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ABSTRACT. We study the design of mechanisms that implement Lindahl or Walrasian alloca-

tions and whose Nash equilibria are dynamically stable for a wide class of adaptive dynamics.

We argue that supermodularity is not a desirable stability criterion in this mechanism design

context, focusing instead on contractive mechanisms. We provide necessary and sufficient

conditions for a mechanism to Nash implement Lindahl or Walrasian allocations, show that

these conditions are inconsistent with the contraction property when message spaces are one-

dimensional, and then show how to use additional dimensions to achieve dynamic stability

while gaining budget balance out of equilibrium.
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I INTRODUCTION

It is well known that equilibrium outcomes are inefficient in economies with public goods

when contributions are voluntary. The mechanism design literature has provided various

incentive schemes that solve these inefficiencies, assuming agents select equilibrium strate-

gies when playing a mechanism. The general impossibility results when applying the weak

requirement of dominant strategy equilibrium (Gibbard, 1973; Satterthwaite, 1975; Hur-

wicz and Walker, 1990; Zhou, 1991) led to the search for mechanisms that implement opti-

mal public goods allocations when players are assumed to select Nash equilibrium strate-

gies. Groves and Ledyard (1977), Hurwicz (1979b), and Walker (1981) (among others) all

provided examples of such mechanisms. From a theoretical standpoint, these mechanisms

completely solve the free-rider problem in public goods economies.

Early laboratory tests, however, revealed that the empirical success of these mechanisms

was limited because agents in fact do not play equilibrium strategies; rather, the play of
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these mechanisms can best be described using myopic learning dynamics, such as best-

response play to a recent history of actions (Chen and Plott, 1996; Chen and Tang, 1998;

Chen and Gazzale, 2004; Healy, 2006). Thus, mechanisms that induce dynamically stable

games will drive play to equilibrium, while mechanisms that induce unstable games will

not. These ‘wind tunnel’ tests suggest that theorists should add dynamic stability to the

constraints of the mechanism design problem and focus on implementing optimal allocations

in stable Nash equilibria.

In this paper, we take the next step, incorporating these experimental observations about

stability back into the theory. We provide example mechanisms that are not only stable,

but also budget-balanced both in and out of equilibrium. Budget balance out of equilibrium

is vital when discussing dynamic stability, as it ensures that allocations are still feasible

when play has not yet converged. We focus on Lindahl equilibrium allocations as our ob-

jective function for implementation in public goods economies, and we extend our results to

Walrasian equilibria when all goods are private. We also show how our mechanisms are con-

structed, and we discuss the limitations of our procedure. Specifically, our paper proceeds

in four steps:

(1) After introducing the basic environment and notation, we provide our notion of dy-

namic stability: contractive mechanisms. A mechanism is contractive if, in every

possible environment, it induces a game whose best response functions are contrac-

tion mappings. We prove that a large family of learning dynamics are globally stable

in contractive games (Theorem 1) and point out that the family of convergent dy-

namics is even larger if utilities are concave in one’s own strategy. The result for

contractive games is an analogue of the Milgrom and Roberts (1990) stability re-

sult for supermodular games. We also argue that supermodularity—which has been

suggested previously as a desirable stability notion—may not guarantee stability in

mechanism design settings. This motivates our search for contractive mechanisms.

(2) Assuming quasi-linear preferences, we provide an example of a mechanism that fully

implements Lindahl allocations, is contractive, gives concave utilities, and is budget

balanced both in and out of equilibrium (Theorem 2). We also provide a contractive

and budget-balanced mechanism with concave utilities that fully implements Wal-

rasian allocations in private-goods economies (Theorem 3). Quasi-linearity cannot

be relaxed too far; the results of Jordan (1986) and Kim (1987) guarantee that no

(well-behaved) mechanism can be stable for general preferences.

(3) Next, we show how such mechanisms are constructed. Ignoring all stability concerns

and relaxing quasi-linearity, we provide necessary and sufficient conditions for con-

tinuous mechanisms to fully implement Lindahl or Walrasian allocations in Nash

equilibrium (Theorems 4, 5, and 7). These results provide an understanding of what
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types of mechanisms can be considered for implementation, and how desiderata such

as stability can then be added. As an example of the restrictiveness of the necessary

and sufficient conditions, we prove that if a mechanism has a one-dimensional strat-

egy space for each player, then it cannot fully implement Lindahl (or Walrasian)

allocations and be contractive (Theorem 6). This explains the necessity of using two-

dimensional message spaces in our example mechanisms.

(4) Finally, we discuss the limitations and possible generalizations of our approach. For

example, contractive mechanisms for more than two goods can be constructed, but

rely on strong assumptions about complementarities. No mechanism can be contrac-

tive if concavity of preferences becomes arbitrarily small.

Relative to the existing literature, our necessary and sufficient conditions for Nash im-

plementing Lindahl or Walrasian allocations (ignoring stability concerns) provide a new

understanding about the types of mechanisms that can be used in general equilibrium (or

‘economic’) environments.1 With one-dimensional message spaces, the necessary condition

is quite strong: Agents’ announcements must represent individual purchases of the non-

numeraire good at prices determined by others’ messages. Thus, in the public goods setting,

the choice of announcement is equivalent to the choice of the public good level, taking prices

as given. In this way, the mechanism must parallel the consumer’s optimization problem

given in the very definitions of Walrasian and Lindahl equilibrium. Sufficiency is obtained

by assuming in addition that every possible Lindahl or Walrasian allocation can be reached

by some announcement.2

The motivation for requiring dynamic stability in mechanism design is manifold. First

and foremost, this paper continues the dialogue between theory and data that hopefully will

converge on acceptable mechanisms for real-world application. To aid in the continuation

of this dialogue, we provide a recipe for designing stable mechanisms. New ingredients can

be added as new behavioral regularities are discovered. In contrast, a single example of a

stable mechanism is less desirable because these new behavioral regularities may render

that particular mechanism ineffective.

1We borrow the phrase ‘economic environment’ from Hurwicz’s early work on mechanism design. Hurwicz and

Reiter (2006, p. 14) describe economic environments as those concerned with production, consumption, and

exchange. Specifically, an economic environment specifies the constraints on those three activities. These are

typically a special case of the more-general ‘social choice’ environments studied by Arrow (1951) or Maskin

(1999), for example.
2Our necessary condition was first suggested by Brock (1980) (see also Groves and Ledyard, 1987), though

not proved generally. Reichelstein and Reiter (1988) use differential geometry techniques to explore the min-

imal message space size needed for Walrasian implementation in Nash equilibrium. Their proof technique

also suggests that ‘price-taking’ is a necessary condition. We describe and prove this claim in a much more

straight-forward way, extend it to public goods economies, and add sufficiency results that lead to a useful

characterization of implementing mechanisms.
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Dynamic stability of equilibrium also has appeal independent from the existing experi-

mental results. If equilibrium is arrived at through iterated applications of best-response in

players’ internal logic, or through iterations of pre-play communication, then stable equilib-

ria are the most likely to arise, and are the most robust to perturbations in opponents’ logic

or pre-play communication. Thus, we also view stability as a device to make static Nash

implementation more robust.

It is important to study stability under a wide class of admissible dynamics because ex-

perimental evidence suggests that the process of learning can vary dramatically from one

environment to another. Existing work on economic environments by Vega-Redondo (1989);

de Trenqualye (1989); and Kim (1993, 1996), for example, focus on particular learning dy-

namics that may or may not be descriptive in various settings. In contrast, Chen (2002)

develops a public-goods mechanism that is supermodular, following Milgrom and Roberts’s

(1990) result that supermodular games have dynamically stable equilibrium sets for a wide

class of dynamics.3

We argue in Section III that supermodularity is not an appropriate stability concept for

mechanism design in certain contexts. Milgrom and Roberts (1990) prove that if a game

is supermodular then any adaptive learning dynamic (which plays undominated strategies

against not-too-distant histories) must converge to the smallest interval containing all Nash

equilibria. But now imagine a supermodular game with Nash equilibria at the corners of

the (compact) strategy space. The Milgrom-Roberts stability result is vacuous here since

the smallest interval containing all equilibria is the entire strategy space. If, as in the

current mechanism design literature, we make the strategy space unbounded, then the cor-

ner equilibria are eliminated but nothing guarantees that the remaining interior equilibria

are stable. Thus, supermodularity’s stability properties can be highly ambiguous when the

strategy space is unbounded or when little is known about the size of the equilibrium set.

Instead of requiring supermodularity, we design mechanisms with contractive best re-

sponse functions. We prove that this guarantees stability for many learning dynamics. Our

example mechanisms are also fully budget-balanced. Requiring that mechanisms satisfy

budget balance out of equilibrium is vitally important when admitting dynamic adjustment

processes. If allocations are not balanced out of equilibrium then the social planner will be

required to fund the surplus (or absorb the shortage) in early periods when play has not yet

converged. There is no guarantee that early surpluses will be offset by later shortages, and

the total subsidy required across time may vary greatly depending on the initial conditions

and exact path of play. Practical applications therefore demand balanced budgets.

3Technically, Chen’s (2002) mechanism is open-supermodular since its strategy space is not compact; see Sec-

tion III.
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Requiring full implementation—where every equilibrium maps to a desirable outcome,

and vice-versa—is also important in a dynamic context, because it guarantees that agents

do not settle on equilibria whose outcomes are not desirable. By dealing with full implemen-

tation, our paper presents an advantage over Mathevet (2010), who builds supermodular

mechanisms in Bayesian environments but focuses on weak implementation and minimiz-

ing the size of the equilibrium set.

The structure of the paper is as follows: We review related literature in the following

subsection. We introduce a two-good general equilibrium model and the basic definitions of

implementation in Section II. In Section III we introduce contractiveness as our stability

notion and discuss some of the dangers of focusing instead on supermodularity. We then pro-

vide two contractive, budget-balanced mechanisms, one for Lindahl allocations, and one for

Walrasian allocations. We provide necessary and sufficient conditions for a mechanism to

implement Lindahl or Walrasian allocations in Section IV. We first study the case of mech-

anisms with one-dimensional strategy spaces for each agent, show that no one-dimensional

mechanism that satisfies these conditions can be contractive, and then generalize the nec-

essary and sufficient to higher-dimensional mechanisms. This provides an understanding of

how our two mechanisms were constructed, and how other, similar mechanisms can be con-

structed. Finally, in Section V we discuss how our results can generalize to economies with

multiple non-numeraire goods, why it is difficult to relax our assumption of quasilinearity,

and what future directions (and limitations) we foresee for this line of research.

Related Literature

We focus attention on Nash implementation in economic environments, where the prob-

lem of stability is relatively long-standing. The first (and most well-known) fully optimal

public-goods mechanism is that of Groves and Ledyard (1977). Muench and Walker (1983)

show that as an economy becomes large, the Groves-Ledyard mechanism either becomes

highly unstable (in best-response dynamics) if the punishment parameter remains small,

or payoffs become arbitrarily ‘flat’ if the punishment parameter grows large; in either case,

attainability of equilibrium becomes a concern. If preferences are not quasilinear, then the

Groves-Ledyard mechanism may have many undesirable equilibria (Bergstrom et al., 1983);

however, these equilibria may not be a concern since they are unstable and disappear when

the punishment parameter is sufficiently large (Page and Tassier, 2004). Chen and Tang

(1998) show that the mechanism also becomes supermodular in quasilinear environments

with a large punishment parameter, though the critical requirement of a compact strategy

space for supermodular games is omitted, leading to ambiguous predictions about stability.4

4We refer to such games as open-supermodular.
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Regardless of its stability properties, a major drawback of the Groves-Ledyard mechanism

is that it is not individually rational: Agents’ final utility may be lower than that of their

initial endowments. Hurwicz (1979a) proves that, under a mild continuity requirement, if

one wants to implement Pareto optimal and individually rational outcomes in economic set-

tings, then one must implement the Walrasian or Lindahl equilibrium allocations. From this

view, the mechanisms of Hurwicz (1979b) and Walker (1981) that Nash-implement Lindahl

allocations are preferable; we refer to such mechanisms as Nash-Lindahl mechanisms.

Unfortunately, the Nash-Lindahl mechanisms of Hurwicz and Walker are known to have

poor stability properties, and experimental results (Chen and Tang, 1998; Healy, 2006) con-

firm that this severely hinders performance. Kim (1987) (following Jordan, 1986) shows that

for a certain class of preferences, all Nash-Lindahl mechanisms must be unstable for at least

one preference profile in the class. As mentioned above, Vega-Redondo (1989); de Trenqua-

lye (1989) and Kim (1993, 1996) all design Nash-Lindahl mechanisms that are stable for

particular dynamics under various restrictions on preferences. The Kim and Jordan results

also force us to restrict preferences in this paper; our stability results are proven assuming

quasilinear preferences for the public good. Stability results for completely general prefer-

ences are impossible.

The first carefully-controlled laboratory experiments of Nash-Lindahl mechanisms were

performed by Chen and Plott (1996).5 The subsequent experimental research (Chen and

Tang, 1998; Chen and Gazzale, 2004; Healy, 2006) suggests that supermodularity is a suf-

ficient (if not necessary) condition for subjects to converge to Nash equilibrium. Supermod-

ularity (following Milgrom and Roberts, 1990) in this context requires a compact strategy

space, and implies monotone best-responses. Based on the learning result from Milgrom and

Roberts (1990), Chen (2002) provides a family of supermodular Nash-Lindahl mechanisms,

though their strategy spaces are not compact.

The closest work to ours is Van Essen (2009b). He also notes that supermodularity with

unbounded strategy spaces does not imply stability and adopts the contraction approach as

a ‘fix’ for this instability. He then provides an example mechanism which is both super-

modular and contractive. In this paper, we do not require supermodularity since it adds

unnecessary constraints to the problem; this is shown more formally in Section III. We also

provide general characterization results for Nash implementation; prove that for a large

class of learning dynamics agents’ choices converge to the Nash equilibrium in contrac-

tive games; demonstrate an impossibility result for stable one-dimensional mechanisms;

5Scherr and Babb (1975); Smith (1979); Harstad and Marrese (1983); and Tideman (1983) ran earlier ex-

periments and many authors tested inefficient public goods processes such as the voluntary contributions

mechanism (see Ledyard, 1995) but Chen and Plott (1996) were the first to test directly a theoretically optimal

mechanism without modifications in a controlled laboratory setting.
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focus on a general ‘recipe’ for designing stable mechanisms; provide a Walrasian mecha-

nism; and—most importantly—develop mechanisms that are budget-balanced out of equi-

librium. Stable mechanisms that are not budget balanced may require significant subsidies

(or generate large surpluses) while strategies are adjusting toward equilibrium; our budget-

balanced mechanisms never create a subsidy or a surplus at any time, guaranteeing feasible

outcomes in every period. The stable mechanisms of Van Essen (2009b) and Chen (2002) are

not budget balanced out of equilibrium.

More recent experimental work on supermodular mechanisms suggests that performance

of mechanisms out of equilibrium may dramatically affect realized efficiency. Van Essen

et al. (2009) and Van Essen (2010) show that the Chen (2002) mechanism is out-performed

by the Kim (1993) and Van Essen (2009b) mechanisms, respectively, because the latter

mechanisms give smaller out-of-equilibrium ‘punishments’ and budget imbalances, result-

ing in higher overall efficiency. These results highlight the need for out-of-equilibrium bud-

get balance, as well as the usefulness of providing a general recipe for designing mechanisms

that can take into account such lessons in the design of future mechanisms.

