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1. Introduction
In large-scale applications, double auction predic-
tion markets have proven successful at predict-
ing future outcomes. The Iowa Electronic Market
and the TradeSports–InTrade exchanges have outper-
formed national polls in predicting winners of polit-
ical elections (Berg et al. 2008, Wolfers and Zitze-
witz 2004), as did an underground political betting
market in the late nineteenth and early twentieth
centuries (Rhode and Strumpf 2004). Even markets
with “play” money incentives such as the Hollywood
Stock Exchange and the NewsFutures World News
Exchange perform as well as real-money exchanges
in predictive accuracy (Servan-Schreiber et al. 2004,
Rosenbloom and Notz 2006).1

These successes in large-scale applications have led
many large corporations—including Google, Hewlett-
Packard, and Intel—to adopt standard double auction

1 Rosenbloom and Notz (2006) do find that TradeSports signifi-
cantly outperforms NewsFutures for some bundles of commodities
and with enough data, but most tests cannot reject the null hypoth-
esis of equal accuracy.

prediction markets for smaller-scale internal appli-
cations such as predicting future sales volumes of
a particular product (Plott and Chen 2002, Hopman
2007, Cowgill et al. 2009).2 It is not obvious, however,
that the successes observed in large-scale settings
will extend to most applications within corporations.
Corporate prediction markets will involve far fewer
traders, and they are likely to be used to address
far more complex problems than those addressed in
the relatively simple environments where the double
auction mechanism has performed well. Management
may want to collect information on variables that are
correlated along several dimensions, such as demand
for related products or costs across production units.
Although standard double auction markets should be
capable of aggregating this information in theory, it
may be difficult in practice when traders face cog-
nitive constraints and uncertainty about the rational-
ity of others. These problems are exacerbated by the
use of a relatively small number of traders because

2 Cowgill et al. (2009) identify at least 21 sizeable corporations that
have used prediction mechanisms.
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individuals may have market power that prevents
convergence to the perfectly competitive outcome and
therefore hinders the potential for information aggre-
gation. In short, the assumptions of rational expecta-
tions and perfectly competitive markets seem at odds
with the corporate environments where these markets
are now being applied.
Given these potential difficulties there may be

alternative information aggregation mechanisms that
would outperform the standard double auction pre-
diction market in smaller-scale settings with complex
or dispersed information. For example, a variant of
the Delphi method—where informed parties make
predictions, learn each others’ predictions, and then
revise their own predictions—could be used to aggre-
gate individuals’ beliefs or private information, or a
pari-mutuel-style betting market could be run to esti-
mate the odds of certain future events.
In this paper, we employ a behavioral mechanism

design methodology, using laboratory experiments to
test the performance of the double auction mecha-
nism in environments with a small number of traders
(we use groups of only three traders in each mecha-
nism) and complex information structures. We extend
our analysis by comparing market performance in
an environment with a moderately complex informa-
tion structure with only one true-false event to a sec-
ond environment with a highly complex information
structure featuring three correlated true-false events.
We then compare the double auction market’s per-
formance in these environments to the performances
of three alternative mechanisms for aggregating infor-
mation. Specifically, we compare the standard double
auction mechanism to an iterated polling mecha-
nism, a pari-mutuel betting mechanism, and a syn-
thetic “market scoring rule” developed by Hanson
(2003). By exploring the performance of these mech-
anisms in the laboratory we can gain an understand-
ing about the domains on which each succeeds or
fails and we can also acquire some insight into the
reasons why some mechanisms outperform others by
understanding how agents’ behavior is affected by the
details of the mechanism. Ultimately, insights such
as these serve as inputs into the “behavioral” mech-
anism design process, providing guidance to prac-
titioners hoping to design information aggregation
mechanisms for use in these complex and small-scale
settings.
Our choice of three participants per market serves

to represent situations where thin markets, strategic
interactions, and informationally large traders are sig-
nificant concerns. Even relatively small, real-world
applications would likely operate with more than
three traders, but such markets face a wide set of
other complications that do not arise in the lab but

could also contribute to these problems. Addition-
ally, because it is well established that double auction
markets perform well when there are many informa-
tionally small traders, the use of an extremely small
market allows us to evaluate whether there is some
point below which the standard double auction pre-
diction market breaks down and is surpassed by an
alternative mechanism.
We find that the double auction market mechanism

performs relatively well in an environment with a
simple information structure involving one true-false
event. In contrast, when the information structure
becomes complex—with three correlated events and
eight securities—the iterative poll performs the best
and the standard double auction the worst. Thus, we
find strong support for the claim that the complexity
of the environment interacts with the details of the
mechanism. For example, traders in the double auc-
tion with eight securities tend to focus attention on
a small subset of the eight markets, causing severe
mispricing in the remaining markets. The iterated poll
avoids this issue by requiring players to announce
beliefs about all eight states of the world simultane-
ously. In this way the design of the mechanism can
be used to overcome natural behavioral biases that
hinder information aggregation.
Our results suggest the following guidance for

