. ADDITIONAL RESULTS

Expected Discrimination of Games

Figures III and IV show the distributions of the expected discrimination for each pair
of models across the randomly-chosen games. The vertical green line shows the 90th
percentile of each distribution. Stars indicate the expected discrimination of our orig-
inal 12 games; game numbers appear above each star. For each pair of models there
are multiple stars above the green dashed line, indicating that the original 12 games
provided reasonable expected discrimination.
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FIGURE III. Distributions of Eθ[D g̃
2 (Mk, Ml ;θk,θl)]for each pair of models

(Mk, Ml).

Number of Games

For both LOOCV and BIC comparisons, trends are quite similar to original payoffs but
the absolute values for each winning probabilities are much smaller.
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(a) (b)

FIGURE V. Winning frequencies of each of the levels-based models vs.
QRE as the number of games varies when we scale the payoff by 1/00.
Panel (a): LOOCV. Panel (b): BIC.

This is related to how logistic errors/responses work. For the models with deter-
ministic responses, it is more likely to deviate for double counting models and even
deviate more to the worst strategies for single counting models. For the models with
non-deterministic responses also show more “random" movements including QRE itself.
(Especially recall that HQR and QLK can behave like LK models without errors even for
moderate λ) Thus, QRE and other models now behave more similarly which increases
the probability of wrong model wins.
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(a) (b)

FIGURE VI. Winning frequencies of QRE vs. each of the levels-based
models as the number of games varies when we scale the payoff by 1/00.
Panel (a): LOOCV. Panel (b): BIC.
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AIC Results

AIC shows quite similar results with BIC. Increasing number of games can be helpful,
and scaling the payoff by 1/100 can make the results worse.

(a) (b)

FIGURE VII. Winning frequencies of each of the levels-based models vs.
QRE as the number of games varies when we use AIC Panel (a): Original
payoff. Panel (b): payoffs are scaled by 1/100.

(a) (b)

FIGURE VIII. Winning frequencies of QRE vs. each of the levels-based
models as the number of games varies when we use AIC Panel (a): Origi-
nal payoff. Panel (b): payoffs are scaled by 1/100.
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2FCV Results

For two-fold cross validation, the benefits of both increasing number of games and mak-
ing payoff smaller are not very clear. Two-fold cross validations have similar structure
with LOOCV, but less severe punishment compare to LOOCV.

(a) (b)

FIGURE IX. Winning frequencies of each of the levels-based models vs.
QRE as the number of games varies when we use 2FCV Panel (a): Original
payoff. Panel (b): payoffs are scaled by 1/100.

(a) (b)

FIGURE X. Winning frequencies of QRE vs. each of the levels-based mod-
els as the number of games varies when we use 2FCV Panel (a): Original
payoff. Panel (b): payoffs are scaled by 1/100.
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DGP\EST LK double LK single PCH double PCH single QLK HQR
LK double 78.63

76.43
LK single 46.87

79.93
PCH double 50.1

54.23
PCH single 71.87

78.93
QLK 66.6

66.16
HQR 67.5

66.53
QRE 76.67 98.9 96 93.93 93 93.43

69.7 60.73 95.37 95.33 92.77 92.5

TABLE XV. 2FCV winning frequency of each model versus QRE in
the guessing games. Top number: Fine strategy space. Bottom num-
ber: coarse strategy space. Bottom row: QRE as the DGP versus each
model. Bold: Significant difference with p < 0.01. Italics: Significant with
p ∈ [0.01,0.05).

DGP\EST LK double LK single PCH double PCH single QLK HQR
LK double 98.67

97.5
LK single 98.57

97.07
PCH double 88.1

93.73
PCH single 87.9

93.57
QLK 68.67

68.73
HQR 72.17

72.1
QRE 96.57 94.5 99.17 99.07 99.27 98

97.13 95.37 98.93 98.83 99.2 98.27

TABLE XVI. AIC winning frequency of each model versus QRE in the
guessing games. Top number: Fine strategy space. Bottom number:
coarse strategy space. Bottom row: QRE as the DGP versus each model.
Bold: Significant difference with p < 0.01. Italics: Significant with
p ∈ [0.01,0.05).
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FIGURE XI. Frequency of true parameter values in PCH Single