There has been comparatively little work on implementing Walrasian allocations, pre-

sumably because decentralized markets generally perform well. Yet an alternative mech-

anism may be desirable for several reasons. First, if the number of agents is small then

the price-taking assumption becomes tenuous; a mechanism with a game-theoretic founda-

tion is more likely to succeed. Dynamic stability then guarantees that adaptively-adjusting

agents can still arrive at the Walrasian allocations. Second, adaptive learning models in the

competitive mechanism focus on tâtonnement-like adjustment processes where stability is,

in general, not guaranteed (Scarf, 1960; Hirota, 1985) and where feasibility (off-equilibrium)

of the consumption plans is also a problem. We focus instead on designing game-theoretic

mechanisms that are fully-balanced—hence trades are feasible off-equilibrium—and stable

under a family of learning dynamics that is known to be reasonably descriptive. To our

knowledge, the only other paper to focus on the design of dynamically stable (approximate)

Walrasian mechanisms is Walker (1984).

Various methods for generating stability directly through the solution concept have also

been studied. For example, dominant strategy equilibria are certainly dynamically stable

for nearly any reasonable learning process. Unfortunately, standard impossibility results

severely limit its applicability (Green and Laffont, 1977; Roberts, 1979). Furthermore, if

the dominant strategy is not strict, then myopically-adapting agents may converge to unde-

sirable Nash equilibria, as was observed in tests of the Vickrey-Clarke-Groves mechanism

by Cason et al. (2003) and Healy (2006) (see also Saijo et al., 2007).
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Abreu and Matsushima (1992) provide a mechanism that has a dominance-solvable equi-

librium whose outcome is a lottery placing an arbitrarily large weight on the desired allo-

cation. From a theoretical standpoint, the result is very strong; it implies convergence of a

wide class of learning dynamics to the equilibrium point. Yet their mechanism is of limited

practical use: As the mechanism becomes more precise (placing more weight on the desired

allocation) the dimensionality of the message space diverges to infinity. Furthermore, labo-

ratory tests of the mechanism (Sefton and Yavas, 1996, inspired by Glazer and Rosenthal,

1992) find that subjects do not move toward the equilibrium over 14 periods of play. This

suggests that the speed at which iterated dominance is respected by learning is slow, or non-

existent. These results are in line with the findings of McKelvey and Palfrey (1992), Stahl

and Wilson (1995), Nagel (1995), and others, showing that subjects do not appear to learn

to play iteratively undominated strategies. These results apparently limit the applicability

of mechanisms that rely on iterated-deletion solution concepts.6

Sandholm (2002, 2005, 2007) studies stable Nash implementation of efficient resource

utilization in congestion games. He uses transfers to convert externality problems with

poor stability properties into potential games with excellent stability properties. In more

general settings with continuous levels of public and private goods and rich type spaces,

however, it is typically not possible to use transfers to create a potential game.

Cabrales (1999) shows that, in the canonical mechanism of Maskin (1999), adaptive Mar-

kovian dynamics (placing positive probability on better responses to opponents’ last-period

strategies) will converge to and remain at the Nash equilibrium. Cabrales and Serrano

(2009) extend this result, proving that a quasimonotonicity condition is necessary for im-

plementation in the steady states of these dynamics; when a no-worst-alternative condition

is also satisfied implementation can be achieved using a variation on the canonical mech-

anism. Cabrales (1999) also shows that the Abreu-Matsushima mechanism is vulnerable

to ‘drift’ when agents use adaptive Markovian dynamics, since the equilibrium also admits

non-equilibrium best responses for each agent.

II THE MODEL

Economic Environments

Consider a two-good general-equilibrium economy in which agents i ∈ {1, . . ., n} = I have

endowments ωi = (ωx
i
,ω

y

i
) ∈ R2, make net trades zi = (xi, yi) ∈ R

2 − {ωi}, and have prefer-

ences over net trades representable by a utility function u i(xi, yi|θi), where θi ∈Θi identifies

6Bergemann and Morris (2009) consider rationalizable implementation, which is equivalent to iterated dele-

tion of strictly dominated strategies when the strategy space is finite. They show that virtual implementation

in iteratively undominated strategies requires a social choice function to select agents’ favorite social choice

outcome when preferences are identical.
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i’s type drawn from i’s type space Θi.
7 We assume that for each i and θi u i is increas-

ing in xi (the numeraire good) for all yi and differentiable in both goods; in our discus-

sion of stability, we restrict attention to the special case of quasilinear preferences where

u i(xi, yi|θi) = vi(yi|θi)+ xi. Let ω = (ω1, . . . ,ωn), z = (z1, . . . , zn) and θ = (θ1, . . . ,θn) ∈Θ = ×iΘi

and let p ∈ R represent the price of the non-numeraire good, normalizing the numeraire

price to one. A net trade vector z ∈R2n is balanced if
∑

i zi = 0.

Unlike most general equilibrium models, ours does not restrict the feasible consumption

set to the positive orthant. Since no mechanism can Nash implement Walrasian or Lindahl

equilibria when boundary equilibria are permitted (see Hurwicz, 1979a or Jackson, 2001), it

is necessary to rule out such equilibria either by allowing unbounded consumption bundles,

or by restricting preferences so that boundary equilibria never obtain. The latter approach

is more common (see Groves and Ledyard, 1977, for example), but may be incompatible with

our notion of dynamic stability.

As specified, the model describes an exchange economy with purely private goods. But

we can easily reinterpret the model to allow the second good to be a purely public good by

making four changes: (1) every feasible net trade must be such that yi = yj for all agents i

and j, (2) ω
y

i
= ω

y

j
for all i and j, (3) there is a single firm, capable of producing y units of

the public good from c(y) units of the numéraire, that aims to maximize the profit function

py− c(y), and (4) an allocation is now said to be balanced if c(y)+
∑

i xi = 0. In this paper, we

assume a constant marginal cost of production κ> 0 so that c(y)= κy.

A Walrasian equilibrium of a private goods economy at type vector θ is a net trade vector

z∗ and a price p∗ such that z∗ is balanced and maximizes each u i(·, ·|θi) subject to the budget

constraint zi p
∗ ≤ 0. Here z∗ is referred to as a Walrasian equilibrium allocation.

A Lindahl equilibrium of a public goods economy is a net trade vector z∗ (the Lindahl

equilibrium allocation) and a vector of individual prices p∗ = (p∗
1
, . . . , p∗

n) such that z∗ is

balanced, maximizes each u i(·, ·|θi) subject to the budget constraint zi p∗
i
≤ 0, and maximizes

the firm’s profit of (
∑

i p∗
i
)y− c(y).

Note that Lindahl equilibria are of the same dimensionality as Walrasian equilibria; the

latter consists of 2n quantities and only one price while the former has n+1 quantities but

needs n prices.

Mechanisms & Implementation

A social choice correspondence f :Θ։R
2n maps type profiles into sets of net trades. For ex-

ample, f might identify all Pareto optimal net trades for each θ (the Pareto correspondence),

7In section V, we generalize our results to multiple goods in additive environments.
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all Walrasian equilibrium allocations (the Walrasian correspondence), or, in a public goods

setting, all Lindahl equilibrium allocations (the Lindahl correspondence).

A mechanism Γ= (M , h) consists of a message space M =×iMi and an outcome function

h : M → R
2n mapping each message profile m = (m1, . . . , mn) into a net trade vector z. A

mechanism Γ is also called a game form; when combined with a particular type profile θ, the

mechanism induces a well-specified game with strategy spaces Mi for each i and induced

utilities over strategy profiles given by

Ui(m|θi) := u i(h(m)|θi).

We let

βi(m|θi)=
{

mi ∈Mi : Ui(mi, m−i|θi)≥Ui(m
′
i, m−i|θi) ∀m′

i ∈Mi

}

represent i’s best-response correspondence and define β= (β1, . . . ,βn). The Nash correspon-

dence ν : Θ։ M identifies the set of pure-strategy Nash equilibrium message profiles m∗

of Γ at each θ; formally, ν(θ) = {m ∈ M : m ∈ β(m|θ)}. A mechanism (M , h) is said to (Nash)

implement a social choice correspondence f if, for all θ ∈Θ,

(1) h(ν(θ))= f (θ).

We sometimes refer to (1) as full implementation; if h(ν(θ)) ⊆ f (θ) we say that Γ weakly

Nash implements f and if h(ν(θ))∩ f (θ) 6= ; then Γ partially Nash implements f .

In the case of economic environments with two goods, the outcome function h can equiv-

alently be written as a pair of functions of the form xi(m) and yi(m) for each i ∈ I . In this

paper, we consider mechanisms for which Mi ⊆ R
K i for some K i ∈ {0,1, . . .} for each i. When

Mi has Ji < K i dimensions that enter into the yi function, and K i − Ji dimensions that do

not, then we may, for notation’s sake, partition agent i’s strategy space into Mi = R i ×S i

with R i ⊆R
Ji and S i ⊆R

K i−Ji . Letting R =×iR i and S =×iS i we have that yi : R×S−i →R

and xi : R×S →R. In a public goods setting, if the mechanism generates only feasible allo-

cations then it must be that yi ≡ y : R →R for each i since yi = yj for all i 6= j.

Given any mechanism with functions yi(m), it is without loss of generality that we can

express i’s net trade of the numéraire as

(2) xi(m)=−q i(m−i)yi(m)− g i(m)

so that the per-unit ‘price’ term q i does not depend on mi. Thus, any mechanism can be

equivalently described by a list of functions of the form q i(m−i), g i(m), and yi(m) for each i.

This formulation makes explicit the ‘price’ and ‘penalty’ components of xi(m).
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III STABLE MECHANISMS

Contractiveness as a Notion of Stability

There are many possible notions of stability that one could apply when designing a mecha-

nism. We focus here on contractive mechanisms whose best response functions are, in every

type profile θ, contraction mappings.8 Formally, if (M , d) is a complete metric space with

metric d, then a (single-valued) function β : M → M is a d-contraction mapping if there is

some constant ξ ∈ (0,1) such that for all m, m′ ∈M ,

d(β(m),β(m′))≤ ξd(m, m′).

When the metric d is understood, we simply refer to β as a contraction mapping. When β

describes the (single-valued) best-response function of a particular game, we say that the

game is contractive. The following useful lemma provides a simple sufficient condition for a

continuously differentiable function β to be a contraction mapping.

Lemma 1. If M ⊆ R
K for some K ∈ {1,2, . . .}, then a continuously differentiable function

β : M →M is a contraction mapping if supm∈M ||Dβ(m)|| < 1, where Dβ(m) is the differential

matrix of β and || · || is any matrix norm.

The proof of this lemma follows easily from Conlisk (1973). Using the absolute row-sum

norm, for example, one can show that β is a contraction mapping, if
∑

l |∂βk(m)/∂ml | < 1 at

every m for each dimension k.

Since mechanisms induce different games for different type profiles θ ∈Θ, we must extend

our definition of a contractive game when describing mechanisms:

Definition 1. Let (M , d) be a complete metric space. A mechanism Γ = (M , h) with out-

come function h is d-contractive on Θ, if for every θ ∈Θ, the induced game with preferences

Ui(m|θi) has a single-valued best-response function β(·,θ) : M → M that is a d-contraction

mapping.

Drop the reference to d when the metric is understood. Contractiveness is a strong prop-

erty to require of a mechanism; by the Banach fixed point theorem, it guarantees the exis-

tence of a unique Nash equilibrium of Γ at θ. This equilibrium is globally stable under the

Cournot best-response dynamic. This means that, if Γ also Nash implements some social

choice function f , then the outcome f (θ) will in fact be realized in the limit, when agents’

play is described by Cournot best-response.

Clearly, the processes that best describe dynamic human behavior are more complex and

subtle than the simple Cournot best-response dynamic, so guaranteeing stability for a larger

8Our reasons for using contractive mechanisms instead of supermodular mechanisms are discussed in Section

V.
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family of dynamics is desirable. In this vein, we provide a contraction-mapping analogue of

the Milgrom-Roberts stability result for supermodular games: There is a family of adaptive

best response dynamics (ABR dynamics) such that every dynamic in this family is globally

stable in any game with a contractive best response function.

Formally, a learning dynamic is a function µ : {1,2, . . .} → ×i∆(Mi) specifying a mixed

strategy profile µ(t) for each point in ‘time’ t ∈ {1,2, . . .}.9 Let S(µ(t)) ⊆ M be the support

of each µ(t) and let m(t) ∈ S(µ(t)) be the realized action at time t. For example, a Cournot

best-response dynamic would be a function satisfying S(µ(t)) = m(t) ∈ β(m(t−1)|θ) for all

t > 1. To describe ABR dynamics formally, let H(t′, t) = {m(s) : t′ ≤ s < t} denote the real-

ized history of play from time t′ up to (but not including) t and let m∗ denote the unique

Nash equilibrium of the game under consideration. Fix a metric d. For any r ≥ 0 let

B(r|m∗) = {m ∈ M : d(m, m∗) ≤ r} be the closed ball with center m∗ and radius r. Given

any bounded set M
′ ⊂M define

B(M ′)=
⋂

{B(r|m∗) : M ′
⊆ B(r|m∗)}

to be the smallest closed ball centered at m∗ that includes M
′.

Definition 2. A learning dynamic {m(t)} is an adaptive best-response dynamic (ABR dy-

namic) if (∀t′)(∃t̂ > t′)(∀t ≥ t̂), S(µ(t))⊆ B(β(B(H(t′, t)))).

To understand this definition, consider first two points in time t′ and t. Take the point

m′ ∈ H(t′, t) that is farthest from the equilibrium m∗, and consider all points in M that

are closer to the equilibrium than m′. Calculate the best response to each of those points,

and among those calculated best responses, let m′′ be the farthest from the equilibrium.

The requirement that S(µ(t))⊆ B(β(B(H(t′, t)))) simply states that the date-t mixed strategy

cannot put positive weight on strategies that are farther from m∗ than m′′. Thus, players

observe history H(t′, t), form a ‘belief ’ that the next profile will be in B(H(t′, t)), and choose

any profile that is either a best response to this belief, or at least mixes over actions that are

no farther from equilibrium than any best response to this belief.

The quantifiers then say that for any date t′, there is some later date t̂, after which the

dynamic ignores the history of play prior to t′. Thus, the effect of early strategies must

eventually vanish.

Theorem 1. If a game is contractive, then all adaptive best-response dynamics converge to

the unique Nash equilibrium.

Formal proofs appear in the appendix.

Whether a given dynamic is an ABR dynamic may depend on the contractive game un-

der consideration. Simple Cournot dynamics are always in the ABR class. So too are the

9This definition could be generalized to allow for continuous or finite time intervals.
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family of k-period best response dynamics suggested by Healy (2006) to be a reasonable de-

scription of subjects’ play in experiments on repeated public goods mechanisms.10 In fact,

any dynamic where players best respond to some pure-strategy belief formed from a convex

combination of the not-too-distant history of play will always be an ABR dynamic, and thus

convergent in contractive games.

Dynamics based on (mixtures of) best responses to beliefs (i.e. probability distributions)

over B(H(t′, t))—such as fictitious play—are not always in the ABR class, but they will be

ABR dynamics in the contractive games induced by our mechanisms. As we illustrate next,

the key property for these dynamics to be ABR is concavity of the utility functions. Consider

a two-player game with Mi = [−1,1] and Ui(m)=max{1−|mi−m j/2|,1−ε−|mi−1|} for each

i, where ε> 0 is small. Player i’s best response to m j is m j/2≤ 1/2, it yields utility 1, and the

game is contractive. Playing mi = 1 yields utility 1−ε regardless of m j. If i best-responds

to a belief distribution that puts non-trivial weight on multiple actions m j, then mi = 1

becomes the unique best response. In other words, i’s best response to her beliefs is not in

the convex hull of the best responses to the support of her beliefs. In this contractive game,

fictitious play is not an ABR dynamic and it may not converge to the unique equilibrium

m∗ = (0,0). However, if Ui is also concave in mi, then best responses to beliefs must be in

the convex hull of best responses to the support of the beliefs. In this case, fictitious play

becomes an ABR dynamic and converges to the unique equilibrium.