practitioners: In simple settings with a large number
of traders relative to the number of items being pre-
dicted, we suggest using the standard double auction
mechanism. When the number of items being pre-
dicted is large, when the predicted events may be
correlated, or when the number of traders is small,
we suggest the incentivized iterated poll instead. For
example, a highly specialized firm seeking to project
sales of its primary product should use a standard
double auction, even in the face of concerns about
limited participation and strategic trading. A more
diversified firm seeking to evaluate expected sales for
potentially complementary (or substitutable) prod-
ucts should consider an iterative polling mechanism
instead, particularly when the number of informed
traders is small. One downside of the iterated poll
is that it requires subsidy payments from the insti-
tution running the mechanism; the size of these sub-
sidies is limited, however, because we suggest using
this mechanism only when the number of traders is
relatively small. For larger environments the unsub-
sidized double auction mechanism is preferable. The
pari-mutuel mechanism is less desirable because it
appears to suffer from no-trade outcomes where
agents prefer to opt out of the mechanism entirely, as
is predicted by the no-trade theorem of Milgrom and
Stokey (1982). We do not suggest the market scoring
rule (MSR) because it tends to suffer from informa-
tional “mirages” where the mechanism leans toward
completely incorrect predictions.
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Given that our experiment represents a “stress test”
using only three traders, we demonstrate the pos-
sibility that the performance of the double auction
mechanism can be dominated by alternative mecha-
nisms. The exact conditions under which the double
auction outperforms the poll (or vice versa) are not
known, and we hesitate to recommend the use of lab-
oratory experiments to test such a question because
fine details of the real-world environment that are
absent in the lab would blur such conclusions. Our
recommendations are a bit more coarse; managers
should use the double auction mechanism to answer
simple questions about broad, aggregate measures of
performance or the likelihood of success of individ-
ual projects or products, whereas they will be better
served by using the iterated poll when detailed infor-
mation is needed about complicated and interrelated
outcomes, like sales of correlated products or relative
performance across divisions.
We follow our main results on mechanism perfor-

mance with an analysis of five behavioral observa-
tions that we believe are related to the failure of the
market mechanism and the success of the iterated poll
in the complex setting. First, we see several appar-
ent attempts at market manipulation in the double
auction mechanism and in the pari-mutuel, but very
few in the iterated poll and MSR. This is expected in
the iterated poll; all players receive the same earnings
and therefore have no clear incentive to manipulate
their opponents’ information. Second, total payments
in the poll and MSR are subsidized by the mechanism
designer, so all traders have an incentive to partici-
pate actively. Third, traders in the market appear to
focus attention on only a subset of the securities—
a heuristic that is impossible in the poll because it
requires each trader to submit an entire probability
distribution. Finally, an aberrant or confused trader
can significantly affect final outcomes in the market,
pari-mutuel, or MSR, but not in the poll because the
poll takes the average of traders’ reports as the pre-
dictive distribution.
These five observations allow us to extrapolate our

results beyond the four mechanisms tested and to
guide the design of future mechanisms. For exam-
ple, a designer of other mechanisms for informa-
tion aggregation should consider those with aligned
incentives, subsidized total payments (if feasible), a
focus on entire probability distributions, and minimal
reliance on any one individual’s report. Our results
also inform economic theory: Theories of market equi-
libration should take into account the tendency for
traders to manipulate others or to focus attention (or
coordinate) on a subset of available markets. As such
theories are developed and refined they could then be
used to inform the design of additional mechanisms.

This paper extends past work on market efficiency
and information aggregation. The number of traders
in the market is often cited as a factor that affects
the degree of efficiency and information aggrega-
tion, though the effect likely depends on the pro-
portion of traders who hold valuable information.
Clearly, the presence of additional informed traders
increases the amount of information that is available
to aggregate, but the effect of additional noise traders
with no private information is unclear. DeLong et al.
(1990) argue that noise traders’ uninformed trades
can reduce the informational content of market prices
and damage market efficiency, whereas Kyle (1985)
shows how noise traders can provide profit opportu-
nities for informed traders, inducing them to make
larger trades and invest more resources—physical or
cognitive—in the acquisition and integration of infor-
mation. Empirical evidence on the issue is mixed;
volume is positively correlated with accuracy in the
Iowa Electronic Markets (Berg et al. 2008) but also
leads to more pricing anomalies and slower conver-
gence to terminal cash flows in TradeSports mar-
kets (Tetlock 2008). Experimental results are similarly
mixed: Bloomfield et al. (2009) observe lower informa-
tional efficiency in the presence of uninformed traders
whereas Joel Grus and John Ledyard (see Ledyard
2005) observe greater aggregation when an automated
noise trader is present.
A second set of factors affecting information aggre-