APPENDIX C. NON-UNIFORM AND UNIFORM PARAMETER DISTRIBUTIONS

For the levels-based models our parameter distributions were not quite uniform over
the parameter grids. This is because we drew parameters for simulated subjects using
a three step procedure. First, we generated 2,000 level-1 subjects using truly uniform
and independent draws over the other parameter grids. Then we copied those drawn
parameter values for level 2 and level 3 (if applicable). This led to 6,000 total subjects
and guaranteed that the distribution of λ values was exactly the same for level 1, level
2, and level 3. Finally, we randomly drew 3,000 subjects out of this pool of 6,000 for
our final sample. This process can deviate from a true uniform distribution, however,
because sampling error in the initial draw of 2,000 subjects gets amplified by using three
copies of that sample. In our case, lower values of ϵ and λ happened to be drawn more
frequently. Similarly, any slight correlation between parameters due to sampling error
also gets amplified in the final sample. The marginal distributions of the parameters for
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k ϵ λ τ

LK Double 0.7225 0.1018 0.7545
LK Single 0.4912 0.5618 0.0545

PCH Double 0.3779 0.8031 0.1794 0.4101
PCH Single 0.6845 0.3618 0.5735 0.3798

0.9115 (λ1)
QLK 0.1251 0.4687(λ2)

0.1788(λ1(2))
HQR 0.2483 0.3684
QRE 0.6219

TABLE XVII. p-values for chi-squared goodness of fit tests that each pa-
rameter distribution is drawn uniformly.

PCH Single (for example) are shown in Figure XI. The correlation between λ and ϵ is
0.0567, which is significant with a p-value of 0.0019.

We can use this fact to explore the sensitivity of our main results to changes in the
distribution. To that end, we re-run the main part of our exercise using 3,000 new
simulated subjects for each model, where the parameters are now drawn from truly
uniform and independent distributions. In this case the level 2 subjects’ parameters are
drawn independently of the level 1 subjects’ parameters. To ensure our process is truly
uniform we verify in Table XVII that the new distributions are not significantly different
from uniform using χ2 goodness-of-fit tests.

Now we ask whether our main results change with truly uniform distributions. Table
XVIII replicates Table IV. Still we see a large problem with similar models becoming
indistinguishable. And Table XIX verifies that switching to small payoffs does not solve
the problem.

Table XX shows that, when comparing only two models, the same anomalies occur.
With uniformly-drawn parameters PCH Single now wins just over 50% when compared
to QRE, but we still consider it an anomaly since its success rate is no different from a
coin flip.

Finally, the BIC success rates are shown in Table XXI. Again, this method avoids
the anomalies caused by cross validation. Thus, our main conclusions appear not to be
overly sensitive to the distribution of simulated subjects’ parameters.
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DGP win type LK Double LK Single PCH Double PCH Single QLK HQR QRE
solo 0.7 0.63 0.5 0.27 0.37 0.47 2.47

LK Double tie-DGP N/A 92.87 62.17 62.13 62.17 93.23 0.2
tie-others 93.3 0.13 0.9 1 0.3 0.3 0

solo 4.27 42.93 3.67 3.97 3.27 5.6 8.03
LK Single tie-DGP 17.6 N/A 11.87 18.17 11.87 17.57 1.57

tie-others 1.93 23.9 1.73 0.37 2.5 2.37 0
solo 2.23 1.3 1 1.2 7.3 2.23 4.43

PCH Double tie-DGP 46.03 45.77 N/A 78.73 46.4 45.77 1.1
tie-others 0.83 0 79 0 0.47 1.3 0

solo 8.47 19.2 2.4 16.87 5.53 8.07 10.5
PCH Single tie-DGP 7.73 14.8 17.07 N/A 8.23 7.73 0.67

tie-others 2.73 0.1 1.63 24.13 2.6 2.83 0
solo 0.87 1.9 0.37 0.67 1.63 1.27 4.57

QLK tie-DGP 86.03 85.93 87.23 87.17 N/A 86.33 0.4
tie-others 1 0.07 0.27 0.13 87.6 0.8 0

solo 1.17 0.7 0.6 0.67 0.5 2.4 3.13
HQR tie-DGP 88.3 87.77 58.77 58.63 59.27 N/A 0.03