Given these results, we focus primarily on designing contractive mechanisms. But we

also verify that our particular mechanisms induce concave utility functions Ui, so that the

set of convergent ABR dynamics is made even larger.

Supermodularity as a Notion of Stability

The existing literature takes the approach of requiring a mechanism to induce supermod-

ular games, which are also known to have certain desirable stability properties. Consider

the game induced by some mechanism Γ= (M , h) at type profile θ. Recall that each Mi has

K i ≥ 1 dimensions and mik represents the kth dimension of mi. If each Ui is twice differ-

entiable everywhere then, following Milgrom and Roberts (1990), this game is said to be

supermodular if

(1) ∂2Ui/∂mik∂mil ≥ 0 for all i ∈I and k 6= l ∈ {1, . . .,K i},

(2) ∂2Ui/∂mik∂m jl ≥ 0 for all i 6= j ∈I , k ∈ {1, . . .,K i}, and l ∈ {1, . . .,K j}, and

(3) Mi is a compact interval in RK i for all i.

10In these dynamics, each m(t) is a best response to the strategy (1/k)
∑t

s=t−k
m(s). Empirically, k = 5 fits best

the Healy (2006) data.
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FIGURE I. Examples of Cournot best-response dynamics in (A) a supermod-

ular and contractive game (α = 0.5), and in (B) a supermodular game that is

not contractive (α= 2). Dashed lines represent the best response functions if

the strategy spaces were unbounded.

Properties (1) and (2) guarantee that βi is increasing in others’ strategies. If conditions

(1) and (2) are satisfied but (3) is not, then we say the game is open-supermodular. Mil-

grom and Roberts (1990) prove that for every supermodular game, there is a smallest and

largest Nash equilibrium, denoted here by m∗ and m∗, and if a given learning dynamic

is ‘adaptive’—roughly, if it selects undominated strategies against a not-too-distant history

of past play—then that dynamic will converge to the interval [m∗, m∗]. If the game has a

unique equilibrium (m∗ = m∗), then the equilibrium point is globally stable under all adap-

tive learning dynamics.

Unfortunately, the usefulness of this stability result is sometimes quite limited. Since the

strategy space is required to be compact, then m∗ and m∗ may well be corner equilibria. In

this case, the stability result may be vacuous. To illustrate, consider a simple two-player

game where Mi = [−100,100] and βi(m) = αm j for each i ∈ {1,2}. Two examples of such

games are shown in Figure I. If α≥ 0 then this game is supermodular. If α ∈ (−1,1) then the

game is contractive.

In panel A of Figure I the game is both supermodular and contractive since α= 0.5. There

is a unique Nash equilibrium at m∗ = (0,0) and, by Milgrom and Roberts (1990), all adaptive

dynamics converge to m∗. The figure illustrates a typical path for Cournot best response

dynamics, starting at m(1) and converging monotonically to m∗.
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Panel B shows the best response functions when α = 2. The game is still supermodu-

lar (α > 0), but now has three Nash equilibria: m∗ = (−100,−100), m∗ = (0,0), and m∗
=

(100,100). In this case, the stability theorem of Milgrom and Roberts (1990) is vacuous;

the bounds on the limits of adaptive dynamics are the entire strategy space. Furthermore,

the interior equilibrium is unstable under most adaptive dynamics; a simple Cournot best-

response process initiated away from m∗ will converge monotonically to either m∗ or m∗.

Now consider open-supermodular versions of these games, where the strategy space is

unbounded. The best response functions are now represented by the dashed lines in the

figure. When α = 0.5 (panel A), stability of the unique equilibrium is maintained. When

α= 2 (panel B), however, the now-unique equilibrium m∗ continues to be unstable and the

best response dynamic diverges quickly.

Clearly, the stability of the interior equilibrium is driven by the magnitude of the best

response slopes, but not their sign. In other words, contractiveness is the more appropriate

notion of stability in games with unbounded strategy spaces or when convergence to corner

equilibria is considered undesirable.

Most existing work on supermodular mechanism design fails to appreciate this issue.11

The following example demonstrates, however, that the type of instability for supermodular

games shown in panel B of Figure I can also occur in a mechanism that implements a

desirable social choice function.

Example 1. Let Mi =R
1 for each i and suppose n is even. Take any quasilinear public goods

environment of the form vi(y|θi)+ xi where there exists some η> 1 such that v′′
i
∈ (−η,−1/η)

for every i and θi. Consider the mechanism with free parameter γ> 0 given by

q i(m)=

{

κ
n
−γ

∑

j 6={i, i+ n
2

} m j if i ≤ n/2
κ
n
+γ

∑

j 6={i, i− n
2 } m j if i > n/2

,

g i(m)≡ 0,

and

y(m)=
n/2
∑

i=1

mi −

n
∑

i=n/2+1

mi

and for each i.

One can show that this mechanism implements the Lindahl correspondence using a proof

very similar to that of Walker (1981). Calculating the slopes of the individual best-response

11See Chen and Tang (1998); Chen (2002); and Healy (2006), for example, or Chen (2008) for a survey. Math-

evet (2010) is an exception; he considers Bayesian implementation and studies supermodular mechanisms

with ‘small’ equilibrium sets.
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FIGURE II. Simulated best-response dynamics for an unstable supermodular mechanism.

functions, however, gives
∂βi

∂m j

=
γ

−v′′
i

−1≥
γ

η
−1

for each j 6∈ {i, i+ n/2} and ∂βi/∂mi+n/2 = 0. If γ > η, then βi is non-decreasing in m j for all

θi and so the game is open-supermodular. If γ > 2η, however, then the slopes of the best

response functions are larger than one, and the Cournot dynamics are unstable.

Figure II shows the path of best-response dynamics for a particular example with n =

4.12 The dynamic is initiated very close to equilibrium but diverges exponentially and is

unstable.

Chen (2002) designs a family of mechanisms that she shows to be (open-)supermodular

under certain parameter restrictions. Given the above discussion, it is unclear whether this

implies dynamic stability. Van Essen (2009a) shows, however, that the mechanism is also

contractive under the same parameter restrictions, and so stability is guaranteed.

In fact, Van Essen’s (2009a) supermodularity-implies-contractiveness result appears to be

a more general phenomenon with a fairly intuitive explanation. Most existing public goods

mechanisms feature a public goods function y(m) and a payment function xi(m) of a form

similar to

xi(m)=−
κ

n
y(m)−γg i(m),

where γ> 0 is a free parameter and g i(m) is increasing in the level of ‘disagreement’ between

players’ messages. Examples include the mechanisms of Groves and Ledyard (1977), Chen

(2002), Van Essen (2009b), and our example Lindahl mechanism below. For γ near zero the

mechanism is essentially a voluntary contribution mechanism with equal cost sharing. This

game has a best response function whose slope is −(n−1) and is therefore highly unstable.

For very high values of γ the mechanism induces a dynamically-stable coordination game

12Specifically, vi(y) = −(1/2)(y − 2)2 for each i, κ = 4, and γ = 2. The Nash equilibrium profile is m∗ =

(1/4,1/4,−1/4,−1/4) and the dynamic is initiated at m(0) = (0,0,0,0). At all points in time there are two pairs

of players choosing the same strategies, resulting in just two paths in the figure.
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FIGURE III. The slope of the best response functions in the Groves-Ledyard

mechanism as the parameter γ varies.

with a best response slope of +1. As γ is increased, the best response slope typically in-

creases monotonically from −(n−1) to +1, as in Figure III. At some threshold γ′ the game

becomes contractive, with a slope of at least −1. Beyond a second threshold of γ′′ > γ′ the

slope becomes positive, inducing a supermodular game. Thus, choosing a high enough γ to

guarantee supermodularity (as in Chen and Tang, 1998; Chen, 2002; and Van Essen, 2009b)

is more than sufficient to also guarantee that the mechanism is contractive.

Figure III shows the slope of the linear best response function in the Groves-Ledyard

mechanism for various values of γ using the utility parameters from the experiments of

Chen and Tang (1998) and Arifovic and Ledyard (2011) where n = 5.13 Contractiveness

obtains for γ ≥ 30 and supermodularity for γ ≥ 80. Experimental results suggest no con-

vergence to equilibrium at γ = 1, very slow convergence for γ = 10, and rapid convergence

for γ≥ 30.14 Convergence is generally faster and post-convergence behavior is more stable

for higher values of γ. These results suggest that contractiveness is a useful predictor of

stability in the laboratory, and supermodularity may be an excessive requirement.15

There is some justification, however, for requiring both supermodularity and contractive-

ness. First, convergence to equilibrium is fastest (in theory) when best response slopes are

13Specifically, vi(y|θi)= Ai −Bi y2 with Bi ∈ [1,8]. The values of γ tested are 1, 30, 50, 100, and 260.
14The slow convergence for γ= 10 is intriguing; it suggests that subjects may follow a particular dynamic that

can be stable even in games that are not contractive. Arifovic and Ledyard (2011) provide a dynamic that fits

well the broad patterns of the experimental data.
15Chen and Gazzale (2004) study the compensation mechanism of Varian (1994) in the laboratory. When the

‘punishment’ parameter β is increased the best response slope increases from −1/2 to +1. As in the Arifovic

and Ledyard (2011) experiments, convergence is stronger for higher values of β.
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close to zero. The Arifovic and Ledyard (2011) experimental results suggest that a posi-

tive slope leads to faster convergence than a negative slope.16 Requiring supermodularity

guarantees that best response slopes will fall in this range.

One major difference between supermodular and contractive games is that contractive

games have unique equilibria while supermodular games may not. Each has its drawbacks

and benefits in the context of mechanism design: Contractive mechanisms can only imple-

ment single-valued social choice functions (or single-valued selections from social choice cor-

respondences), since multiple equilibria would be required to implement multiple outcomes.

This may be beneficial, however, because it avoids the ambiguity and selection problems of

games with multiple equilibria. Supermodular games, on the other hand, can implement

multi-valued objectives, but will suffer from indeterminacies regarding equilibrium selec-

tion. In our view, mechanism design in practice would most likely focus on single-valued

selections of social choice correspondences, in which case the benefits of contractiveness

prevail.

Given the theoretical considerations and experimental evidence, we focus here on con-

tractiveness as our notion of stability.

Two Stable Mechanisms

In this section, we present mechanisms that have nearly all the features one might ask; they

implement Pareto optimal and individually rational allocations for a wide range of economic

environments, they are dynamically stable for a large family of adaptive learning dynamics,

they balance the budget both in and out of equilibrium, and the individual message spaces

are of minimal dimension necessary for dynamic stability.

To obtain stability results, we restrict attention to concave, quasilinear preferences of the

form u i(xi, yi|θi)= vi(yi|θi)+ xi that satisfy the next assumption.

Assumption 1. For all types θ ∈ Θ, all agents i have quasilinear preferences of the form

vi(yi|θi)+ xi where v′
i
> 0 and there is some η> 0 such that v′′

i
∈ (−η,−1/η).17

We justify our assumptions on preferences in a later section by showing that it is nearly

necessary for stability under well-behaved mechanisms. The argument is based on the

instability theorems of Jordan (1986) and Kim (1987). These results imply that stability

cannot be achieved for completely general preferences, so we assume quasilinearity of pref-

erences. Moreover, Jordan remarks that instability crucially relies on the range of second-

order preference behavior, hence the bound on concavity. Our Proposition 2 in Section V

16A slope very near +1 is undesirable, however, because convergence slows again. This begins to appear in

Arifovic & Ledyard’s (2011) data when γ= 260.
17These bounds are inconsistent with Assumption 6A in the appendix but, depending on the mechanism, may

or may not be consistent with Assumptions 4 or 4’.
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demonstrates the necessity of these bounds. Also, the exact values of the bounds need to

be known by the designer in order to set mechanism parameters that guarantee contrac-

tiveness. Thus, a designer must have substantial knowledge about the space of possible

preferences.

A Contractive Mechanism for Lindahl Allocations

The following describes our stable mechanism for Lindahl allocations. Let Mi =R i ×S i for

each i with R i =S i =R
1, choose δ> 0 and γ> 0, and set

(3) y(r)=
1

n

∑

i

r i,

(4) q i(m−i, s−i)=
κ

n
+δ(n−1)

(

si−1 −
γ

n−1

∑

j 6=i

r j

)

,

and

(5) g i(r, s)=
1

2

(

si −γr i+1

)2
+
δ

2

(

si−1 −γr i

)2
,

where i+1 and i−1 are taken to be modulo n.

Theorem 2. The mechanism defined by equations (3)–(5) fully Nash implements the Lin-

dahl correspondence. Under Assumption 1, if

(6) γ ∈







√

(

n+η2
)2
+4n(n−1)η4−

(

n+η2
)

2nη2
,1







and

(7) δ ∈

(

η

nγ
,δ(n,γ,η)

)

,

where

(8) δ(n,γ,η)=















[(

n−1
n

−γ
)(

1+γ
)

nη
]−1

if γ<
n−1

n
[(

γ− n−1
n

)

(1−γ)nη
]−1

if γ>
n−1

n

∞ if γ=
n−1

n
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then the mechanism is contractive and each Ui is concave in (r i, si).
18 If γ ≥ (n−1)/n and

δ> η/(nγ) then the mechanism is supermodular.

The messages in this mechanism can be interpreted in the following way: Agents are

ordered in a circle. Each r i represents agent i’s requested level of the public good. The

actual level chosen is the average of the requests. The message si represents i’s guess of

his neighbor’s request, adjusted by γ. Agents are penalized for the error in their guess

(si −γr i+1), as well as for the error in their neighbor’s guess about them (si−1 −γr i). In

equilibrium guesses are accurate, meaning si = γr i+1 and si−1 = γr i, and so no penalties are

realized. Prices q i are simply an equal share of the marginal cost (κ/n) plus a linear term

that increases in the difference between i−1’s guess of i’s request and the average of the

others’ actual requests. In equilibrium guesses are correct, so agents that request higher

public good levels are forced to pay higher prices. The sum of prices in equilibrium always

equals the marginal cost, as is required at Lindahl allocations.

To gain intuition for the stability result, suppose that some agent j 6= i+1 increases r j by

one unit. For agent i, this increase has a quantity effect of increasing y(r) by 1/n and a price

effect of reducing q i(r−i, s−i) by δγ. Agent i’s response to the quantity effect is to reduce

r i by an equal amount, returning y(r) to his most-preferred level. But the lower personal

price for the public good induces agent i to increase y(r) by δγ/v′′
i
. Finally, the resulting

net change in r i is further tempered by a coordination effect, since changing r i increases

the penalty term δ(si−1 −γr i)
2. The parameter values are then chosen so that these effects

nearly cancel out and the resulting total change in r i is sufficiently close to zero, regardless

of v′′
i
.

A unit increase in r i+1 not only has these same price, quantity, and coordination effects,

but also a coordination effect on si. Agent i’s optimal response is to increase si by γ, keeping

his guess accurate. As long as γ< 1 this added coordination effect is also contractive.

Finally, a unit increase in si−1 has similar offsetting effects: Agent i increases r i by 1/γ

due to the coordination effect, but reduces r i by δ(n−1)/v′′
i

due to the increased price effect.

Again, these responses are tempered by the penalty from i−1’s guess becoming inaccurate,

and the parameter restrictions ensure that the net effects almost perfectly offset.