gation concerns the complexity of the information
and dividend structures in the market. These issues
are amenable to laboratory studies given the diffi-
culty in observing and controlling private informa-
tion in field settings. Early experimental studies by
Plott and Sunder (1988) find convergence and effi-
ciency if simple Arrow-Debreu securities are used that
pay a fixed dividend if and only if their associated
state occurs, the structure of private information is
relatively simple (agents are told which state is not
true), and there is no aggregate uncertainty (combin-
ing all private signals reveals the true state perfectly).
This result is replicated for a 10-state environment
with less informative private signals (draws from an
urn) and aggregate uncertainty by Plott (2000); how-
ever, this replication uses approximately 90 subjects
whereas the earlier laboratory experiments typically
include around 12 or 16 subjects. Markets with more
complicated “tiered” securities (where dividend pay-
ments are state dependent and vary in magnitude
across trader types) generate mixed results; having
some traders know the state of the world perfectly,
common knowledge of the dividend structures for
all types, market experience, and a small number of
tiered securities all facilitate convergence and effi-
ciency (Plott and Sunder 1982, 1988; Forsythe and
Lundholm 1990; O’Brien and Srivastava 1991).
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From 2001 to 2003, John Ledyard, Robin Hanson,
David Porter, and others worked to implement a
prediction mechanism to forecast political and eco-
nomic instability in the Middle East (see Hanson
2007 for details). The state space for this application
becomes prohibitively large for any reasonable ques-
tion of interest; if one wants to predict which of eight
countries will experience GDP growth next quarter
then 28 = 256 separate securities are needed to capture
the possibility that the likelihood of growth in each
country depends on growth in the others. Unless the
number of traders is large, the simple act of equilibrat-
ing all 256 markets (even with complete information)
seems overwhelming.3 In this complex environment
(Ledyard et al. 2009), test the performance of a dou-
ble auction that uses only 8 states—effectively ignor-
ing the cross-country correlations—against five other
mechanisms that used all 256 states: a combinatorial
call market that allowed for trading of events like “X
and Y ” or “X given Y ”; an individual proper scoring
rule; a linear opinion pool; a logarithmic opinion pool;
and the MSR developed by Hanson (2003), which is
described below. Using groups of six subjects, the
MSR and the opinion pools gave predictions closest to
the full-information posterior. The eight-state double
auction performed the worst, at least partially because
they were necessarily handicapped by their inabil-
ity to capture cross-country correlations. In a simpler
environment with 23 = 8 states and only three traders,
the MSR is uniquely the best mechanism.
The current paper follows the work of Ledyard

et al. (2009): We compare the double auction mech-
anism to three other mechanisms—an iterated poll,
the pari-mutuel mechanism, and the MSR—in a rel-
atively simple environment with only two states and
a complex environment with 23 = 8 states, each with
only three traders per group. The latter environment
is sufficiently large relative to the number of traders
that we expect equilibration to be hindered by market
liquidity shortages and subjects’ cognitive limitations,
but not so large that a simplification of the state space
is necessary for the mechanism to operate.
Past studies have examined each of the mechanisms

we test in different environments. McKelvey and Page
(1990) study an iterated poll where each individual is
paid on the accuracy of their own reports instead of
the accuracy of the average report. This iterated poll
fully aggregates all private information in theory but

3 Another concern is market manipulation by traders with an inter-
est in the prediction generated by the market. Hanson et al. (2006)
show in an experiment, however, that the accuracy of outside
observers who use market prices to make predictions is not affected
by the presence of these biased traders; Hanson and Oprea (2009)
confirm theoretically that manipulators may play the same role
as noise traders in Kyle (1985) and will therefore increase market
efficiency.

falls somewhat short of that target in the laboratory.
Chen et al. (2001) also show how a poll outperforms
a repeated call market with Arrow-Debreu securities
as well as the information of the best-informed indi-
vidual.4 The pari-mutuel mechanism—used widely in
horse race wagering—has similar theoretical proper-
ties to the double auction market: information should
fully aggregate if trade occurs, but fully rational risk-
averse traders should never have an incentive to
trade. Plott et al. (2003) find that “prices” converge
to the rational expectations prediction in a simple
environment, but a simple model of trading based
on private information alone predicts behavior bet-
ter in more complex settings. In the field, Thaler and
Ziembda (1988) show that pari-mutuels do a reason-
ably good job of predicting horse racing outcomes,
though betters tend to over bet the unlikely (“long
shot”) horses.5 Theoretically, the MSR fully aggregates
information if traders are risk averse and not forward
looking, but does provide some incentives for traders
to misrepresent their information early to take advan-
tage of others’ incorrect beliefs later (see Chen et al.
2007 and Sami and Nikolova 2007 for two analyses
of this mechanism). To our knowledge, only Ledyard
et al. (2009)—who find that the MSR performs the best
among their mechanisms—and this paper have tested
the MSR in the laboratory.
We formally introduce the environments and mech-

anisms used in our study in §2. Section 3 details the
experimental design. Results appear in §4, followed
by analyses of our five observations in §5. We con-
clude with a discussion in §6.

2. Environments and Mechanisms
We consider an information aggregation problem
where the state of the world consists of two dimen-
sions. The first dimension represents some unobserv-
able factor whose value impacts the realization in the
second dimension. For example, the underlying mon-
etary policy of a central bank (the first dimension)
will affect whether or not the bank chooses to raise
interest rates each quarter (the second dimension).
Monetary policy is not directly observable, but inter-
est rate movements are. In this setting traders in a
double auction can use the bank’s past interest rate
changes to infer its monetary policy and, in turn, pre-
dict upcoming interest rate movements. If a collec-
tion of traders have different information about past

4 Chen et al. (2001) also adjust the aggregation of individual reports
into a single posterior to account for subjects’ risk aversion, though
their adjustment does not significantly improve accuracy.
5 Camerer (1998) attempts to manipulate actual horse races by plac-
ing and canceling large wagers, but the bettors return the odds to
the “correct” values relatively quickly. Thus, the effects of manipu-
lations are short-lived.
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interest rate movements (and the underlying condi-
tions of the economy at the time of those movements)
then a double auction or other information aggrega-
tion mechanism can be used to generate more reli-
able predictions about the probability of future rate
increases.
In the laboratory environment, we represent this

inference problem by choosing one of two biased
coins (the underlying first dimension) and then flip-
ping the chosen coin one time (the second dimension
that agents try to predict). The goal of an informa-
tion aggregation mechanism is to predict the probabil-
ity that the flip will land “heads.” Subjects privately
observe sample flips of the chosen coin, try to infer
which biased coin was chosen, and then predict the
probability that the one “true” flip will be heads. The
goal of the mechanism designer is to combine these
individual predictions into one aggregated prediction
that incorporates all subjects’ private information.6