tie-others 0.13 0.1 1.93 1.9 0 88.8 0
solo 42.4 0.83 0.33 0.67 1.03 2.1 21.93

QRE tie-DGP 0 0 0 0 0 0 N/A
tie-others 29.7 29.73 0.9 1.03 0.7 0.7 0

TABLE XVIII. For each DGP (row) and model (column), the percentage
of subjects for which the model wins uniquely (“solo”), wins in a tie with
the DGP (and possibly other models; “tie-DGP”), and wins in a tie with
other non-DGP models (“tie-others”). Parameters are drawn from a true
uniform distribution.
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DGP win type LK Double LK Single PCH Double PCH Single QLK HQR QRE
solo 7.73 6.6 4.33 2.37 3.13 4.83 10.9

LK Double tie-DGP N/A 54.6 38.13 36.9 37.23 55.13 1.83
tie-others 56.6 0.57 1.5 2.03 1.43 1.47 0

solo 8.3 28.87 6.2 5.03 4.13 8.2 12.4
LK Single tie-DGP 17.6 N/A 11.9 16 11.9 17.6 1.57

tie-others 2.9 21.7 2.97 0.33 2.27 2.27 0
solo 8.87 5.7 3.4 4.4 5.67 6.97 13.4

PCH Double tie-DGP 27.63 25.77 N/A 46.97 25.87 25.87 1.2
tie-others 0.8 0.93 48.87 0.8 1.23 1.87 0

solo 10.1 14.37 4.77 11.83 6.43 9.3 15.17
PCH Single tie-DGP 7.67 12.27 16.9 N/A 7.67 7.67 0.6

tie-others 4.1 0.2 3.2 21.5 2.93 3.2 0
solo 8.2 7.17 3.2 4.73 6.03 14.47 17

QLK tie-DGP 26.07 25.47 25.7 25.47 N/A 29.03 0.27
tie-others 4.33 0.8 6.17 5.63 29.23 3.07 0

solo 8.07 6.13 3.13 4.83 4.77 14.47 16.03
HQR tie-DGP 37.1 35.53 23.93 23.73 26.43 N/A 0.07

tie-others 2 0.53 2.33 1.1 0.23 39.47 0
solo 27.03 6.33 4.17 5 5 10.83 25.23

QRE tie-DGP 0.03 0.03 0.03 0.03 0.03 0.03 N/A
tie-others 13.83 12.4 1.57 0.83 2.37 2.5 0.03

TABLE XIX. A replication of Table IV when game payoffs are scaled by
1/100.

DGP\EST LK Double LK Single PCH Double PCH Single QLK HQR QRE
LK Double 95.25 4.75
LK Single 75.63 24.37
PCH Double 82.18 17.82
PCH Single 50.7 49.3
QLK 91.55 8.45
HQR 92.38 7.62
QRE QRE wins: 26.27 50.37 97.03 96.98 96.13 94.53

other wins: 73.73 49.63 2.97 3.02 3.87 5.47

TABLE XX. LOOCV winning frequency of each model versus only QRE
in the 3 ×3 games with the original payoffs.

DGP\EST LK Double LK Single PCH Double PCH Single QLK HQR QRE
LK Double 98 2.47
LK Single 91.77 8.23
PCH Double 94.4 5.6
PCH Single 73.03 26.97
QLK 94.7 5.3
HQR 95 5
QRE QRE wins: 97.87 96.33 98.3 97.73 98.6 97

Model wins: 2.13 3.67 1.7 2.27 1.4 3

TABLE XXI. BIC winning frequency of each model versus only QRE in
the 3 ×3 games with the original payoffs



FIGURE XII. For each true parameter value in PCH Single, the fraction
of subjects at that parameter value who exhibit Anomaly #1.

Online Appendix

APPENDIX D. PARAMETER VALUES THAT GENERATE ANOMALIES

Figure XII shows how frequently a PCH Single subject exhibits Anomaly #1 (infinite
likelihood penalties), broken down by the subject’s true parameter values.