Consider now large economies or economies with very rich type spaces. If n or η grows

large then γ must approach one. For large η (fixing n), δ must become large. For large n,

18If γ> (n−1)/n and n≤ η2/(2η−1) then the interval in (7) is non-empty if and only if γ is sufficiently close to

(n−1)/n or one. Specifically, the interval is non-empty if and only if

γ ∈







n−1

n
,1−

(

n+η2
)

+

√

(

n+η2
)2

−4n2η2

2nη2






∪






1−

(

n+η2
)

−

√

(

n+η2
)2

−4n2η2

2nη2
,1






,

both of which are non-empty intervals for all n> 2 and η> 0.
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however, δ could in fact become quite small, as the lower bound η/(nγ) from equation (7)

is decreasing in n. Thus, increasing the richness of the type space necessitates extreme

penalties and price reactions, but simply increasing the population size does not.

One downside of the above mechanism is that it fails to balance the budget at certain out-

of-equilibrium message profiles. This occurs both because the penalty terms (g i) may all

be strictly positive and the price terms (q i) may sum to something other than the marginal

cost. Both of these sources of imbalance can be corrected, however, by adding appropriate

terms to the penalty functions. For the case of n ≥ 5, this can be done by taking the g i

function from equation (5) and modifying it to equal

(9) ĝ i(r, s)= g i(r, s)+dL
i (r−i, s−i)

where dL
i
(r−i, s−i) is a polynomial given by (32) in the appendix.

Corollary 1. Suppose n ≥ 5 and Assumption 1 holds. If γ and δ satisfy (6) and (7) then

the mechanism defined by equations (3–5) and (9) fully Nash implements the Lindahl cor-

respondence, is contractive on Θ, and is budget balanced for all m ∈ M . Furthermore, each

Ui is concave in (r i, si).

Beyond this specific mechanism, our approach will show how other contractive mecha-

nisms can be constructed. For example, we can show that Chen’s (2002) open-supermodular

mechanism is also contractive, which Van Essen (2009a) has verified. Van Essen (2009b)

also provides a mechanism that is both contractive and open-supermodular. Both Chen’s

and Van Essen’s mechanisms are not balanced out of equilibrium. To our knowledge, the

mechanism in (3–5) and (9) is the first contractive mechanism that is also budget balanced

out of equilibrium. Since out-of-equilibrium learning is an important motivation for this

research, we view budget balance as an important requirement. Although our example

mechanism is somewhat complex—especially with the budget-balancing adjustment—our

impossibility result for one-dimensional mechanisms (Theorem 6) suggests that complexity

cannot be improved substantially.

A Contractive Mechanism for Walrasian Allocations

The process of designing a contractive Walrasian mechanism is nearly identical to the pro-

cess of designing a contractive Lindahl mechanism, though the exact functional forms obvi-

ously must differ.

The example mechanism we provide is two-dimensional with Mi =Ri×S i =R
2 for each i.

Fix any γ ∈ (1/(n−1),1). The outcome functions are then given by

(10) yi(r, s−i)= r i −
1

n−1

∑

j 6=i

r j,
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(11) q i(r−i, s−i)=
1

δ

(

si−1 +γ
∑

j 6=i

r j

)

,

and

(12) g i(r, s)= (si −γr i+1)2

for each i, with i−1 and i+1 taken to be modulo n.

Theorem 3. The mechanism defined by equations (10)–(12) fully Nash implements the

Walrasian correspondence. For any γ ∈ (1/(n−1),1) and δ> γη(n−1) (where η is the bound

on each v′′
i
), it is contractive on Θ and each Ui is concave in (r i, si).

This mechanism is not supermodular for any parameters since increases in si−1 generate

a price effect that lead i to reduce yi by reducing r i.

Here, agents are submitting a suggested net trade quantity (r i) and a guess of their neigh-

bor’s suggested net trade (si). Their actual net trade is the amount by which their suggested

trade is above or below the average suggested trade. They receive a penalty for incorrect

guesses of their neighbor which, along with the price term q i, disciplines the mechanism to

generate dynamic stability in much the same way that the Lindahl mechanism was made

stable through penalties.

The mechanism is stable because it creates inertia in each dimension of the message.

Each agent is a price-taker and ‘chooses’ her level of private good yi by using the first di-

mension of her message. If agents j 6= i change their messages, then agent i will try to match

the average variation of the r j ’s to restore her preferred net trade. But she does not want

to match it completely because of the price effect. Notice, indeed, that an increase in
∑

j 6=i r j

increases the price q i, hence it moderates i’s response. In the end, the change in agent i’s

first dimension is smaller than the variation in the average of others. Out of equilibrium,

the mechanism is not anonymous in the sense that each agent is possibly offered a different

price for the same goods. So the second dimension of the message guarantees that the price

is the same for everyone in equilibrium. But this has to be done while preserving stability,

which is why i only chooses si to match a fraction (γ< 1) of her neighbor’s suggested trade.

As with the Lindahl mechanism, the lower bound on δ need not grow as the economy

becomes large. Since γ can be kept arbitrarily close to 1/(n−1), the lower bound on δ can

be kept arbitrarily close to (and just above) η. But, as in the Lindahl mechanism, δ must

grow large as the type space becomes rich, since its lower bound grows linearly in η. With

a large δ the price function converges to zero, so agents choose their consumption bundle

as though the non-numeraire good were effectively free. This highlights a key difference

between Lindahl and Walrasian mechanisms: If agents ignore prices and penalties in the

Lindahl mechanism then the game is naturally unstable, and so prices and penalties are
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needed to restore stability. If agents ignore prices and penalties in the Walrasian mech-

anism, the game is (approximately) stable since each r j enters into yi negatively. In this

case, the prices and penalties are only needed to ensure that the mechanism implements

Walrasian allocations; the magnitude of the price function is made small so that the price

effect does not interfere with stability. The penalty term is only needed to pin down the

optimal choice of si, which can then be used to ensure that the agents’ prices are always

equal in equilibrium without letting the price function depend on r i or si.

The above mechanism fails to balance the budget at certain out-of-equilibrium message

profiles, because the non-numeraire good is not balanced out-of-equilibrium. As with the

Lindahl correspondence, the sources of imbalance can be corrected by adding appropriate

terms to the penalty functions. For the case of n ≥ 5, this can be done by taking the g i

function from equation (12) and modifying it to equal

(13) ĝ i(r, s)= g i(r, s)+dW
i (r−i, s−i)

where dW
i

(r−i, s−i) is given by equation (39) in the appendix.

Corollary 2. If n ≥ 5 and δ > γη(n−1), then the mechanism defined by equations (10–13)

fully Nash implements the Walrasian correspondence, is contractive on Θ, and is budget

balanced for all m ∈M . Furthermore, each Ui is concave in (r i, si).

IV CHARACTERIZATIONS OF IMPLEMENTING MECHANISMS

We now describe the process by which these mechanisms were constructed. A general

method for constructing stable mechanisms is useful because example mechanisms may

not pass the test of time as behavioral research progresses. Other restrictions on mecha-

nisms may be discovered, and this method for constructing new mechanisms can easily be

adapted as new restrictions are added.

Our method has two steps: First, we characterize the ‘shape’ of implementing mecha-

nisms. Then, we add our extra requirement of stability as a further restriction on the shape

of the mechanisms. This leads us to rule out one-dimensional mechanisms as potential

candidates. We therefore conclude that a stable mechanism will be a multidimensional con-

tractive price-quantity mechanism, as in the example mechanisms given above. These char-

acterizations also have implications about the complexity that is necessary for a mechanism

to Nash implement Walrasian or Lindahl allocations.

We no longer apply Assumption 1 (quasi-linearity); in this section we only require that

preferences be differentiable and strictly increasing in the numeraire.
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Characterization of One-Dimensional Mechanisms

For clarity, we first restrict attention to one-dimensional mechanisms where Mi = R
1 for

each i ∈ I . The characterization theorems are more transparent and intuitive in the one-

dimensional case; the case of higher-dimensional mechanisms is briefly covered in a later

subsection.

We begin by assuming twice-differentiable mechanisms. This assumption is mainly for

technical convenience and does not substantially hinder our ability to design stable mecha-

nisms (Theorems 2 and 3). Furthermore, we believe that highly discontinuous mechanisms

(such as Maskin’s canonical mechanism or Abreu-Matsushima’s dominance solvable mech-

anism) may be too complex for real-world application.

Assumption 2 (Differentiability). For each agent i, the message space Mi equals R1 and

the functions xi and yi are twice continuously differentiable in mi on M .

Our next assumption explicitly rules out cases where agent i’s outcome function becomes

arbitrarily flat. This does not rule out any existing mechanisms in the literature; most use

linear functions such as yi(m)=
∑

j m j.

Assumption 3 (Responsive yi). For each i there exists some εi > 0 such that for all m ∈M ,

|∂yi(m)/∂mi| ≥ εi.

Under Assumption 3, yi becomes bijective in mi. This guarantees a form of citizen

sovereignty wherein each agent is able to select any ŷi ∈ R through their choice of mi.
19

It also means yi is invertible for each m−i , enabling us to view agent i’s response as the

graph of a single-valued function from yi into xi. We denote this by

χi( ŷi|m−i) := xi(y−1
i ( ŷi|m−i), m−i),

where y−1
i

( ŷi|m−i) identifies the unique mi such that yi(mi, m−i) = ŷi. Thus χi( ŷi|m−i) is

the amount of good x that i must choose if he wants ŷi units of good y, given m−i.

We show an example of χi(yi|m−i) in Figure IV. At the point m∗, the outcome (xi(m
∗),

yi(m
∗)) is realized by agent i. As i differentially changes his message mi, he differentially

changes his allocation (xi, yi) along the graph of χi. The downward slope of this graph at

m∗—which we label Pi(m
∗)—represents the differential change in xi per unit of yi. We call

this the effective price of yi charged by the mechanism at m∗. Formally,

(14) Pi(m)=−
∂xi(m)/∂mi

∂yi(m)/∂mi

.

19This is reminiscent of Novshek (1985), for example, who views firms in an oligopoly market as choosing

aggregate output rather than individual production.
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FIGURE IV. The mapping χi(yi|m−i) and the effective price Pi(m) at m∗.

If m∗ is a Nash equilibrium then the standard first-order conditions imply that

(15)
∂u i(xi, yi|θi)/∂yi

∂u i(xi, yi|θi)/∂xi

= Pi(m
∗),

so that the marginal rate of substitution between yi and xi equals the effective price of the

mechanism at m∗.20

If this mechanism Nash implements a Walrasian or Lindahl equilibrium, then the mar-

ginal rate of substitution must also equal the Walrasian or Lindahl price. Thus, the effective

prices at the equilibrium message profile m∗ must also match the Walrasian or Lindahl price

for each environment θ. This leads to the following observation:

Observation (The Triple Tangency Property). If a mechanism Nash-implements Wal-

rasian or Lindahl allocations then at any Nash equilibrium m∗ each agent’s indifference

curve in (xi, yi)-space must be tangent to both the mechanism’s outcome manifold χi(·|m
∗
−i

)

and the corresponding Walrasian or Lindahl equilibrium price hyperplane.

The Triple Tangency Property is illustrated in panel (A) of Figure V; for type θi the point

zi is both a Nash equilibrium outcome and a Walrasian allocation at price p.21 Similarly, z′
i

is a Nash equilibrium and a Walrasian allocation (at price p′) for type θ′
i
.

Now consider panel (B) of Figure V. If the type space is sufficiently ‘rich’—meaning that

every outcome z is a Nash equilibrium outcome for some environment—then there will ex-

ist some θ′′ ∈ Θ such that the point z′′
i

is also a Nash equilibrium outcome. This must be

20Recall that M is open so there are no boundary Nash equilibria.
21Recall that xi and yi represent net trades, so the endowment is at (xi , yi)= (0,0).
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FIGURE V. (A) The Triple Tangency Property, and (B) a ‘bad’ Nash equilibrium.

a ‘bad’ Nash equilibrium, however, because the outcome z′′
i

cannot possibly be a Walrasian

equilibrium allocation; the indifference curve is not tangent to the price hyperplane p′′ that

connects the endowment to z′′
i
. Because of this bad Nash equilibrium, the mechanism rep-

resented by χi does not (weakly) implement the Walrasian or Lindahl correspondence.

If the type space is rich, then every point along χi can be made into a Nash equilibrium

outcome by selecting an appropriate type profile. If we require weak implementation—and,

therefore, no bad equilibria—then χi must be linear and pass through the endowment. Any

non-linearity will create a bad equilibrium. But a linear χi function means that i is forced

to act as if he is choosing and optimal level of yi taking as given a fixed per-unit price.

This price—the slope of χi—may still vary in m−i, but not in mi. This simple observation

generates our key necessary condition.

Assumption 4 (Rich Type Space). ν(Θ)=M .

This assumption places restrictions on the equilibrium set rather than on the primitives

of the model; in the appendix we provide two linked assumptions on the primitives that

together imply Assumption 4.

Theorem 4 (Necessity). Under Assumptions 2, 3, and 4, if a mechanism Γ = (Mi, q i, g i,

yi)i weakly Nash implements the Walrasian or Lindahl correspondence then for every i ∈I

and every m ∈M ,

(16) xi(m)≡−q i(m−i)yi(m),

so that g i(m)≡ 0.

Thus, Pi(m) = q i(m−i). Since q i now represents the per-unit price paid by agent i, an

immediate but useful corollary of Theorem 4 follows.
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Corollary 3. Under Assumptions 2, 3, and 4, if a mechanism Γ = (Mi, q i, g i, yi)i weakly

Nash implements the Walrasian correspondence then for every m ∈M ,

(17) q i(m−i)= q j(m− j) ∀i, j

and, therefore,

(18)
∑

i

yi(m)= 0.

If Γ weakly Nash implements the Lindahl correspondence then for every m ∈M ,

(19) yi(m)= yj(m) ∀i, j

and, therefore,

(20)
∑

i

q i(m−i)= κ.

Theorem 4 is stated for weak implementation, but obviously applies to full implemen-

tation as well. This theorem gives a strong but intuitive result: If a mechanism is to

Nash implement the Walrasian or Lindahl correspondence, then each agent’s message-

choosing problem in the mechanism (taking others’ messages as fixed) must be identical

to the quantity-choosing problem in an exchange economy when prices are taken as given.

In the case of a mechanism, the quantity yi is chosen indirectly through the choice of mi,

and the ‘price’ is determined endogenously as a function of m−i. In exchange economies,

agents choose yi directly and face exogenously-given prices.

Conversely, if an agent has the ability to change both his chosen quantity and his per-unit

price then such a mechanism cannot weakly implement the Walrasian or Lindahl alloca-

tions.

For the case of public goods economies, compare Theorem 4 with the mechanisms of

Groves and Ledyard (1977), Walker (1981), and Tian (1990). All three are one-dimensional

mechanisms in which q i depends only on m−i, but the Groves-Ledyard mechanism has a

non-trivial penalty function g i while the latter two do not. Consequently, Walker’s and

Tian’s mechanisms Nash implement the Lindahl correspondence while the Groves-Ledyard

mechanism does not.

For private goods economies, Theorem 4 is very strong. If no agent is allowed to affect

their own per-unit price, if all agents must have the same price at every equilibrium mes-

sage, and if every message is an equilibrium message for some type profile, then the only

admissible price function q i is a constant function that depends on no agents’ reports. But

clearly such a mechanism cannot fully implement the Walrasian correspondence on a rich

type space, so we arrive at a contradiction. This proves the following corollary:
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Corollary 4. Under Assumptions 2–4 there does not exist a one-dimensional mechanism

that Nash implements the Walrasian correspondence.