Formally, the unknown true state of the world in
our experimental environment is given by ����� ∈
� × � where � (the coin) is drawn according to the
distribution f ��� and � (the outcome of the coin flip)
is drawn according to the conditional distribution
f �� � ��. Each agent i ∈ I privately observes Ki sig-
nals (sample coin flips) of �, which we denote by
�̂i = ��̂i

1� 	 	 	 � �̂i
Ki

� ∈ �Ki . Each �̂i
k is drawn according

to f �� � ��, so signals provide independent, unbiased
information about � that can then be used to predict
the true value of �.
Given the signal �̂i and the priors f ��� and f �� � ��,

agent i forms a posterior belief q�� � �̂i� over � using
Bayes’s rule. For simplicity, we denote this posterior
on � by qi���. From this, i forms a posterior over �
given by pi��� =∑

�′∈� f �� � �′�qi��′�.
The goal of the mechanism designer is to aggre-

gate the beliefs of the individual agents. The most
accurate posterior the designer could hold in this set-
ting would be that which she would form if she had
full information, meaning she observes every agent’s
private signal. Letting �̂ = ��̂1� 	 	 	 � �̂I �, we define
qF ��� 
= q�� � �̂�, which leads to the full-information
posterior on � given by

pF ��� = ∑
�′∈�

f �� � �′�qF ��′�	

To evaluate the performance of a given mechanism,
we compare the belief distribution over � implied
by behavior in the mechanism to the full-information
posterior pF . Abstracting away from the details, we
think of mechanisms as producing a sequence of

6 Our “sterile” version of the field setting allows us to test the
ability of mechanisms to aggregate information in an (essentially)
context-free environment. Our results therefore provide a baseline
prediction about the relative performance of various mechanisms
for use in any related field application.

distributions over � denoted by �ht�
T
t=0. Each distribu-

tion ht represents the posterior at time t ∈ �0� 	 	 	 � T �
implied by the messages sent by the players up
through time t. Thus, h0 corresponds to the prior, and
we refer to hT as the output distribution of the mech-
anism. At any point t, we call ht the running pos-
terior at time t. After observing the mechanism, the
mechanism designer takes hT as his posterior over �.
Full-information aggregation occurs whenever the mech-
anism produces an output distribution equal to the
full-information posterior, or hT ≡ pF . When � is finite
we can measure the “error” of the output distribution,
relative to the full-information posterior, by the nor-
malized Euclidean norm7

�hT �pF �
 
= ���1/2

(∑
�∈�

�hT ��� − pF ����2
)1/2

	 (1)

Our primary measure of the success of a mechanism
is the average (or expected) size of this distance.

2.1. Environments
In our experiments we compare two environments
that vary in the size of the state space and complexity
of the information structure. The simpler environment
is described above; one of two biased coins are cho-
sen, and, upon flipping, the chosen coin either comes
up heads or tails. Because there are two flip outcomes,
we refer to this as the “two-state” environment. In the
more complex environment, three biased and corre-
lated coins are randomly ordered and then all three
are flipped in the chosen order. There are eight possi-
ble outcomes of the flip of three coins, so we refer to
this as the “eight-state” environment.8 The two envi-
ronments are described formally below. Recall that in
both environments we use only three traders.

2.1.1. Two-State Environment. In the two-state
design, � = �X�Y � and � = �H�T � with f ��� and
f �� � �� given in Table 1. The interpretation is that
one of two biased coins (X or Y ) is to be randomly
selected and flipped one time. The X coin is selected
with probability 1/3 and comes up heads with prob-
ability 0	20. The Y coin is selected with probability
2/3 and comes up heads with probability 0	40. Agents
observe neither the chosen coin (�) nor the outcome of
the flip (�); instead, each agent observes sample flips
of the chosen coin (�̂i ∈ �Ki ), uses this information to
form beliefs over which coin was selected (X or Y ),
and then forms a probability estimate that the one
“true” coin flip is heads (pi�H�).

7 The normalization by ���1/2 sets the norm of the centroid vector
�1/���� 	 	 	 �1/���� equal to one regardless of the size of �. This
allows for casual comparison of distances between spaces of dif-
ferent dimension, though such comparisons should be made very
cautiously.
8 Technically, these names are misnomers because the true state
spaces (� × �) are of size 2× 2= 4 and 6× 8= 48, respectively.
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Table 1 Distribution f for the Two-State Experiments