Anomalies 2 and 3 are harder to measure directly since they impact single folds of
the cross-validation procedure, and it’s hard to quantify the impact of any single fold
on the overall result. For simplicity, we present instead the frequency with which the
wrong model wins for each true λ with the QRE DGP. This is shown in Figure XIII.
The left panel shows how frequently LK Single beats QRE when QRE is the DGP. The
vast majority of these observations are due to Anomaly 2, and Anomaly 3 is excluded
since it only applies to LK Double. The right panel considers QRE versus LK Double
and therefore includes both Anomaly 2 and Anomaly 3. In both figures the frequency

1



QRE vs. LK Single QRE vs. LK Double

FIGURE XIII. For each true λ in QRE, the fraction of subjects for which
the wrong model wins.

is fairly constant in λ, except for the lowest values at which equilibrium play becomes
quite rare.

APPENDIX E. EXTRA RESULTS AND TABLES

Table XXII, Table XXIII, Table XXIV report the winning frequency of each model when
we control for ties, and when we use 2FCV, BIC, or AIC.

The winning frequency of each DGP model without ties is quite low in almost all cases.
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DGP win type LK Double LK Single PCH Double PCH Single QLK QR QRE
solo 0.83 0.47 0.37 0.23 0.47 0.57 2.73

LK Double tie-DGP N/A 92.7 62.2 50.6 45.57 92.9 0.43
tie-others 93.1 0.07 1.1 1 0.23 0.07 0

solo 4.63 35.2 4.73 2.87 5.87 5.3 17.67
LK Single tie-DGP 16.2 N/A 11.67 14.47 9.47 16.17 2.13

tie-others 1.97 20.33 2.17 0.5 1.5 1.43 0
solo 2.33 1 8.23 0.6 7.17 1.9 6.9

PCH Double tie-DGP 46.6 46.43 N/A 65.27 39.47 46.43 1.3
tie-others 0.47 0.13 71.07 0.13 0.2 0.67 0

solo 7.87 14.83 6.33 10.43 9.37 7 21.43
PCH Single tie-DGP 8.1 11.2 14.4 N/A 7.7 8.1 1.6

tie-others 3 0.53 2.53 17.5 2.73 2.93 0
solo 1.27 0.67 0.6 0.37 2.27 1.27 5.27

QLK tie-DGP 62.7 62.63 63.5 55.27 N/A 63 0.27
tie-others 23.77 23.33 24 14.9 63.83 23.67 0

solo 0.63 0.63 0.43 0.37 0.87 1.5 3.93
QR tie-DGP 89.2 89.07 60.2 49 43.87 N/A 0.27

tie-others 0.17 0.03 2 1.53 0.37 89.6 0
solo 25.3 3.6 0.73 0.97 1.63 1.97 44.5

QRE tie-DGP 0.07 0.07 0.07 0.07 0.07 0.07 N/A
tie-others 20.27 20.2 0.83 0.67 0.43 0.53 0.07

TABLE XXII. For each DGP (row) and model (column), the percentage of
subjects for which the model wins uniquely (“solo”), wins in a tie with the
DGP (and possibly other models; “tie-DGP”), and wins in a tie with other
non-DGP models (“tie-others”) when using TFCV.
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DGP win type LK Double LK Single PCH Double PCH Single QLK QR QRE
solo 0.7 2.1 0 0.47 0.4 95.07 1.17