Corollary 4 was first proven by Reichelstein and Reiter (1988) using substantially differ-

ent mathematical techniques.

Finally, we show that the necessary conditions of Theorem 4 are also sufficient for weak

implementation. Full implementation is achieved if, for each Lindahl or Walrasian equilib-

rium point, there is some message m′ ∈M that maps to it.

Assumption 5. For every (x∗
i
, y∗

i
, p∗

i
)i ∈ R

2n+1 that is a Walrasian or Lindahl allocation for

some θ ∈Θ there is a message m′ ∈M such that

(xi(m
′), yi(m

′), q i(m
′))i = (x∗i , y∗i , p∗

i )i.

Note that Assumption 5 is slightly stronger than requiring f (Θ) ⊆ h(M ) because it also

requires that every possible Lindahl price be achievable by the q i functions.

Theorem 5 (Sufficiency). If a mechanism Γ satisfies Assumptions 2 and 3 and equations

(16), (17) and (18), then Γ weakly Nash implements the Walrasian correspondence. If equa-

tions (17) and (18) are replaced by (19) and (20) then Γ weakly Nash implements the Lindahl

correspondence. If, in addition, Γ satisfies Assumption 5, then Γ fully Nash implements the

Walrasian or Lindahl correspondence.

Under Assumption 5, the above necessary conditions become sufficient. The proof of suffi-

ciency for weak implementation is intuitive. Take the case of a private goods economy. Since

yi(mi, m−i) is bijective in mi, choosing mi is equivalent to choosing yi with q i(m−i) fixed.

Hence, choosing a message is similar to maximizing utility subject to the budget constraint.

Equations (17) and (18) ensure market clearing.

Assumption 5 guarantees that any Walrasian equilibrium allocation can be reached by

some message m′ ∈ M with q i(m
′
−i

) equalling the Walrasian price for each i. Because the

Walrasian equilibrium allocation is budget-constrained optimal, yi is bijective, and the lin-

ear mechanism mimics this budget constraint, the m′
i

mapping to yi(m
′
i
, m′

−i
) must be a

best response for agent i. Thus, every Walrasian allocation is a Nash equilibrium and full

implementation is achieved.

To demonstrate the gap between weak implementation and full implementation, consider

the equal-tax voluntary contribution mechanism, where Mi = R
1 for each i, y(m) =

∑

i mi

and xi(m) = −κy(m)/n (see Groves and Ledyard, 1980 or Healy, 2006). The hypotheses of

the first part of Theorem 5 are satisfied, so this mechanism weakly Nash implements the

Lindahl correspondence. But Assumption 5 fails at any θ that has a Lindahl equilibrium

(x∗
i
, y∗

i
, p∗

i
)i with p∗

i
6= p∗

j
for some i, j (which is true generically) because q i(m−i) = q j(m− j)
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for every m ∈ M . In these environments the mechanism has no Nash equilibrium and full

implementation fails.

The Impossibility of Contractive One-Dimensional Mechanisms

We now show that there cannot exist a mechanism with one-dimensional strategy spaces

(Mi =R
1 for each i) that Nash implements the Lindahl or Walrasian correspondence under

our maintained assumptions.

Theorem 6. Under Assumptions 2–4 and 1, there does not exist a mechanism with Mi =R
1

for each i that is both contractive and Nash implements the Lindahl or Walrasian corre-

spondence.

Therefore, the contractiveness property requires slightly more complex mechanisms.

Note that proof for the Walrasian correspondence is trivial since there does not exist any

one-dimensional mechanism that implements the Walrasian allocations.

Inspection of the proof reveals that Theorem 6 holds true even if v′′
i

can take any value in

(−∞,0); the bounds on v′′
i

from Assumption 1 are needed in the sequel to generate higher-

dimensional mechanisms that are contractive.

Characterization of Higher-Dimensional Mechanisms

Multidimensional mechanisms are indispensable for stability; we will see that one-dimensional

mechanisms are indeed unstable. We derive several useful conditions on implementing

mechanisms by extending ideas from the previous section. We relegate part of the argu-

ment to the appendix.

We let Mi = R i ×S i, where, for each i, R i ⊆ R
Ji represents those dimensions that affect

yi(r, s−i) and S i ⊆ R
K i−Ji be those dimensions that do not. With the partitioning of the

strategy spaces into R i and S i we can modify equation 2 slightly and write any mechanism’s

numéraire outcome function as

(21) xi(r, s)=−q i(r, s)yi(r, s−i)− g i(r, s).

(In a public goods environment y depends only on r.) Unlike equation 2, this formulation

allows the ‘price’ term q i to depend on agent i’s message. We now reformulate our previous

assumptions for the case of multiple dimensions.

Assumption 1’ (Differentiability). For each agent i and each message vector m ∈ M the

functions xi and yi are twice continuously differentiable in every dimension of mi.

Assumption 2’ (Responsive yi). For each i there exists some εi > 0 such that for all (r, s) ∈

M and all dimensions k ∈ {1, . . ., Ji}, |∂yi(r, s−i)/∂r ik| ≥ ε.
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Define

σi(r, s−i) := argmax
s′

i
∈S i

xi(r, s′i, s−i)

for each i, and

σ(r) := {s∗ ∈S : (∀i ∈I ) s∗i ∈σi(r, s∗
−i)}.

Thus, σ(r) represents the pure-strategy equilibria of a ‘transfer-maximizing game’ in which

agents pick si to maximize xi given r. If s 6∈ σ(r) then the pair (r, s) cannot be a Nash

equilibrium of the mechanism for any θ.

For each agent i and dimension k define the effective price along dimension k at message

(r, s) by

Pik(r, s) :=−
∂xi(r, s)/∂r ik

∂yi(r, s−i)/∂r ik

and note that by the same argument as in the one-dimensional case, it must be that Pik(r, s)

equals i’s marginal rate of substitution between yi and xi at any equilibrium (r, s). So, a

point (r′, s′) such that Pik(r′, s′) 6= Pil(r
′, s′) cannot be a Nash equilibrium. Given these two

restrictions, we now define

M
∗ := {m= (s, r) ∈M : (∀i ∈I )(∀k, l ∈ {1, . . ., Ji}) Pik(m)= Pil(m) and s ∈σ(r)}

to be the set of ‘candidate equilibrium’ points in M . Note that if each r i is one-dimensional—

as is true in our example mechanisms from Section III—then M
∗ is simply those points

satisfying s ∈σ(r). We obtain the following necessary conditions.22 If a mechanism Γ weakly

Nash implements the Walrasian correspondence then for every (r∗, s∗) ∈M
∗,

(22)
∑

i

yi(r
∗, s∗

−i)= 0

and

(23) q i(r
∗, s∗)= q j(r

∗, s∗) ∀i, j.

If Γ weakly Nash implements the Lindahl correspondence then for every m ∈M
∗,

(24)
∑

i

q i(r
∗, s∗)= κ

and

(25) yi(r
∗, s∗−i)= yj(r

∗, s∗− j) ∀i, j.

We use these conditions in the next result to build our mechanisms.

22These conditions emerge as a direct corollary of Theorem 8 (see Appendix).
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Assumption 3’. For every (x∗
i
, y∗

i
, p∗

i
)i ∈R

2n+1 that is a Walrasian or Lindahl allocation for

some θ ∈Θ there is a message m′ ∈M
∗ such that

(xi(m
′), yi(m

′), q i(m
′))i = (x∗i , y∗i , p∗

i )i.

Theorem 7 (Sufficiency). If Γ is a mechanism satisfying Assumptions 1’ and 2’, equations

(22) and (23), and

(1) q i(r, s)≡ q i(r−i, s−i)

(2) g i(r, s)≥ 0 for every (r, s)∈M , and

(3) g i(r, s)= 0 if (r, s) ∈M
∗,

then Γ weakly implements the Walrasian correspondence. If equations (22) and (23) are

replaced by (24) and (25), then Γ weakly implements the Lindahl correspondence. If, in

addition, Γ satisfies Assumption 3’ then Γ fully Nash implements the Walrasian or Lindahl

correspondence.

This theorem implies that the mechanism from Theorem 2 implements the Lindahl cor-

respondence. We can verify that g i ≥ 0 with g i = 0 when s ∈ σ(r), q i depends only on m−i,
∑

i q i = κ if s ∈ σ(r), y is bijective in r i, and for every Lindahl equilibrium there is some

message m′ ∈M that maps to the Lindahl equilibrium allocation and prices.

In summary, higher dimensional mechanisms may allow agents to affect their own prices

and face non-trivial penalty functions, but the penalty function must equal zero on the equi-

librium set, and each agent’s price must not change as the agent unilaterally changes r i and

adjusts si appropriately. At out-of-equilibrium or non-regular equilibrium points, however,

we derive no restrictions on the shape of the mechanism. It is this freedom that allows us

to introduce global stability properties into a mechanism. Intuitively, one should be able

to take a mechanism satisfying the restrictions of Theorem 8 and alter the mechanism on

M \M
∗ so that any adaptive dynamic process that wanders off of M

∗ will eventually return

back to the appropriate point in M
∗, restoring the equilibrium.

How to Construct Contractive Mechanisms

Given a mechanism, the slopes of the best response functions can be calculated using one of

two different methods.

If the value of σi(r, s−i) can be directly computed from the mechanism, then the direct

method can be used. First, it must be verified directly that σi is contractive; using the

row-sum norm and Lemma 1, this means we must verify that

(26)
∑

j 6=i

(∣

∣

∣

∣

∂σi

∂r j

∣

∣

∣

∣

+

∣

∣

∣

∣

∂σi

∂s j

∣

∣

∣

∣

)

< 1.
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Next, the first-order condition of utility maximization with respect to r i is calculated. Re-

placing si in that condition with σi(r, s−i) describes the first-order condition in r i as si ad-

justs optimally in response. Taking derivatives of this first-order condition with respect to

each r j and s j then give the slopes of how r i responds to changes in each other variable.

Given these slopes, the row-sum condition

(27)
∑

j 6=i

(∣

∣

∣

∣

∂ρ i

∂r j

∣

∣

∣

∣

+

∣

∣

∣

∣

∂ρ i

∂s j

∣

∣

∣

∣

)

< 1

is sufficient.

If σi cannot be solved directly then the implicit function theorem can still be used to

derive closed-form expressions for the slopes of σi and ρ i. These are given by the solution to

the system of equations.

(28)





∂2Ui

∂r2
i

∂2Ui

∂r i∂si

∂2Ui

∂si∂r i

∂2Ui

∂s2
i
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∂s j

∂σi

∂r j

∂σi

∂s j



=−





∂2Ui

∂r ir j

∂2Ui

∂r is j

∂2Ui

∂sir j

∂2Ui

∂si s j



 .

There is a unique solution to these equations if the left-most matrix is invertible. In that

case closed-form expressions for the slopes can be derived. Given these slopes, the contrac-

tion conditions (26) and (27) can be checked directly. Parameters guaranteeing supermodu-

larity can be derived similarly, by guaranteeing each slope is positive.

These methods are only useful for checking the stability of an existing mechanism. The

following shows how our example Lindahl mechanism was constructed following the suf-

ficiency conditions of Theorem 7. This provides a general blueprint for how other, similar

mechanisms could be constructed.

(1) Only two dimensions are needed for stability, so let r i and si each be one-dimensional.

This reduces M
∗ to those messages where s=σ(r).

(2) For simplicity, let y(r, s) depend only on r. Since y(r) must be responsive (Assumption

2’), an obvious choice is y(r)=α
∑

i r i for α> 0.

(3) Since prices must sum to κ, let q i(r−i, s−i)= κ/n+ q̂ i(r−i, s−i), where
∑

i q̂ i(r−i, s−i)= 0

whenever s ∈σ(r). Its exact form will be determined in later steps.

(4) The penalty term must satisfy g i ≥ 0 with g i = 0 when s ∈σ(r). Quadratic terms such

as (si −γr i+1)2 are a simple choice and, with a linear y(r) function, guarantee that

Ui will be concave in (r i, si). This means σi(r) = γr i+1, and so γ< 1 guarantees that

stability condition (26) will be satisfied.

(5) To determine q̂ i, note that an increase in any r j generates a quantity effect on agent

i through increasing y(r). This prompts i to reduce r i. This can be offset by having

r j enter negatively into q̂ i, generating a positive price effect on r i. For example,

consider q̂ i(r−i, s−i)= δ(−
∑

j 6=i r j).
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(6) Since we must have
∑

i q̂ i = 0 when s =σ(r), use the s−i terms to balance q̂ i. Specif-

ically, let q̂ i(r−i, s−i) = δ((n−1)si−1 −γ
∑

j 6=i r j), which now sums to zero when si−1 =

γr i.

(7) The price effect from including si−1 in q i(r−i, s−i) must be offset by a coordination

effect in g i. This is done by letting g i(r, s)= (si − r i+1)2 +δ(si−1 − r i)
2.

(8) Now take the resulting mechanism, use the direct method for deriving the contrac-

tion conditions (26) and (27) above, and find parameter values α, γ, and δ that satisfy

those two conditions. The resulting mechanism will be contractive and have concave

utilities over strategies.

The mechanisms of Chen (2002) and Van Essen (2009b) also can be thought of as being

constructed through this procedure. Both choose (si− y(r))2 instead of (si−γr i+1)2 at step 4.

Van Essen adds si−1 to q̂ i in step 6, but Chen instead adds
∑

j 6=i s j. This necessitates adding
∑

j 6=i δ(s j− y(r))2 to the penalty function at step 7. Obviously, many other mechanisms could

be constructed by varying these choices.

V DISCUSSION

Generalizing to Multiple Goods

Thus far our focus has been limited to economies with only one non-numeraire good, and our

stability result only to economies with preferences that are quasilinear in the numeraire.

Here we discuss various ways in which our results can—and cannot—be generalized.

Consider now a (K +1)-good economy with one private numeraire good and K ≥ 1 non-

numeraire goods. Agent i’s net consumption of the kth non-numeraire good is denoted yk
i

(or

yk if the good is public) and her consumption of the numeraire is xi. We say preferences are

quasilinear-additive if there exist functions {vk
i
}K
k=1

such that u i(xi, yi|θi)= xi +
∑

k vk
i
(yk

i
|θi).

Quasilinear-additive preferences allow us to easily describe K distinct two-good ‘sub-

economies’ in which K−1 of the non-numeraire goods are held fixed and only the numeraire

and kth non-numeraire goods vary. The lack of complementarities guarantees that the fixed

level of the other K −1 goods does not affect preferences in the kth sub-economy. Given any

mechanism Γ defined for two-good economies, we can define the K -fold extension of Γ to be

the mechanism in a (K +1)-good economy where Γ = (Mi, xi, yi) is applied simultaneously

to all K two-good sub-economies. Thus, agents submit messages mi = (m1
i
, . . . , mK

i
) ∈ M

K
i

,

the kth non-numeraire quantity is determined by yi(m
k) (where mk = (mk

1
, . . . , mk

n)), and the

numeraire quantity for agent i by
∑

k xi(m
k). The induced utility function over the mes-

sage space of the K -fold extension of Γ is simply the sum of induced utilities over each
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sub-economy:

Ui(m)=
∑

k

[

vk
i (yi(m

k)|θi)+ xi(m
k)

]

.

Proposition 1. Take any mechanism Γ defined for two-good economies. In a (K +1)-good

economy with quasilinear-additive preferences, the K -fold extension of Γ is contractive if Γ

is contractive on every two-good sub-economy.

Proposition 1 guarantees that the contractive mechanisms developed in Theorems 2 and 3

can be applied good-by-good in larger economies when preferences are quasli-linear additive.