� f ��� f �H � �� f �T � ��

X 1/3 0.2 0.8
Y 2/3 0.4 0.6

2.1.2. Eight-State Environment. In the eight-state
design, there are three coins, X, Y , and Z, placed
in a random order such as YZX or ZYX. The set �
contains the six possible orderings, each of which is
equally likely a priori. Once an ordering is chosen, the
three coins are then flipped in that order. The result
is a triple of heads and tails, such as HHT or THT,
where the first character corresponds to the flip of
the first coin in the order, the second character cor-
responds the second coin, and so on. The set � con-
tains all eight possible flip outcomes. Agents do not
know the true outcome of the flip of the three coins
(�) nor the actual ordering of the coins (�); instead,
they observe sample flips of the chosen coin order-
ing (�̂i ∈ �Ki ), use this information to form beliefs
over which of the six orderings was selected, and then
form beliefs over the eight possible outcomes of the
“true” coin flips (pi�HHT�, pi�THT�, etc.).
The X coin lands heads with probability 0	20 and

the Z coin lands heads with probability 0	40. The
Y coin is different; its flip matches the flip of the
X coin with probability 2/3 and differs from X with
probability 1/3. The values of f ��� and f �� � �� for
this environment are given in Table 2.
Note that, unconditionally, the Y coin lands heads

with probability 0	40, making it indistinguishable
from the Z coin if one ignores the correlation between
coins. In other words, an agent trying to infer the
ordering of the three coins based on a sample of flips
must first identify the X coin by its lower frequency
of heads and then distinguish between the Y and
Z coins by identifying which is correlated with X.
When each agent has a small number of sample flips,
this inference problem is difficult and the value of
each agent’s private information is small. This is the
sense in which the eight-state environment is consid-
ered more complex.
One real-world setting with a similar correlation

structure is the conference championship structure
used in many professional and collegiate sports. Here,

Table 2 Distribution f for the Eight-State Experiments

� f ��� TTT TTH THT THH HTT HTH HHT HHH

XYZ 1/6 0�320 0�213 0�160 0�107 0�040 0�027 0�080 0�053
XZY 1/6 0�320 0�160 0�213 0�107 0�040 0�080 0�027 0�053
YXZ 1/6 0�320 0�213 0�040 0�027 0�160 0�107 0�080 0�053
YZX 1/6 0�320 0�040 0�213 0�027 0�160 0�080 0�107 0�053
ZXY 1/6 0�320 0�160 0�040 0�080 0�213 0�107 0�027 0�053
ZYX 1/6 0�320 0�040 0�160 0�080 0�213 0�027 0�107 0�053

coin X represents the event that Team A beats Team B
in the Western conference championship, coin Z rep-
resents the event that Team C beats Team D in the
Eastern conference championship, and coin Y repre-
sents the event that the Western conference champion
beats the Eastern conference champion in the final
match-up. Clearly coin Y depends on which teams
actually advance to the final game; thus, Y will be
correlated with the other two coins. If probabilities
were elicited for only the three games, this correlation
would not be captured; it takes a full set of 23 = 8
probabilities to capture this correlation.

2.2. Mechanisms
In any field application, a mechanism’s performance—
and, therefore, agents’ payoffs—depends on the real-
ized value of �. Consequently, even mechanisms that
fully aggregate information can perform poorly when
an unlikely true state happens to occur. In the con-
trolled laboratory setting, one way to reduce this
variation is to reward subjects based on the expected
performance of the mechanism given the true distri-
bution f �� � ��.9 In our experiments we generate an
estimate of f �� � �� using 500 draws of �. Letting ����
denote the fraction of the 500 draws that equals �,
the empirical distribution � serves as a close approx-
imation to the true distribution f �� � ��.10 Subjects
are then paid based on the expected performance of
the mechanism given the distribution ����. This is
explained in more detail with each mechanism.
In what follows we index the elements of � by s ∈

�1� 	 	 	 � S�. In the two-state environment S = 2, and in
the eight-state environment S = 8.

2.2.1. Double Auction. The standard prediction
market mechanism used widely in field applications
is a double auction with a complete set of Arrow-
Debreu securities, henceforth referred to as the “dou-
ble auction” mechanism. Here, S state-contingent
securities (one for each �s ∈ �) are traded in separate
markets. Subjects buy and sell each security in a stan-
dard computerized double auction format with an
open book where all bids and asks are public informa-
tion. Traders are initially endowed with cash but no
assets; those who want to sell an asset do so by selling
short and holding negative quantities. At the end of
the trading period each asset s is worth ���s� exper-
imental dollars. Traders who own a positive quantity
of asset s receive ���s� experimental dollars per unit,

9 This cannot be done in most field settings because � is not
observed.
10 We chose to approximate f �� � �� using ���� because the latter
is constructed though an actual (computerized) process; we expect
that this makes it more understandable to subjects without a statis-
tics background.
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and traders who hold a negative quantity of asset s
pay ���s� experimental dollars per unit.11

In a rational expectations equilibrium, the asset
prices reveal all private information. Under cer-
tain assumptions about preferences, these equilibrium
prices will equal the full-information posterior prob-
abilities.12 Thus, we set the mechanism output distri-
bution equal to the vector of security prices. In our
experiment the prices of the securities are not forced
to sum to one, but in our data analysis we set all
untraded security prices equal to the uniform distri-
bution price of 1/��� and then proportionally adjust
the prices of all traded securities so that the sum of
all prices equals one. This generates a well-defined
probability distribution as the mechanism’s output.13

Because this mechanism is zero-sum, however,
the no-trade theorem of Milgrom and Stokey (1982)
implies that we should not expect any trade in
equilibrium with risk-averse agents. Whether or not
trade actually occurs and prices equilibrate to the
full-information posterior, however, depends on the
beliefs, preferences, and rationality of the traders.