LK Double tie-DGP N/A 0 0 0 0.03 0 0
tie-others 0.03 0 0.07 0.07 0 0 0

solo 1.1 57.6 0.37 4.87 0.73 31.1 3.97
LK Single tie-DGP 0 N/A 0 0 0 0 0

tie-others 0.17 0 0.1 0.1 0.17 0 0
solo 0.4 1.9 12.13 4.5 1.83 49.57 3.9

PCH Double tie-DGP 0 0 N/A 25.77 0 0 0
tie-others 0 0 25.77 0 0 0 0

solo 0.97 21.83 3.17 31.33 1.57 21.07 11.5
PCH Single tie-DGP 0 0 8.47 N/A 0 0 0

tie-others 0.1 0 0 8.47 0.1 0 0
solo 0.17 1.33 0.1 0.73 4.8 89.03 3.7

QLK tie-DGP 0.1 0 0 0 N/A 0 0
tie-others 0 0 0.03 0.03 0.1 0 0

solo 0.1 0.93 0 0.97 0.3 92.5 5.17
QR tie-DGP 0 0 0 0 0 N/A 0

tie-others 0.03 0 0 0 0.03 0 0
solo 0.27 1.43 0.17 0.73 0.37 1.9 94.33

QRE tie-DGP 0 0 0 0 0 0 N/A
tie-others 0 0 0.8 0.8 0 0 0

TABLE XXIII. For each DGP (row) and model (column), the percentage of
subjects for which the model wins uniquely (“solo”), wins in a tie with the
DGP (and possibly other models; “tie-DGP”), and wins in a tie with other
non-DGP models (“tie-others”) when using BIC.
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DGP win type LK Double LK Single PCH Double PCH Single QLK QR QRE
solo 0.93 2.3 0 0.67 0.5 95 0.53

LK Double tie-DGP N/A 0 0 0 0 0 0
tie-others 0 0 0.07 0.07 0 0 0

solo 2.33 59.1 0.47 5.97 1.23 28.93 1.77
LK Single tie-DGP 0 N/A 0 0 0 0 0

tie-others 0.1 0 0.1 0.1 0.1 0 0
solo 0.6 2 14.07 5.27 1.8 47.8 2.7

PCH Double tie-DGP 0 0 N/A 25.77 0 0 0
tie-others 0 0 25.77 0 0 0 0

solo 2.1 22.73 3.77 35.97 1.7 19.2 5.9
PCH Single tie-DGP 0 0 8.47 N/A 0 0 0

tie-others 0.17 0 0 8.47 0.17 0 0
solo 0.3 1.73 0.27 1.23 5.1 89.2 2.07

QLK tie-DGP 0.07 0 0 0 N/A 0 0
tie-others 0 0 0.03 0.03 0.07 0 0

solo 0.2 1.4 0.03 1.27 0.7 92.87 3.53
QR tie-DGP 0 0 0 0 0 N/A 0

tie-others 0 0 0 0 0 0 0
solo 0.73 2.03 0.4 1.27 0.37 2.27 92.13

QRE tie-DGP 0 0 0 0 0 0 N/A
tie-others 0 0 0.8 0.8 0 0 0

TABLE XXIV. For each DGP (row) and model (column), the percentage of
subjects for which the model wins uniquely (“solo”), wins in a tie with the
DGP (and possibly other models; “tie-DGP”), and wins in a tie with other
non-DGP models (“tie-others”) when using AIC.
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DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK double 21.48 21.35 11.14 11.12 11.05 21.18 2.67
LK single 9.34 50.05 6.26 7.71 6.29 9.89 10.46
PCH double 11.69 9.41 22.06 22.78 15.92 13.35 4.79
PCH single 9.16 22.51 10.42 22.17 9.78 11.7 14.25
QLK 15.6 15.98 14.99 15.06 16.44 15.67 6.26
QR 20.2 19.41 11 10.88 10.72 21.88 5.92
QRE 58.14 16.56 1.01 1.21 1.91 2.04 19.13

TABLE XXV. 3×3 original payoff LOOCV winning probabilities.

DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK Double 22.62 22.09 12.37 9.49 8.34 22.29 2.8
LK Single 9.15 40.81 7.47 6.9 8.16 9.54 17.97
PCH Double 10.83 9.25 28.71 19.71 13.99 10.42 7.09
PCH Single 10.56 17.85 11.93 16.45 11.9 9.66 21.66
QLK 17.34 16.5 17.13 12.82 13.49 17.43 5.3
HQR 21.46 21.34 12.49 9.64 8.65 22.45 3.97
QRE 35.39 13.66 1.11 1.3 1.83 2.19 44.51

TABLE XXVI. 3×3 original payoff 2FCV winning probabilities (including
ties).

DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK double 0.93 2.3 0.03 0.7 0.5 95 0.53
LK single 2.38 59.1 0.52 6.02 1.28 28.93 1.77
PCH double 0.6 2 26.95 18.15 1.8 47.8 2.7
PCH single 2.18 22.73 8 40.17 1.78 19.2 5.93
QLK 0.33 1.73 0.28 1.25 5.13 89.2 2.07
QR 0.2 1.4 0.03 1.27 0.7 92.87 3.53
QRE 0.73 2.03 0.8 1.67 0.37 2.27 92.13

TABLE XXVII. 3×3 original payoff AIC winning probabilities.
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DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK double 0.72 2.1 0.03 0.5 0.42 95.07 1.17
LK single 1.18 57.6 0.42 4.92 0.82 31.1 3.97
PCH double 0.4 1.9 25.02 17.38 1.83 49.57 3.9
PCH single 1.02 21.83 7.4 35.57 1.62 21.07 11.5
QLK 0.22 1.33 0.12 0.75 4.85 89.03 3.7
QR 0.12 0.93 0 0.97 0.32 92.5 5.17
QRE 0.27 1.43 0.57 1.13 0.37 1.9 94.33

TABLE XXVIII. 3×3 original payoff BIC winning probabilities.
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DGP # Parameters LOOCV 2FCV BIC AIC
LK Double 3 8.07 7.2 7.37 7.8
LK Single 3 27.37 20.13 36.77 39.47
PCH Double 4 4.87 8.97 8.27 9.17
PCH Single 4 11.9 6.7 23.4 28.23
QLK 4 5.87 9 17.23 17.77
HQR 2 14.93 14.6 40.03 52.37
QRE 1 25.63 33.93 82.57 65.53

TABLE XXIX. Frequency with which each data generating process wins,
excluding ties when payoffs are scaled by 1/100

DGP # Parameters LOOCV 2FCV BIC AIC
LK Double 3 56.3 56.03 0.33 0.43
LK Single 3 20.43 19.1 0 0
PCH Double 4 47.33 43.83 15.43 15.43
PCH Single 4 19.73 16.73 8.27 8.27
QLK 4 28.33 24 0.2 0.27
HQR 2 41.1 39.47 0 0
QRE 1 0 0.5 0 0

TABLE XXX. Frequency with which each data generating process wins in
a tie with at least one other model. when payoffs are scaled by 1/100

DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK double 20.88 18.7 11.5 9.29 10.3 16.73 12.59
LK single 15.44 28.95 8.8 9.57 7.94 12.64 16.66
PCH double 13.16 9.87 18.79 16.91 11.93 12.78 16.56
PCH single 14.11 12.47 13.09 15.72 10.5 14 20.1
QLK 14.57 10.16 10.25 11.49 10.72 22.16 20.66
QR 17.86 14.63 7.12 8.63 8.93 24.66 18.18
QRE 33.38 12.09 4.58 6.51 6.75 13.15 23.53

TABLE XXXI. 3×3 payoffs are scaled by 1/100 LOOCV winning probabil-
ities.
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DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK Double 20.54 16.18 13.38 7.98 9.58 17.57 14.78
LK Single 14.13 25.09 10.13 6.99 8.97 11.76 22.93
PCH Double 13.09 7.89 22.28 14.63 12.78 11.94 17.38
PCH Single 13.09 13.1 14.09 12.17 10.79 11.97 24.8
QLK 15.19 9.6 11.18 8.88 13.88 17.67 23.61
HQR 17.12 13.24 9.37 6.41 9.97 24.39 19.5
QRE 23.13 8.64 5.6 4.3 7.89 12.6 37.86

TABLE XXXII. 3×3 payoffs are scaled by 1/100 2FCV winning probabili-
ties.

DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK double 7.53 15.5 1.07 3.97 2 57.23 12.7
LK single 4.85 36.77 0.53 7.97 1.35 30.13 18.4
PCH double 2.62 8.4 15.98 17.18 3.02 33.67 19.13
PCH single 2.23 16.7 7.13 27.53 2.13 21.4 22.87
QLK 1.07 6.73 0.95 5.85 17.33 29 39.07
QR 0.9 7.1 0.47 5.63 1.03 40.03 44.83
QRE 0.87 5.27 0.73 3.6 1.93 5.03 82.57

TABLE XXXIII. 3×3 payoffs are scaled by 1/100 BIC winning probabili-
ties.

DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK double 8.02 16.87 1.5 5.73 2.08 60.53 5.27
LK single 5.38 39.47 0.77 10.17 1.68 34.27 8.27
PCH double 3.12 9.07 16.88 20.08 3.38 36.4 11.07
PCH single 2.52 18.57 7.93 32.37 2.58 24.97 11.07
QLK 1.33 9.57 1.68 9.05 17.9 38.8 21.67
QR 1 10.17 0.9 8.57 1.23 52.37 25.77
QRE 1.67 7.3 1.3 5.37 2.13 16.7 65.53

TABLE XXXIV. 3×3 payoffs are scaled by 1/100 AIC winning probabili-
ties.
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DGP # Parameters LOOCV 2FCV BIC AIC
LK Double 3 22.63 38.5 47.57 47.13
LK Single 3 33.83 7.33 37.03 37.1
PCH Double 4 15.23 5.97 13.13 13.13
PCH Single 4 15.7 19.3 11.03 11.57
QLK 4 27.03 26.03 22.87 25.37
HQR 2 45.23 42.07 63.73 64
QRE 1 69.57 70.03 95.1 92.17

TABLE XXXV. Frequency with which each data generating process wins,
excluding ties in Guessing games with fine strategy space

DGP # Parameters LOOCV 2FCV BIC AIC
LK Double 3 21.23 16.03 17.27 17.27
LK Single 3 19.37 13.27 16.27 16.27
PCH Double 4 21.97 13.2 5.1 5.1
PCH Single 4 20.87 11.3 5.13 5.13
QLK 4 4.83 4.03 0 0
HQR 2 3.5 4.07 0 0
QRE 1 0 0 0 0

TABLE XXXVI. Frequency with which each data generating process wins
in a tie with at least one other model. in Guessing games with fine strat-
egy space

DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK double 29.88 36.82 12.94 9.76 3.24 3.96 3.4
LK single 27.32 40.22 12.07 10.07 3.02 3.92 3.4
PCH double 22.81 16.58 23.01 22.16 3.41 4.56 7.47
PCH single 22.23 17.54 21.92 23.05 3.4 4.53 7.33
QLK 1.06 3.93 3.08 20.59 29.14 26.4 15.8
QR 1.81 14.99 1.62 7.44 10.21 46.61 17.33
QRE 12.53 11.02 0.45 2.13 1.26 3.03 69.57

TABLE XXXVII. Guessing Games fine strategy sets LOOCV winning
probabilities.
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DGP|EST LK double LK single PCH double PCH single QLK QR QRE
LK double 50.83 11.17 16.27 14.33 2.64 2.25 2.5
LK single 44.81 11.72 16.15 17.87 4.66 4.19 0.61
PCH double 34.23 5.04 12.5 29.89 4.2 2.26 11.87
PCH single 33.57 4.49 20.08 25.14 5.48 3.34 7.91
QLK 11.09 0 2.43 16.27 27.64 21.72 20.87
QR 8.28 0 1.64 10.73 13.07 43.87 22.4
QRE 20.99 1.1 0.12 1.93 2.65 3.18 70.03

TABLE XXXVIII. Guessing Games fine strategy sets 2FCV winning
probabilities.

DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK double 56.2 36.6 1.93 2.17 0.73 0.83 1.53
LK single 47.2 45.17 2.18 1.82 0.9 1.13 1.6
PCH double 36.25 23.65 15.68 13.78 0.07 0.03 10.53
PCH single 34.53 25.07 15.7 13.6 0.07 0.07 10.97
QLK 0.3 3.5 0.13 1.27 22.87 46.57 25.37
QR 0.23 2.47 0.13 0.77 3.57 63.73 29.1
QRE 0.4 3.2 0 0.07 0 1.23 95.1

TABLE XXXIX. Guessing Games fine strategy sets BIC winning proba-
bilities.

DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK double 55.77 36.5 2.3 2.73 0.8 0.77 1.13
LK single 46.87 45.23 2.52 2.32 0.97 0.87 1.23
PCH double 36.28 24.28 15.68 14.22 0.07 0.2 9.27
PCH single 34.6 25.53 15.7 14.13 0.1 0.23 9.7
QLK 0.37 4.4 0.2 2.17 25.37 45.53 21.97
QR 0.37 3.57 0.2 1.53 5.5 64 24.83
QRE 0.8 4.9 0 0.37 0.07 1.7 92.17