The proof is simple: Changes to mk
j

for some j and k affect only yk
i

and xi for agent i. But, for

l 6= k, this will not change i’s marginal rate of substitution between yl
i

and xi. Thus, player

i’s best response is only affected in the mk
i

component, and so stability in the (K +1)-good

economy is equivalent to stability in each sub-economy.

Relaxing Quasilinearity and Bounded Convexity of Preferences

Although it is restrictive to limit attention to quasilinear-additive environments with bounded

concavity, earlier results by Jordan (1986) and Kim (1987) suggest that it is difficult to go

far beyond this with well-behaved mechanisms. Jordan’s result shows that in private good

economies, any well-behaved mechanism that strongly Nash implements the Walrasian cor-

respondence admits an environment, with a unique Walrasian allocation, such that the cor-

responding Nash equilibrium is not stable under a wide class of continuous-time dynamics.

Kim (1987) extends this result to public good economies. Jordan remarks that his instability

theorem crucially relies on the range of second-order preference behavior present in his en-

vironments. Our environments, instead, aim to turn off or bound these second-order effects.

This explains why the stability problem becomes very difficult, even in quasilinear envi-

ronments, when bounded concavity or additive separability is relaxed. Consider the case of

bounded concavity first. Suppose that v′′
i

is arbitrarily close to zero. Nash implementing a

Walrasian or Lindahl allocation requires the first order condition v′
i
(yi(m)|θi) = q i(m) to be

satisfied. Consider any change in m j for some j 6= i that alters q i. Agent i’s best response to

this change must alter v′
i
by an equal amount to restore the first-order condition. When v′′

i
is

very small, however, this requires a very large shift in y(m), which can only be accomplished

by a large change in mi.
23 Since the response in mi is larger than the original shift in m j,

the mechanism cannot be contractive.

23Clearly there is an offsetting effect if ∂yi /∂mi is large, but this derivative is fixed for any given yi(m
∗) while

v′′
i

is moving arbitrarily close to zero; eventually the v′′
i

effect must dominate.
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Proposition 2. Suppose u i(xi, yi|θi) = vi(yi|θi)+ xi. If for every ε > 0 there is some i, θi,

and y such that v′′
i
(y|θi) ∈ (−ε,0) then no mechanism that implements Walrasian or Lindahl

allocations is contractive on Θ.

In the presence of multiple private (public) goods, the strength of complementarities be-

tween the various goods can have destabilizing effects that are hard to accommodate. Re-

quiring contractiveness in each good separately is no longer sufficient for stability, and re-

quiring contractiveness for all goods simultaneously becomes a strong condition as the num-

ber of goods is increased. Bounding concavity serves a similar purpose. Without it, a small

change in some agents’ messages could lead other agents to overreact greatly, as we argued

in Proposition 2. This fundamental overreaction would not be overcome by appealing to a

different notion of stability; bounded concavity appears necessary for any stability concept.

Summary and Future Directions

From a theoretical perspective these newly-constructed mechanisms have nearly all the

features one might ask; they implement Pareto optimal and individually rational allocations

for a wide range of economic environments, they are dynamically stable for a large family

of adaptive learning dynamics, balances the budget both in and out of equilibrium, and the

individual message spaces are of minimal dimension necessary for dynamic stability.

The theorems in this paper make heavy use of the rich type space assumption. Sufficiently

weakening this assumption opens the door for mechanisms to have q i depend on r i or g i

to be non-zero, which in turn will make dynamic stability an easier requirement to satisfy.

For example, with only two possible type profiles (each with a unique Lindahl equilibrium)

the Triple Tangency Property only needs to be satisfied at two points; away from those two

points the mechanism can be ‘bent’ arbitrarily to satisfy the desired stability properties. As

the type space grows this flexibility clearly diminishes.

The obvious next step for future research is to return to the lab with these newly-constructed

mechanisms to understand what additional requirements they should be asked to satisfy.

Perhaps bounds on mechanism complexity or the limits on the magnitude of out-of-equilibrium

punishments will be identified as the next important factor for the theory to incorporate.

Eventually these mechanisms can be field-tested on a small scale and the theory will be

refined further as a result.
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APPENDIX

Proof of Theorem 1

The proof follows by induction. Pick a starting time t0. By definition of an ABR dynamic, for

each point in time tn there exists some later point in time tn+1 > tn such that for all t ≥ tn+1,

S(µ(t)) ⊆ B(β(B(H(tn, t)))). For each n ∈ {1,2, . . .} let Mn = H(tn, tn+1) be the history of play

from tn to tn+1.

For any metric d on M , any set M
′ ⊆M , and any point m′ ∈M the d-Hausdorff distance

between M
′ and the singleton set {m′} is given by

hd(M ′, m′)= sup
m∈M ′

d(m, m′).

Therefore, for any set M
′ ⊆M , hd(M ′, m∗)= hd(B(M ′), m∗). Thus,

ξhd(M1, m∗) = ξhd(B(M1), m∗)

≥ hd(β(B(M1)), m∗)

= hd(B(β(B(M1))), m∗)

≥ hd(M2, m∗),

where the first inequality comes from the contraction property of β and the last inequality

follows from the fact that M2 ⊂ B(β(B(M2))). Taking any n and n+1, we can use a similar

argument to show that ξhd(Mn, m∗)≥ hd(Mn+1, m∗). Therefore, for all n > 1,

ξnhd(M1, m∗)≥ hd(Mn, m∗),

which implies that the sequence Mn converges to {m∗}, and so any ABR dynamics converges

to m∗.

Q.E.D.

Proof of Theorem 2

Recall that the mechanism is given by

y (r)=
1

n

∑

i

r i,

q i (r−i, s−i)=
κ

n
+δ

(

(n−1)si−1 −γ
∑

j 6=i

r j

)

, and

g i (r, s)=
1

2

(

si −γr i+1

)2
+
δ

2

(

si−1 −γr i

)2
.

Step 1: We first prove that the mechanism is contractive on the given parameter ranges.

We use the ‘direct method’ for calculating the slopes of the best response functions and

verifying contractiveness for the given parameter restrictions.
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The induced utility function over strategies for agent i is therefore

Ui (r, s)= vi (y (r))− q i (r−i, s−i) y (r)− g i (r, s) .

Let ρ i (r−i, s−i) and σi (r−i, s−i) be i’s best response values of r i and si, respectively.

Since si only enters into g i (r, s), it is clear that σi = γr i+1.

The first-order condition on r i is given by

1

n
v′i

(

y
(

ρ i, r−i

))

−
κ

n2
−

1

n
δ

(

(n−1)si−1 −γ
∑

j 6=i

r j

)

+δγ
(

si−1 −γρ i

)

= 0

Differentiating with respect to r j ( j 6= i) gives

1

n2
v′′i +

1

n2
v′′i

∂ρ i

∂r j

+δγ
1

n
−δγ2∂ρ i

∂r j

= 0.

Therefore,

∂ρ i

∂r j

=
v′′

i
+δγn

δγ2n2−v′′
i

.

Differentiating with respect to si−1 gives

1

n2
v′′i

∂ρ i

∂si−1

−δ
n−1

n
+δγ−δγ2 ∂ρ i

∂si−1

= 0,

and so
∂ρ i

∂si−1

=
δn

(

γn− (n−1)
)

δγ2n2−v′′
i

.

Differentiating with respect to any other s j ( j 6∈ {i−1, i}) gives

1

n2
v′′i

∂ρ i

∂s j

−δγ2 ∂ρ i

∂s j

= 0,

which means
∂ρ i

∂s j

= 0.

Finally, we know that σi = γr i+1, so
∂σi

∂r i+1

= γ,

and all other slopes of σi are zero.

It is straightforward to check that all of these slopes are positive (and the mechanism is

therefore contractive) when δ> η/(γn) and γ> (n−1)/n.

The contractiveness condition on σi (using the row-sum norm) is

∑

j 6=i

∣

∣

∣

∣

∂σi

∂r j

∣

∣

∣

∣

+
∑

j 6=i

∣

∣

∣

∣

∂σi

∂s j

∣

∣

∣

∣

< 1

for all (r, s). This reduces here to

(29)
∣

∣γ
∣

∣< 1.
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The stability condition on ρ i is

∑

j 6=i

∣

∣

∣

∣

∂ρ i

∂r j

∣

∣

∣

∣

+
∑

j 6=i

∣

∣

∣

∣

∂ρ i

∂s j

∣

∣

∣

∣

< 1

for all (r, s). For the current mechanism, this is becomes

(n−1)

∣

∣

∣

∣

∣

v′′
i
+δγn

δγ2n2 −v′′
i

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

δn
(

γn− (n−1)
)

δγ2n2 −v′′
i

∣

∣

∣

∣

∣

< 1,

or

(n−1)
∣

∣v′′i +δγn
∣

∣+
∣

∣δn
(

γn− (n−1)
)∣

∣< δγ2n2
−v′′i .

Let

(30) δ>
η

γn
,

so that the first absolute value in the stability condition is positive. We now consider three

cases, depending on whether the argument of the second absolute value term is positive,

negative, or zero. Note that in the first case the mechanism will be supermodular since

all slopes are positive while in the second case it will not. The third case represents the

boundary of supermodularity.

Case 1: γ> (n−1)/n.

Given the stability condition σi from equation (29), we must have

γ ∈

(

n−1

n
,1

)

.

The stability condition then becomes

(n−1)
(

δγn+v′′i
)

+δn
(

γn− (n−1)
)

< δγ2n2
−v′′i .

Solving this for δ gives

δ<
−v′′

i

n
(

γ− n−1
n

)(

1−γ
) .

Since −v′′
i
> 1/η, this condition on δ is satisfied if

δ<
1

(

γ− n−1
n

)(

1−γ
)

nη
.

Recalling (30), contractiveness is satisfied if

γ ∈

(

n−1

n
,1

)

and

δ ∈

(

η

nγ
,

1
(

γ− n−1
n

)(

1−γ
)

nη

)

.
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Note that this interval for δ is non-empty only if γ is close enough to either (n−1)/n or

one. This is automatically satisfied whenever n > η2/
(

2η−1
)

, since (n−1)/n and one become

sufficiently close together in that case. If n < η2/
(

2η−1
)

, then we must have

γ ∈







n−1

n
,1−

(

n+η2
)

+

√

(

n+η2
)2
−4n2η2

2nη2





∪





1−

(

n+η2
)

−

√

(

n+η2
)2
−4n2η2

2nη2
,1







in order to guarantee a required value of δ exists. The right interval is always non-empty.

A bit of algebra reveals that the left interval is non-empty when n < η2, which is true here

since n < η2/
(

2η−1
)

. Thus, there are always values of γ close enough to (n−1)/n or one to

guarantee a choice of δ that ensures the mechanism is contractive.

Case 2: γ< (n−1)/n.

In this case (29) is automatically satisfied, and so stability of σi is guaranteed. The sta-

bility condition on ρ i becomes

(n−1)
(

δγn+v′′i
)

+δn
(

(n−1)−γn
)

< δγ2n2
−v′′i .

Solving for δ gives

δ<
−v′′

i

n
(

1+γ
)(

n−1
n

−γ
) .

Since −v′′
i
< 1/η, this is satisfied whenever

δ<
1

(

n−1
n

−γ
)(

1+γ
)

nη
.

Thus, contractiveness is satisfied if

γ<
n−1

n

and

δ ∈

(

η

nγ
,

1
(

n−1
n

−γ
)(

1+γ
)

nη

)

.

Note that such a δ only exists if γ is sufficiently close to (n−1)/n. Specifically, it must be

that

γ ∈







√

(

n+η2
)2
+4n (n−1)η4 −

(

n+η2
)

2nη2
,
n−1

n





 ,

which is always non-empty for n ≥ 3.

Case 3: γ= (n−1)/n.

In this case the second absolute value becomes zero (r i does not respond to si−1) and so

the stability condition reduces to

(n−1)
(

δγn+v′′i
)

< δγ2n2
−v′′i .
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Substituting γ= (n−1)/n, this inequality becomes

0<−nv′′i ,

which is true for all δ and n > 1 since v′′
i
< 0 by assumption. Thus, when γ = (n− 1)/n,

contractiveness obtains for any δ> η/(nγ)= η/(n−1).

Step 2: We now prove that the mechanism Nash implements the Lindahl correspondence.

To see that a unique Lindahl equilibrium exists for all θ, note that the three necessary

and sufficient conditions for any Lindahl equilibrium are:

(1) Given p∗
i

and y∗, it must be that x∗
i
=−p∗

i
y∗ for all i;

(2) This implies that that ∂vi(y∗)/∂y= p∗
i

for each i; and

(3) Linearity of the firm’s profit function then implies that
∑

i ∂vi(y∗)/∂y=
∑

i p∗
i
= κ.

Using these conditions we can derive the unique Lindahl equilibrium in three steps:

(1) Since v′′
i
∈ (−η,−1/η) for each i there is one unique y∗ satisfying the third necessary

condition;

(2) Given the unique y∗, there is one unique p∗
i

for each i satisfying the second condition;

and

(3) Given y∗ and p∗
i

there is one unique x∗
i

for each i satisfying the first condition.

Since the mechanism is contractive it also has a unique Nash equilibrium (r∗, s∗) for every

θ. Now take the equilibrium message (r∗, s∗) and let p∗
i
= q i(r

∗
−i

, s∗
−i

). Then xi(r
∗, s∗) =

−p∗
i

y(r∗) for each i, satisfying the first condition. Furthermore, the first-order condition for

maximization in r i at an equilibrium point implies that

v′i(y(r∗))
∂yi(r

∗)

∂r i

= p∗
i

∂yi(r
∗)

∂r i

+
∂g i(r

∗,σ(r∗))

∂r i

.

Since ∂yi(r)/∂r i 6= 0 and ∂g i/∂r i = 0 at the equilibrium point, we have that v′
i
(y(r∗)) = p∗

i
,

satisfying the second condition. Finally, it is easy to check that
∑

i q i(r
∗
−i

, s∗
−i

) = κ at the

equilibrium point since s∗
i
= γr∗

i+1
for each i and so the third condition is satisfied. Thus, the

unique equilibrium point is equal to the unique Lindahl allocation.

Q.E.D.

Proof of Corollary 1

Consider the mechanism without dL
i
(r−i, s−i) added. In general, the excess numeraire col-

lected at any message profile (r, s) equals

∑

i

q i(r−i, s−i)y(r)+
∑

i

g i(r, s)−κy(r).
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For the current mechanism, this equals

∑

i

[

κ

n
+δ

(

(n−1)si−1 −γ
∑

j 6=i

r j

)]

y(r)

+
∑

i

[

1

2

(

si −γr i+1

)2
+
δ

2

(

si−1 −γr i

)2
]

−κy(r),

which reduces to
[

δ
∑

i

(

(n−1)si−1 −γ
∑

j 6=i

r j

)

y(r)

]

(31)

+

[

∑

i

1

2

(

si −γr i+1

)2
+

∑

i

δ

2

(

si−1 −γr i

)2

]

.

Now consider the function

dL
i (r−i, s−i) = δ

n−1

n

((

∑

j 6=i

r j

)

[si+1 −γr i+2]+ r i+1[si+2 −γr i+3]

)

(32)

+
1

2
(si+1 −γr i+2)2

+
δ

2
(si−2 −γr i−1)2.

Let the new mechanism’s penalty function be g i(r, s)−dL
i
(r−i, s−i).