2.2.2. Pari-Mutuel Betting. In pari-mutuel bet-
ting, traders buy “tickets” or “bets” on each of the S
possible states. Tickets cost one experimental dollar
each and a trader can buy as many tickets of each type
as he can afford using his cash endowment. During
the period, the total number of tickets of each type
that have been purchased is displayed publicly. At the
end of the period these totals are used to calculate the
payoff odds for each security. If Ts is the total quan-
tity of state-s tickets purchased then the payoff odds
for state s are given by Os = �Ts/

∑
� T��−1. Each state-

s ticket is then redeemed for Os · ���s� experimental
dollars. In other words, each ticket is worth the payoff
odds times the (approximated) true probability that
state �s occurs.
The total payoff across all tickets and individu-

als equals the sum of all purchases, making this a
zero-sum game. As in the double auction a no-trade
theorem applies, so risk-averse agents should not pur-
chase tickets in an equilibrium with common knowl-
edge of rationality. In the presence of noise trading,
however, rational traders may have an incentive to

11 In field applications the asset corresponding to the true state is
worth one dollar and all other assets are worthless.
12 See Manski (2006), Wolfers and Zitzewitz (2006), and Gjerstad
(2005).
13 We could, alternatively, set the prices of nontraded securities
equal to zero when prices sum to more than one and then propor-
tionately adjust the prices of the traded securities, while distribut-
ing the residual probability over the nontraded securities when the
prices sum to less than one. This approach generates larger errors
for the double auction, and under this alternative the double auc-
tion performs worse than all other mechanisms at a very high sig-
nificance level.

participate. It is certainly the case that, once informa-
tion has fully aggregated, rational, risk-averse agents
will purchase tickets to move the inverse of the payoff
odds to the (common) posterior probabilities. In other
words, the fraction of total tickets outstanding that are
state-s tickets should equal the state-s posterior prob-
ability. For this reason we set the mechanism output
probability of each state � equal to the fraction of total
tickets outstanding that are state-� tickets. Whether
or not information will actually aggregate, however,
is a question for the laboratory.

2.2.3. Iterative Polls. Iterative polls—an incen-
tivized version of the “Delphi method”—are perhaps
the simplest and most direct information aggregation
mechanism. Subjects are asked to report simultane-
ously a probability distribution over �. The reports
are averaged across subjects (by taking the arithmetic
mean of the reports for each state) to generate an
“aggregated” report. This aggregated report is shown
to all subjects, who are then asked to submit simulta-
neously a second distribution over �. Subjects’ second
reports will incorporate their own private information
plus any information inferred from the average of the
first reports. The average of these second reports is dis-
played, and the process is repeated for a total of five
reports. The fifth average report is then taken as the
output distribution of the mechanism.
All subjects are all paid identically based on the

accuracy of the final report using a logarithmic scoring
rule. Specifically, if hT ��s� is the final average prob-
ability report then for each state �s each subject i is
given ln�hT ��s�� − ln�1/S� tickets. Thus, agents gain
state-s tickets if hT ��s� > 1/S and lose state-s tick-
ets if hT ��s� < 1/S. Once the empirical frequency �
is revealed each state-s ticket pays out ���s� dollars.
Because all agents receive the same payment, the game
is not zero-sum and therefore must be subsidized by
the mechanism designer.
The logarithmic scoring rule is incentive compati-

ble (Selten 1998), so any risk-neutral individual act-
ing in isolation would prefer to announce truthfully
her beliefs over �. In the multiple-player game, there
exist sequential equilibria in which full-information
aggregation occurs; thus, we take the final average
announcement to be the mechanism’s output distribu-
tion. One might conjecture that any sequential equi-
librium should feature full-information aggregation
because all players have identical incentives, but in
fact there exist “babbling” equilibria in which full-
information aggregation does not occur.14 Under risk
neutrality the full-information aggregation equilibria

14 In a “good” equilibrium each player announces truthfully in
the first round, all players use the first average report to infer
others’ information, then all players announce the full-information
posterior in rounds two through five, ignoring any deviations by



Healy et al.: Prediction Markets: Alternative Mechanisms for Complex Environments with Few Traders
1984 Management Science 56(11), pp. 1977–1996, © 2010 INFORMS

are Pareto dominant, so the success of the mecha-
nism depends on agents’ ability to coordinate on this
payoff-dominant outcome.

2.2.4. Market Scoring Rule. In the MSR, a prob-
ability distribution h0 = �h0��1�� 	 	 	 � h0��S�� is pub-
licly displayed at the beginning of each period; in our
experiments, h0��s� = 1/S for each s. At any given time
t during the period, any trader may “move” the cur-
rent distribution ht to a new distribution, ht+1. This
is done simply by announcing the new distribution
ht+1. When a trader makes such a move he receives
(or loses)

ln�ht+1��s�� − ln�ht��s�� (2)

state-s tickets for each s. Traders are given an initial
endowment of tickets and cannot move ht to some ht+1

if such a move would require surrendering more tick-
ets of some state than the trader currently holds. This
prevents traders from moving probabilities arbitrarily
close to zero because the logarithm becomes infinitely
negative for arbitrarily small probabilities.
During the period, traders may move the probabil-

ity distribution as many times as they like, subject to
the budget constraint. With each move, they gain and
lose tickets appropriately. At the end of the period
each state-s ticket is worth ���s� experimental dollars.
Because summing Equation (2) over all t yields

ln�hT ��s�� − ln�h0��s���

the total change in ticket holdings depends only on
the starting distribution h0 and the ending distribution
hT (intuitively, each trader is “buying out” the posi-
tion of the previous trader). The final cash value of
this difference must be subsidized (or collected) by the
mechanism designer.
As in the iterated poll, this mechanism uses the

logarithmic scoring rule which is incentive compat-
ible for any risk neutral individual, meaning play-
ers will truthfully reveal their beliefs if they do not
expect to make any future moves. Thus, if it is com-
mon knowledge that each player’s final move is in
fact their last then each will fully reveal their beliefs
in the final move and information will fully aggregate
in the final move of the period.15 For this reason, we
take the final move of the period to be the output dis-
tribution of the mechanism.