TABLE XL. Guessing Games fine strategy sets AIC winning probabilities.
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DGP # Parameters LOOCV 2FCV BIC AIC
LK Double 3 18.37 35.83 72.8 72.67
LK Single 3 40.63 9.1 34.33 34.7
PCH Double 4 18.07 6.97 19.5 20.6
PCH Single 4 16.1 13.17 20.23 21
QLK 4 23.93 24.4 22.73 24.2
HQR 2 39.57 33.13 57.03 55.77
QRE 1 60.7 42.37 95.83 93.27

TABLE XLI. Frequency with which each data generating process wins,
excluding ties in Guessing games with coarse strategy space

DGP # Parameters LOOCV 2FCV BIC AIC
LK Double 3 26.43 15.47 8.83 8.83
LK Single 3 19.4 22.37 8.3 8.3
PCH Double 4 22.63 18.07 6.77 6.77
PCH Single 4 18.83 20.93 6 6
QLK 4 7.4 6.8 0 0
HQR 2 5.3 4.67 0 0
QRE 1 0 0 0 0

TABLE XLII. Frequency with which each data generating process wins
in a tie with at least one other model. in Guessing games with coarse
strategy space

DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK double 29.35 39.51 10.5 8.19 3.6 5.81 3.03
LK single 23.94 48.24 8.97 8.58 3.18 3.69 3.4
PCH double 14.05 24.91 26.56 18.94 4.67 5.69 5.17
PCH single 12.54 26.16 23.45 23.18 4.16 5.32 5.2
QLK 9.59 13.33 6.09 8.23 26.6 23.65 12.5
QR 6.79 14.51 3.36 8.78 9.93 41.79 14.83
QRE 18.05 14.55 0.88 2.65 1.2 1.97 60.7

TABLE XLIII. Guessing Games coarse strategy sets LOOCV winning
probabilities.
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DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK double 57.02 16.95 12.07 7.89 2.02 1.52 2.53
LK single 43.84 19.17 23.16 7.7 2.65 2.7 0.78
PCH double 30.23 10.05 16.96 27.58 5.41 4.91 4.86
PCH single 23.57 9.62 32.74 23.12 5.81 4.38 0.76
QLK 9.83 8.56 1.57 5.71 27.64 25.71 20.98
QR 6.94 8.22 2.26 6.24 12.84 39.6 23.9
QRE 22.91 15.89 1 2.09 2.82 3.83 51.46

TABLE XLIV. Guessing Games coarse strategy sets 2FCV winning prob-
abilities.

DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK double 77.22 16.22 0.77 0.83 1.07 1.4 2.5
LK single 53.98 38.48 0.8 1.03 0.9 1.83 2.97
PCH double 37.28 13.48 22.88 15.45 1.13 5.1 4.67
PCH single 31.88 18.92 15 23.23 0.93 4.77 5.27
QLK 2.33 5.93 0.83 1.53 22.73 41.8 24.83
QR 5.73 3.8 0.6 1.43 3.03 57.03 28.37
QRE 0.97 1.8 0.1 0.2 0 1.1 95.83

TABLE XLV. Guessing Games coarse strategy sets BIC winning proba-
bilities.

DGP\EST LK double LK single PCH double PCH single QLK QR QRE
LK double 77.08 16.45 1.07 1.27 1.17 1.1 1.87
LK single 53.98 38.85 0.97 1.3 0.93 1.6 2.37
PCH double 36.62 13.72 23.98 16.32 1.23 4.77 3.37
PCH single 31.42 19.22 15.8 24 0.97 4.4 4.2
QLK 2.97 8.47 1.43 2.63 24.2 38.97 21.33
QR 6.4 6 1.1 2.2 4.33 55.77 24.2
QRE 1.43 3.1 0.47 0.27 0.07 1.4 93.27

TABLE XLVI. Guessing Games coarse strategy sets AIC winning proba-
bilities.
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APPENDIX F. MODEL SEPARABILITY: ADDITIONAL RESULTS

Model 1\Model 2 LK Single PCH Double PCH Single QLK HQR QRE
LK Double 77.5 88.7 82.7 89.9 89.9 70.5
LK Single 89.3 66.4 85.1 77.8 84.7
PCH Double 89.2 90.4 88.6 77.9
PCH Single 84.2 80.6 36.2
QLK 90.1 84.7
HQR 70.7

TABLE XLVII. Mean of D2(m1,m2;θ) of 12 games’ percentile in the dis-
tribution of randomly drawn 1000 games
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