The function dL
i
(r−i, s−i) has three properties: First, in any equilibrium dL

i
= 0 since

si = γr i+1 for every i. Thus, total penalties remain zero in equilibrium. Second, dL
i

does

not depend on i’s announcement; therefore, neither the equilibrium nor the contractiveness

of the mechanism are affected by the addition of this term. Finally, the sum of the dL
i

terms always equals the excess numeraire collected, so the new mechanism is always exactly

balanced.

To see that the sum of dL
i

terms always equals the excess numeraire, note that

∑

i

dL
i (r−i, s−i) = δ

n−1

n

∑

i

((

∑

j 6=i

r j

)

[

si+1 −γr i+2

]

+ r i+1

[

si+2 −γr i+3

]

)

+
∑

i

[

1

2

(

si+1 −γr i+1

)2
+
δ

2

(

si−2 −γr i−1

)2
]

.

The second term here equals the second term in the expression of excess numeraire, equa-

tion (31). The first term can be rewritten as

δ
n−1

n

(

∑

i

(

∑

j 6=i

r j

)

[

si+1 −γr i+2

]

+
∑

i

r i+1

[

si+2 −γr i+3

]

)

.

By shifting the indices of the final sum, this is equal to

δ
n−1

n

(

∑

i

(

∑

j 6=i

r j

)

[

si+1 −γr i+2

]

+
∑

i

r i

[

si+1 −γr i+2

]

)

.
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But now that reduces to

δ
n−1

n

(

∑

i

r i

)[(

∑

i

si

)

−γ

(

∑

i

r i

)]

,

which is exactly the first term in equation (31). Thus, the resulting mechanism is always

balanced.

Proof of Theorem 3

Step 1: We first show that the mechanism is contractive.

Agent i’s utility over strategies in this mechanism is given by:

Ui(r, s|θ)= vi(yi(r, s−i)|θ)−δ

(

si−1 +γ
∑

j 6=i

r j

)

yi(r, s−i)−
(

si −γr i+1

)2
.

To find i’s best-response function, we compute the first-order conditions:

∂Ui(r, s|θ)

∂r i

≡ v′i(yi(·))
∂yi

∂r i

−
1

δ

(

si−1 +γ
∑

j 6=i

r j

)

∂yi

∂r i

= 0

∂Ui(r, s|θ)

∂si

≡ si −γr i+1 = 0

So,

ρ i(r−i, s−i) =
1

n−1

∑

j 6=i r j +v′−1
i

(

1
δ

(

si−1 +γ
∑

j 6=i r j

)

|θ
)

σi(r−i, s−i) = γr i+1

The sufficient conditions for the mechanism to be contractive are then

(33)
∑

j 6=i

∣

∣

∣

∣

∂ρ i(r−i, s−i)

∂r j

∣

∣

∣

∣

+
∑

j 6=i

∣

∣

∣

∣

∂ρ i(r−i, s−i)

∂s j

∣

∣

∣

∣

=

(

∑

j 6=i

∣

∣

∣

∣

∣

1

n−1
+

γ

δv′′
i
(·|θ)

∣

∣

∣

∣

∣

)

+

∣

∣

∣

∣

∣

1

δv′′
i
(·|θ)

∣

∣

∣

∣

∣

< 1

and

(34)
∑

j 6=i

∣

∣

∣

∣

∂σi(r−i, s−i)

∂r j

∣

∣

∣

∣

+
∑

j 6=i

∣

∣

∣

∣

∂σi(r−i, s−i)

∂s j

∣

∣

∣

∣

= γ< 1.

For the first condition, recall that v′′
i
(·|θ) ∈ (−η,−1/η), so if δ> γη(n−1) then

1

n−1
+

γ

δv′′
i
(·|θ)

> 0.

Therefore, the left-hand side of (33) is equal to

1+
γ(n−1)−1

δv′′
i
(·|θ)

,

which is less than one when γ > 1/(n− 1). Thus, the mechanism is contractive when γ ∈

(1/(n−1),1) and δ> γη(n−1).
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Step 2: Proving that this mechanism fully implements the Walrasian correspondence is

a direct consequence of Theorem 7.

Take a Nash equilibrium (r∗, s∗) for θ ∈Θ. Then, from the previous step, we know s∗
i−1

=

γr∗
i
. As a result,

q i(r
∗
−i, s∗

−i)= δ

(

s∗i−1 +γ
∑

j 6=i

r∗j

)

=

n
∑

i=1

γr∗i =Q∗

for all i ∈I , and

(35) xi(r
∗, s∗)=−Q∗yi(r

∗, s∗).

By definition of Nash equilibrium, u i(r
∗, s∗)≥ u i(r i, r∗

−i
, s∗) for all r i. That is,

(36) vi(yi(r
∗, s∗)|θ)−Q∗yi(r

∗, s∗)≥ vi(yi(r i, r∗−i, s∗)|θ)−Q∗yi(r i, r∗−i, s∗)

for all r i. Since yi is a surjection from R onto R (in r i), (36) implies

(37) vi(yi(r
∗, s∗)|θ)−Q∗yi(r

∗, s∗)≥ vi(yi|θ)−Q∗yi

for all yi. Finally, we verify that allocation [yi(r
∗, s∗), xi(r

∗, s∗)]i is balanced. By definition,

∑

i

yi(r
∗, s∗)=

∑

i

r∗i −
1

n−1

∑

i

∑

j 6=i

r∗j = 0.

Since x∗
i
(r∗, s∗)=−Q∗yi(r

∗, s∗),
∑

i x∗
i
(r∗, s∗)= 0. It follows from balancedness, (35), and (37)

that allocation [yi(r
∗, s∗), xi(r

∗, s∗)]i is a Walrasian allocation. To complete the proof, start

with the Walrasian allocation [Y ∗
i

, X∗
i
]i of some environment θ. From step 1, the mechanism

is contractive, hence a Nash equilibrium exists (by Banach fixed point theorem). From the

previous argument, this Nash equilibrium must correspond to a Walrasian allocation, which

is necessarily [Y ∗
i

, X∗
i
]i.

Q.E.D.

Proof of Corollary 2

For the case of n ≥ 5, the imbalance can be done by taking the g i function from equation (12)

and modifying it to equal

(38) ĝ i(r, s)= g i(r, s)+dW
i (r−i, s−i)
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where

(39) dW
i (r−i, s−i)=−(si+1 −γr i+2)2

+

1

δ

(

(si−2 −γr i−1)r i−1 +
1

n−1
(γr i+2 − si+1)r i−1 +

1

n−1

∑

k 6=i,i−1

(γr i+3 − si+2)rk

)

As in the proof of Corollary 1, we note that this function sums to zero at any candidate

equilibrium point, does not affect equilibrium or stability since it depends only on (r−i, s−i),

and a bit of algebra confirms that
∑

i dW
i

always equals the excess numeraire collected by the

mechanism absent dW
i

. Thus, the resulting mechanism also implements Walrasian equilib-

rium allocations and is contractive, but now is balanced out of equilibrium as well.

The Rich Type Space Assumptions

With multiple dimensions, it becomes overly restrictive to assume that ν(θ) =M (Assump-

tion 4) because the dimensionality of ν(Θ) may be strictly less than that of M . But, for any

Γ, we have ruled out two types of messages that can never be Nash equilibria of Γ for any

θ ∈Θ and we have defined M
∗. The analog of Assumption 4 for multiple dimensions is

Assumption 4’. ν(Θ)=M
∗.

This assumption is used in the next section to derive conditions on mechanisms. Here

we break it into two separate (but linked) assumptions on primitives; in the case of one-

dimensional mechanisms these assumptions imply Assumption 4.

Assumption 6. There exists some ρ ∈ {2,4,6, . . .} such that

(A) all ρ-th order preferences are admissible:

Θρ :=
{

θ ∈Θ : (∀i) (∃(αi,βi) ∈ (R++×R)) s.t. u i(xi, yi|θi)=
(

−αi y
ρ

i
+βi yi

)

+ xi

}

⊆Θ,

and

(B) for all r ∈R, all s ∈σ(r), and all i ∈ I there exists some finite γi(r) > 0 such that for

all r′
i
∈R i and s′

i
∈σi(r

′
i
, r−i, s−i),

∣

∣xi(r
′
i, r−i, s′i, s−i)− xi(r, s)

∣

∣≤ γi(r)max
{

∣

∣yi(r
′
i, r−i)− yi(r)

∣

∣

ρ
,
∣

∣yi(r
′
i, r−i)− yi(r)

∣

∣

1/ρ
}

,

Assumption 6A simply requires that all polynomial (quasilinear) preferences of order ρ be

permitted in the type space. To interpret Assumption 6B, let ρ = 2 and consider changes in

mi that lead to large changes in yi. In this case, the squared term in the maximand applies,

and so the assumption places quadratic upper and lower bounds on the change in xi. For

changes in mi, that lead to small changes in yi the upper and lower bounds are square-root

bounds. In either case, the requirement is strictly weaker than requiring that χi be Hölder
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continuous of degree ρ or that χi be Lipschitz continuous. The bounds on χi imposed by this

assumption are demonstrated in figure VI. Note that as ρ increases Assumption 6B becomes

strictly weaker though Assumption 6A requires more ‘exotic’ preferences in the economy.


i
(y

i
|m)

y
i
(m)

x
i
(m)

x
i
(m) + 

i
(m)

x
i
(m) - 

i
(m)

y
i
(m)-1 y

i
(m)+1

FIGURE VI. The bounds on χi(yi|m−i) imposed by Assumption 6B for ρ = 2.

Given these modified assumptions, we can now prove that Assumption 4’ (or Assumption

4) holds.

Proposition 3. Take any mechanism Γ = (Mi, xi, yi)i∈I and ρ satisfying Assumptions 1’,

2’ and 6B and any type space Θ satisfying Assumption 6A. If ρ ≤ 2 then Assumption 4’ is

satisfied: ν(Θ)=M
∗. If ρ > 2 then {(r, s)∈M

∗ : yi(r) 6= 0 ∀i}⊆ ν(Θ).

Proof of Proposition 3:

Define M
∗∗ by

M
∗∗

=
{

(r, s)∈M
∗ : yi(r)ρ−2

6= 0 ∀i
}

.

Note that if ρ ∈ {1,2} then M
∗ = M

∗∗ (using the convention that 00 = 1). We know that

ν(Θ) ⊆ M
∗; Proposition 3 can then be proven by showing that M

∗∗ ⊆ ν(Θ). This is done by

constructing a mapping φ : M ∗∗ →Θρ such that m ∈ ν(φ(m)) for all m ∈M
∗∗. Thus,

M
∗∗

⊆ ν(φ(M ∗∗))= ν(Θρ)⊆ ν(Θ),

giving the result.

Specifically, consider the mapping φ : M
∗∗ → Θρ such that φi(m

∗) = (αi(m
∗),βi(m

∗)) ∈

R+×R for each m∗ ∈M
∗∗ and

u i(xi, yi|φi(m
∗))= vi(yi|φi(m

∗))+ xi,
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where

vi(yi|φi(m
∗))=−

αi(m
∗)

ρ
y
ρ

i
+βi(m

∗)yi

and, for a given value of αi(m
∗) (to be determined later in the proof), βi(m

∗) is given by

(40) βi(r
∗, s∗) :=αi(r

∗, s∗)y
ρ−1

i
(r)+Pik(r∗, s∗)

(recall that Pik is the effective price function defined in equation (14) and does not depend

on k since m∗ ∈M
∗∗).

We now fix an arbitrary m∗ = (r∗, s∗) ∈M
∗∗ and show that m∗

i
is a best-response to m∗

−i
for

each i in environment φ(m∗) = (αi(m
∗),βi(m

∗))i∈I. This is done in two steps; first we verify

that m∗
i

is a local optimum in response to m∗
−i

for each i and then we show m∗
i

can be made

a global optimum by increasing αi(m
∗) sufficiently, allowing βi(m

∗) to adjust appropriately

as αi(m
∗) changes.

Given φi(m
∗), i’s objective is to choose (r i, si) to maximize

(41) −
αi(m

∗)

ρ
yi(r i, r∗

−i)
ρ
+βi(m

∗)yi(r i, r∗
−i)+ xi(r i, si, r∗

−i, s∗
−i).

For local optimality, the first-order conditions for each sik are already satisfied at m∗ by the

construction of M
∗∗ (see equation 22). As for r ik, agent i’s first-order condition for utility

maximization at (r∗, s∗) with respect to each r ik is

[

−αi(r
∗, s∗)y

ρ−1

i
(r)+βi(r

∗, s∗)
] ∂yi(r)

∂r ik

+
∂xi(r, s)

∂r ik

= 0.

But the construction of βi (equation 40) guarantees that this is satisfied at (r, s)= (r∗, s∗) for

any αi(r
∗, s∗), so the first-order conditions are satisfied for all m∗ ∈M

∗∗.

To describe the second-order conditions for local optimality, we show that the matrix of

second-partial derivatives of i’s objective function will be negative definite for sufficiently

large αi(m
∗). Shortening notation, let Xr and Xs be the column vectors of partial derivatives

of xi with respect to r i and si, respectively, and let Xrr, Xrs, and Xss represent the matrices

of cross-partial derivatives of xi. Similarly define Yr and Yrr as the partial and cross-partial

derivatives of yi, respectively. Using this notation, the matrix of second partial derivatives

of the objective function (41) (after inserting the definition of βi(m
∗) from equation 40) is

given by the K i ×K i matrix

Hi =





−αi(m
∗)(ρ−1)yi(r

∗)ρ−2
(

Yr ·Yr
T
)

+Pik(m∗)Yrr+Xrr Xrs

Xrs
T Xss



 ,

where again Pik(m∗) does not depend on k since m∗ ∈M
∗∗. Now take any direction (dr,ds) 6=

0 of deviation from m∗
i
. Since m∗ ∈M

∗∗ implies s∗ ∈σ(r∗), we know that any deviation with

dr = 0 will not yield strictly higher utility, hence (0,ds)T ·Hi · (0,ds) ≤ 0. For any direction
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(dr,ds) with dr 6= 0 we have

(dr,ds)T
·Hi · (dr,ds) = −αi(m

∗)(ρ−1)yi(r
∗)ρ−2 dr

T
(

Yr ·Yr
T
)

dr+K i(m
∗)

= −αi(m
∗)(ρ−1)yi(r

∗)ρ−2
(

dr
TYr

)2
+K i(m

∗)

where

K i(m
∗)=dr

T
[

Pik(m∗)Yrr +Xrr

]

dr+2dr
TXrsds+ds

TXssds.

Since xi and yi are continuously differentiable and ∂yi/∂r i is bounded away from zero,

K i(m
∗) is finite for all m∗. Because yi(r

∗)ρ−2 6= 0, αi can be chosen to be any function

satisfying

αi(m
∗)> K i(m

∗)
(

(ρ−1)yi(r
∗)ρ−2

)−1
(

dr
TYr

)−2

for all m∗ ∈M
∗∗, so that (dr,ds)T ·Hi · (dr,ds) < 0. Thus, m∗

i
is a local best-response to m∗

−i

for large enough αi(m
∗).

We now construct φi(m
∗) by increasing αi(m

∗) until m∗
i

is a global best-response to m∗
−i

.

Since m∗
i

is a local best-response, there is some neighborhood Ni(m
∗) of m∗

i
on which m∗

i

maximizes i’s utility given αi(m
∗). Although increasing αi may change the neighborhood

around m∗ on which m∗
i

is a local best-response, the neighborhood can only increase in size

as αi is increased. Thus, we ignore this dependence of Ni(m
∗) on αi and show that any

m′
i
6∈Ni(m

∗) yields a lower payoff than m∗
i

when αi is sufficiently large.