others. In a “babbling” equilibrium all players submit random,
meaningless announcements in rounds one through four, ignore
others’ announcements, and attempt to maximize their payoff in
the final round; because no information was conveyed in the first
four rounds, the final average report generically will not achieve
full-information aggregation.
15 This argument is based on the analysis of Chen et al. (2007); see
also Sami and Nikolova (2007).

If a player does expect to move again in the
future then there may be an incentive to misrep-
resent one’s information so that other players erro-
neously move the distribution away from the full-
information posterior, and the misrepresenting player
can then earn profits by moving it back. In our exper-
iment players can make moves at any time during
the five-minute window, so it is not clear whether
manipulations will persist through the final move or
whether information will fully aggregate at the end
of the period. We test for evidence of manipulations
in §4.

3. Experimental Design
All experiments were run at the California Institute
of Technology using undergraduate students recruited
via e-mail. Each period lasted five minutes, and sub-
jects earned an average of approximately $30 per
session.
In each period subjects are publicly informed about

the distribution f given in Tables 1 and 2, so we take
this as the common prior.16 A coin (or coin ordering) �
is chosen by the computer but not revealed to the sub-
jects. Instead, each subject is privately shown a unique
sample of coin flips of the chosen coin. The mechanism
is then run and the output distribution is observed.
After the period ends traders are told the chosen coin
and the distribution ���� generated from 500 sample
flips of the chosen coin.17 Subjects’ total earnings are
then augmented by their payment for the period and
the next period begins.
Following the standard practice in experimental

economics, the framing of this experiment is entirely
neutral. States are described to subjects as “coins”
and “coin flips.” Real business contexts may alter per-
formance somewhat, but the neutral frame can be
taken as a “baseline” environment against which all
context-laden settings can be compared. Based on past
evidence, we expect the results from the neutral exper-
iment to an unbiased predictor of real-world perfor-
mance (see, e.g., Fréchette 2009).
A 4 × 2 experimental design compares the four

mechanisms described in §2.2 in both the two-state
and eight-state environments. Agents participate in
groups of three and are matched with the same group
for the entire experiment. Each subject group partic-
ipates in one mechanism for eight periods followed
by a different mechanism for eight periods. We use a
crossover design in which the ordering of mechanisms
for one group is then reversed for another group. Each

16 Technically, the prior is common information but not necessarily
common knowledge.
17 All individual signals are independent and independent of the
500 flips used to determine ����.
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Table 3 Experimental Design

Session No. of No. of Mechanism 1 Mechanism 2
number states agents (periods 1–8) (periods 9–16)

1 2 3 Pari-mutuel Market scoring rule
2 2 3 Pari-mutuel Market scoring rule
3 2 3 Market scoring rule Pari-mutuel
4 2 3 Market scoring rule Pari-mutuel
5 2 3 Double auction Iterative poll
6 2 3 Double auction Iterative poll
7 2 3 Iterative poll Double auction
8 2 3 Iterative poll Double auction
9 8 3 Pari-mutuel Market scoring rule
10 8 3 Pari-mutuel Market scoring rule
11 8 3 Market scoring rule Pari-mutuel
12 8 3 Market scoring rule Pari-mutuel
13 8 3 Double auction Iterative poll
14 8 3 Double auction Iterative poll
15 8 3 Iterative poll Double auction
16 8 3 Iterative poll Double auction

ordering is run twice for a total of 16 experimental ses-
sions.18 Table 3 lists the details of each session.

The MSR, pari-mutuel, and poll were all run manu-
ally. Subjects sat at desks and a spreadsheet program
was projected onto a screen at the front of the room.
In the MSR and pari-mutuel, bids were submitted in a
continuous-time, open-outcry manner. In each round
of the poll, subjects privately and simultaneously sub-
mitted their announcements on paper. In all three
mechanisms, the submitted bids or announcements
were immediately entered into the spreadsheet and
the current market prices were automatically updated
on the screen. The double auction was run using the
jMarkets software package. This software uses a visual
interface, features an open book so all traders can see
outstanding bids and offers, and allows continuous-
time trading.
In each mechanism, after a period had ended, play-

ers were shown the distribution of “true” coin flips,
their payoffs, and then given a slip of paper contain-
ing their private information for the following period.
Subjects have access to standard calculators (but not
payoff calculators specific to these mechanisms), pen-
cil, and paper throughout the experiment.

4. Results
The results are organized as follows: First we describe
the four ways in which we measure the performance
(or failure) of each mechanism. We then show that
behavior does not significantly differ across periods
and does not depend on whether a mechanism is pre-
sented first or second within a given session, allowing

18 We pair the pari-mutuel with the MSR and the double auction
with the poll. This choice is arbitrary; what matters is that for each
pairing we run both orderings of that pairing to test for ordering
or learning effects.

us to aggregate results across periods and orderings
and directly compare the four mechanisms using our
four performance measures.