To proceed, pick any m′
i

and m′′
i

such that m∗
i
∈ (m′

i
, m′′

i
) ⊂ Ni(m

∗) and, to shorten no-

tation, let y∗
i
= yi(r

∗), x∗
i
= xi(m

∗), y′
i
= yi(r

′
i
, r∗

−i
), x′

i
= xi(m

′
i
, m∗

−i
), y′′

i
= yi(r

′′
i
, r∗

−i
), and

x′′
i
= xi(m

′′
i
, m∗

−i
).

To show that u i(x
∗
i
, y∗

i
)−u i(x

′
i
, y′

i
)≥ 0 for some α′

i
, we expand this expression to get

α′
i

[(

ρ−1

ρ
y
∗ρ

i
+

1

ρ
y
′ρ

i

)

−
(

y
∗ρ

i

)

ρ−1

ρ
(

y
′ρ

i

)

1
ρ

]

+Pik(m∗)
(

y∗i − y′i
)

≥
(

x′i − x∗i
)

,

which, by Assumption B, is true if

α′
i

[(

ρ−1

ρ
y
∗ρ

i
+

1

ρ
y
′ρ

i

)

−
(

y
∗ρ

i

)

ρ−1

ρ
(

y
′ρ

i

)

1
ρ

]

+Pik(m∗)
(

y∗i − y′i
)

≥(42)

γi(m
∗)ρmax

{

|y∗i − y′i|
ρ , |y∗i − y′i|

1
ρ

}

(the extra ρ before the maximizing operator is needed for a later step). But the term in

square brackets is the difference between the weighted arithmetic mean and the weighted

geometric mean of the two points y
∗ρ

i
and y

′ρ

i
; by the AM-GM inequality this difference is

positive. Thus, there is some finite α′
i

at which inequality (42) is true. Similarly, there

is some finite α′′
i

at which the expression u i(x
∗
i
, y∗

i
)− u i(x

′′
i
, y′′

i
) ≥ 0 is true. Let αi(m

∗) =

max{α′
i
,α′′

i
} and now fix φi(m

∗)= (αi(m
∗),βi(m

∗)).
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Suppose that y′
i
< y′′

i
(the proof for the case where y′′

i
< y′

i
is symmetric) and pick any

yi ≥ y′′
i
. Suppose that

αi(m
∗)

[(

ρ−1

ρ
y
∗ρ

i
+

1

ρ
y
ρ

i

)

−
(

y
∗ρ

i

)

ρ−1

ρ
(

y
ρ

i

)
1
ρ

]

+Pik(m∗)
(

y∗i − yi

)

(43)

−γi(m
∗)ρmax

{

|y∗i − yi|
ρ , |y∗i − yi|

1
ρ

}

≥ 0,

which is true for yi = y′′
i

(see inequality (42)). Then the derivative of the left-hand side of

this inequality is positive, implying that the inequality is true for all yi ≥ y′′
i
; to see this,

take the derivative of the left-hand side and multiply by (yi − y∗
i
)> 0 to get either

(44) αi(m
∗)

[

y
∗ρ

i
− y

∗ρ−1

i
yi + y

ρ

i
− y∗i y

ρ−1

i

]

+Pik(m∗)(y∗i − yi)−γi(m
∗)ρ(yi − y∗i )ρ

or

(45) αi(m
∗)

[

y
∗ρ

i
− y

∗ρ−1

i
yi + y

ρ

i
− y∗i y

ρ−1

i

]

+Pik(m∗)(y∗i − yi)−γi(m
∗)

1

ρ
(yi − y∗i )1/ρ.

In either case, the expression is greater than the left-hand side of (43) because

[

y
∗ρ

i
− y

∗ρ−1

i
yi + y

ρ

i
− y∗i y

ρ−1

i

]

≥

[(

ρ−1

ρ
y
∗ρ

i
+

1

ρ
y
ρ

i

)

−
(

y
∗ρ

i

)

ρ−1

ρ
(

y
ρ

i

)
1
ρ

]

reduces to
(

ρ−1

ρ
y
∗ρ

i
+

1

ρ
y
ρ

i

)

≥
(

y
∗ρ

i

)

ρ−1

ρ
(

y
ρ

i

)
1
ρ ,

which is just the AM-GM inequality again. Thus, both (44) and (45) are positive. By conti-

nuity, (43) is positive for all yi ≥ y′′
i

and so deviations resulting in yi ≥ y′′
i

are not profitable.

A symmetric argument shows that deviations to yi ≤ y′
i

are also not profitable. Since we

already know that deviations resulting in yi ∈ (y′
i
, y′′

i
) are unprofitable, the proof is complete.

Q.E.D.

Multidimensional Mechanisms and the Proof of Theorem 4

In the previous section, we provided two linked assumptions—one on the type space and

one on the mechanism—that together imply Assumption 4’.

Now we define regular candidate equilibrium points for which our theorem will apply. Let

R
∗ be the projection of M

∗ onto R.

Definition 3. A candidate equilibrium (r∗, s∗) ∈M
∗ is regular if σ(r) is locally threaded by

some differentiable function ς=×iςi for each i; formally (r∗, s∗) is regular if for each i there

is some open set R
0
i
⊂R

∗
i

containing r∗
i

and a differentiable function ςi : R×S−i →S i such

that ςi(r
∗, s∗

−i
)= s∗

i
and (r′

i
, r∗

−i
,ςi(r

′
i
, s∗

−i
), s∗

−i
) ∈M

∗ for all r′
i
∈R

0
i
.24

24The locally threaded condition rules out space-filling Peano functions, for example. Mount and Reiter (1974,

1977) describe the communication requirements of implementation via a ‘message process’ ν : Θ ։ M that
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A candidate equilibrium (r∗, s∗) is regular if differential deviations in r i can always be

accompanied by a differential change in si such that the joint deviation does not lead to a

strategy profile outside of M
∗. We refer to ςi as i’s adjustment function. An example of a

non-regular equilibrium would be one for which a differential change in r i leads to a point

at which σ(r) is empty or has a jump discontinuity.

We now prove higher-dimensional analogs to Theorem 4 and Corollary 3

Theorem 8 (Necessity). Suppose a mechanism Γ = (Mi, xi, yi)i∈I Nash implements the

Lindahl or Walrasian correspondences and satisfies Assumptions 1’, 2’, and 4’. Writing the

mechanism as

xi(r, s)=−q i(r, s)yi(r, s−i)− g i(r, s),

it must be the case that for every regular point (r∗, s∗) ∈M
∗ with adjustment functions (ςi)i,

(46)
dq i(r

∗,ςi(r
∗, s∗

−i
), s∗

−i
)

dr ik

= 0 ∀i ∈I , k ∈ {1, . . ., Ji}

and

(47) g i(r
∗, s∗)= 0.

Proof of Theorem 8. For any θ ∈Θ let pi(θ) be agent i’s price for good yi at the Walrasian

or Lindahl equilibrium for environment θ. For any m ∈ ν(Θ) let φ(m) ∈Θ identify an envi-

ronment θ for which m is an equilibrium. Thus, pi(φ(m)) is the Walrasian or Lindahl price

that must be charged to agent i in the environment φ(m). Pick any regular equilibrium

point m∗ = (r∗, s∗) in M
∗ and, for notational simplicity, let y∗

i
= yi(r

∗) and x∗
i
= xi(m

∗). The

proof then follows from three important observations that must be true at m∗ for each i ∈I :

(A) Because m∗ is a Nash equilibrium for some θ ∈Θ the following first-order condition

is satisfied for each k ∈ {1, . . ., Ji}:

(48)
∂u i(x

∗
i
, y∗

i
|θi)

∂yi

∂yi(r
∗
i
)

∂r ik

=
∂u i(x

∗
i
, y∗

i
|θi)

∂xi

[

−
∂xi(r

∗, s∗)

∂r ik

]

.

(B) If m∗ maps to a Walrasian or Lindahl equilibrium for some θ ∈ Θ then it must be

that the transfers collected by the mechanism equals the transfers of the numéraire

required by the Walrasian or Lindahl equilibrium:

(49) xi(r
∗, s∗)=−pi(φ(r∗, s∗))yi(r

∗).

may or may not be an equilibrium correspondence. They assume ν is locally threaded to rule out pathological

cases where Peano functions are used to economize on message space dimensions.



50 HEALY AND MATHEVET

(C) If m∗ maps to a Walrasian or Lindahl equilibrium for some θ ∈Θ then the Walrasian

or Lindahl price must equal the marginal rate of substitution of yi in terms of xi:

(50)
∂u i(x

∗
i
, y∗

i
|θi)/∂yi

∂u i(x
∗
i
, y∗

i
|θi)/∂xi

= pi(φ(r∗, s∗)).

Dividing both sides of (48) by ∂u i/∂xi, inserting equation (50), and rearranging gives

(51)
∂xi(r

∗, s∗)

∂r ik

=−pi(φ(r∗, s∗))
∂yi(r

∗)

∂r ik

.

for each i and k.

Since (r∗, s∗) is a regular equilibrium point, differential changes in r i accompanied by the

requisite change in si lead to other points in M
∗ at which the above equations hold. Now

take the total derivative of (49) with respect to r i (allowing for the adjustment in si); since

si maximizes xi the envelope theorem guarantees that dxi/dr ik = ∂xi/∂r ik and so the total

derivative is

(52)
∂xi(r

∗, s∗)

∂r ik

=−pi(φ(r∗, s∗))
∂yi(r

∗)

∂r ik

−
dpi(φ(r∗, s∗))

dr ik

yi(r
∗).

Comparing equations (51) and (52), it must be that either yi(r
∗)= 0 or dpi(φ(r∗, s∗))/dr ik =

0 for all k.

If yi(r
∗) 6= 0 but dpi(φ(r∗, s∗))/dr ik = 0 for all k then, by (49),

g i(r
∗, s∗)=

[

pi(φ(r∗, s∗))− q i(r
∗, s∗)

]

yi(r
∗)

and so g i(r
∗, s∗) can be expressed as h i(r

∗, s∗)yi(r
∗) for some function h i such that dh i/dr ik =

0 for all k. But then xi(r
∗, s∗) can be re-written as:

xi(r
∗, s∗)=−

[

q i(r
∗, s∗)+h i(r

∗, s∗)
]

yi(r
∗).

Label the bracketed term as q̃ i(r
∗, s∗) and we have that

xi(r
∗, s∗)=−q̃ i(r

∗, s∗)yi(r
∗)

with dq̃/dr ik = 0, giving the result.

If yi(r
∗)= 0 then by equation (49) we have g i(r

∗, s∗)= 0. It remains to show that dq i(r
∗, s∗)/dr ik =

0. Since d yi/dr ik is bounded away from zero any perturbation of r ik leads to yi 6= 0; by reg-

ularity of (r∗, s∗), small perturbations lead to other regular equilibria with yi 6= 0 at which

dq i/dr ik = 0. Since q i is continuously differentiable it must be that dq i(r
∗, s∗)/dr ik = 0 as

well.

Q.E.D.
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Proof of Theorems 5 and 7

Consider the case of Lindahl equilibrium. Under the maintained assumptions an allocation

(x∗1 , . . . , x∗n, y∗) is Lindahl equilibrium allocation at θ if there exists some (p∗
i
)i such that

(A) for each i, (x∗
i
, y∗)∈ argmaxxi,y u i(xi, y|θi) subject to xi =−p∗

i
y, and

(B)
∑

i p∗
i
= κ.

For the first part of the theorem, fix a Nash equilibrium m∗ = (r∗, s∗) of Γ at θ and let

p∗
i
= q i(m

∗
−i

) for each i. Then Condition B is satisfied by hypothesis. Condition A can be

rewritten as

(53) y∗ ∈ argmax
y

u i(−q i(m
∗
−i)y, y|θi).

Since y is bijective in r i for each m−i , this is equivalent to

(r∗i , s∗i ) ∈ arg max
(r i ,si )

u i(−q i(r
∗
−i, s∗

−i)y(r i, r∗
−i, s∗

−i), y(r i, r∗
−i, s∗

−i)|θi).

Because g i ≥ 0 and g i = 0 at any equilibrium point and u i is increasing in the first argument,

Condition A is also equivalent to

(r∗i , s∗i ) ∈ arg max
(r i ,si )

u i(−q i(r
∗
−i, s∗−i)y(r i, r∗−i, s∗−i)− g i(r i, r∗−i, si, s∗−i), y(r i, r∗−i, s∗−i)|θi).

But this is clearly satisfied since (r∗
i
, s∗

i
) is a best response to (r∗

−i
, s∗

−i
). Thus,

(x1(m∗), . . . , xn(m∗), y(m∗))

is a Lindahl equilibrium allocation at θ with prices (pi(m
∗
−i

))i.

For the second part of the theorem, fix a Lindahl allocation (x∗, y∗) with prices (p∗
i
)i such

that message m′ = (r′, s′) maps to (x∗, y∗) and q i(m
′
−i

)= p∗
i

for each i; Assumption 5 guaran-

tees that at least one such m′ exists.

Condition A for Lindahl equilibria is equivalent to equation (53); since s′ ∈ σ(r′) this is

equivalent to

(r′i, s′i) ∈ arg max
(r i ,si)

u i(−q i(r
′
−i, s′−i)y(r i, r′−i, s′−i)− g i(r i, r′−i, si, s′−i), y(r i, r′−i, s′−i)|θi).

But this implies that (r′
i
, s′

i
) is a best response for each i, so (r′, s′) is a Nash equilibrium of

Γ at θ.

The proof for Walrasian equilibria is identical, setting κ= 0.

Q.E.D.

Proof of Theorem 6

We know that there cannot exist any one-dimensional mechanism that Nash implements

the Walrasian correspondence, contractive or not. For the public goods setting, suppose by
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way of contradiction that the mechanism (y, (q i, g i)
n
i=1

) Nash implements the Lindahl corre-

spondence and is contractive. By Theorem 8 we know that g i ≡ 0 and so for any quasilinear

environment

u i(xi, y|θi)= vi(y|θi)+ xi

with v′′
i
< 0 we have

Ui(r i, r−i)= vi(y(r)|θi)− q i(r−i)y(r).

Agent i’s best-response is given by ρ i(r−i) and satisfies the first-order condition

v′i(y(ρ i, r−i)|θi)= q i(r−i)

for all r−i. Take any r∗ and θ for which r∗ is a Nash equilibrium at θ. By the Implicit

Function Theorem the slope of ρ i at r∗ with respect to each r j is

∂ρ i

∂r j

=
∂q i/∂r j −v′′

i
(y|θi)∂y/∂r j

v′′
i
(y|θi)∂y/∂r i

.

For the mechanism to be contractive it is necessary (though not sufficient) that for all i and

j 6= i

(54)

∣

∣

∣

∣

∣

∂y/∂r j

∂y/∂r i

−
∂q i/∂r j

v′′
i
(y|θi)∂y/∂r i

∣

∣

∣

∣

∣

< 1.

Now select the agent j∗ such that
∣

∣∂y(r∗)/∂r j∗
∣

∣ ≥ |∂y(r∗)/∂r i| for all i. In order to satisfy

equation 54 it must be that ∂y/∂r j∗ and ∂q i/∂r j∗ have the opposite sign for all i and that

∂q i/∂r j∗ 6= 0 for all i. Therefore, each ∂q i/∂r j∗ has the same sign for all i 6= j∗ (and ∂q j∗ /∂r j∗ =

0) so that
∑

i ∂q i/∂r j∗ 6= 0. But since all r are Nash equilibria for some θ and the mechanism

implements Lindahl allocations it must be that
∑

i q i(r−i) = κ for all r and, therefore, that
∑

i ∂q i/∂r j∗ = 0; this is a contradiction.

Q.E.D.
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