4.1. Measures of Performance
Our primary measure of a mechanism’s performance
is the average normalized Euclidean distance between
the mechanism’s output distribution hT and the
full-information posterior pF (see Equation (1)); this
provides a simple measure of how accurate the mech-
anism designer’s posterior beliefs are relative to the
ideal case of full-information aggregation.19

One might also be concerned with other properties
of the mechanism’s performance. For example, con-
sider the no-trade theorem in the context of the dou-
ble auction and pari-mutuel mechanisms. In a thin
market devoid of noise traders, (weakly) risk-averse
rational traders should (weakly) prefer not to partic-
ipate in either mechanism. If no trade occurs then
the mechanism provides no value to the designer
because no new information is revealed. If the mar-
ket were sufficiently thick then it becomes more likely
that noise traders will exist—or at least that ratio-
nal traders believe that noise traders exist—and so
trade will occur and information will be revealed. In
our experiments, however, groups contain only three
agents so the logic of the no-trade theorem is particu-
larly compelling in this setting.
Worse than the no-trade outcome is a situation

where the mechanism output is misleading. For exam-
ple, if a mechanism’s output distribution in the two-
state environment indicates that heads is less likely
than previously expected when in fact the private
information indicates that heads is more likely to occur
then the designer’s posterior is less accurate than the
prior. This outcome has been called a mirage in the
existing literature (Camerer and Weigelt 1991). In gen-
eral, we label an output distribution as a mirage if it
lies in the opposite direction from the prior as the full-
information posterior. Formally, a mirage occurs when
�pFI − p0� · �hT − p0� < 0, where p0 is the prior, hT is
the output distribution, and pFI is the full-information
posterior. Graphical representations of a mirage (for
both two- and eight-state environments) are provided
in Figure 1.
A third possible failure of a mechanism is a situation

where the output distribution cannot be rationalized
by Bayes’s rule. We label such outcomes as Bayes-
inconsistent. For example, the probability of heads in
the two-state environment must lie between 0	2 (the
probability of heads for the X coin) and 0	4 (the

19 Other distance measures such as the Kullback and Leibler (1951)
information criterion generate qualitatively similar results.
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Figure 1 Mirages with (A) Two States and (B) More Than Two States
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Notes. In panel (A), the mechanism output h lies between the prior p0

and the probability associated with state �1, whereas the posterior implied
by all private information (pFI ) lies between the prior and the probability
associated with state �2. In panel (B), the full-information posterior pFI

implies that states �1, �5, and �6 are relatively more likely than under the
prior, whereas the mechanism output h would lead to the conclusion that
states �2, �3, and �4 are more likely.

probability of heads for the Y coin).20 If the mech-
anism output probability of heads is 0	43 then the
logic of standard probability theory offers no advice
as to what the best prediction should be; certainly
one could construct ad hoc theories to rationalize this
output and generate a prediction, but from our view
this output represents a failure of the mechanism pre-
cisely because such ad hoc theories become neces-
sary. Graphical representations of Bayes-inconsistent
outcomes (for two and eight states) is provided in
Figure 2.
For each mechanism in each environment, we com-

pare the distance to the full-information posterior and
count the number of periods in which no trading,
mirages, or inconsistencies occur.21

4.2. Period and Order Effects
Although one might expect learning and experience
to generate better performance in later periods, we
do not find strong evidence for this hypothesis. Using
a Wilcoxon rank sum test, we compare the distance
between the mechanism output distribution and the
full-information posterior for each period t against
the distance for each period s �= t. Aggregating across
all four mechanisms, we cannot reject the hypothe-
sis that the distances have equal distributions for any
pair of periods in the two-state experiments or in the

20 For a formal proof of this fact more generally, see Shmaya and
Yariv (2008).
21 We have also constructed various measures of the degree to
which each failure occurs; these results are qualitatively similar to
counting the number of failures

Figure 2 Bayes-Inconsistent Outcomes with (A) Two States and
(B) More Than Two States
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outcome in question is highest, but the mechanism output implies a pos-
terior probability higher than the probability if �2 was known for certain
to be the state. In panel (B), the mechanism output implies a posterior
probability that cannot be rationalized by any belief about the underlying
state because the outcome lies outside the convex hull of probabilities
implied by each state.

eight-state experiments. Thus, for example, the distri-
bution of first-period distances is approximately the
same as the distribution of last-period distances, indi-
cating that no significant learning takes place. This is
clear from panels (A) and (B) of Figure 3.22 The same
set of tests run on each mechanism (rather than aggre-
gating across all four mechanisms) generates the same
results.23

Because subjects participate in one mechanism for
eight periods and then a second mechanism for a sub-
sequent eight periods, some experience from the first
mechanismmay spill over into the second mechanism,
creating a mechanism ordering effect in our data.
Comparing the distance between the mechanism out-
put and the full-information posterior for mechanisms
run in the first eight periods versus those run in the
final eight periods reveals no discernible effect; aggre-
gating across all four mechanisms, Wilcoxon tests find
no significant difference for both the two-state experi-
ments (p = 0	820) and the eight-state experiments (p =
0	850). The same tests run on each mechanism indi-
vidually also find no significant effect (all p-values are

22 The two- and eight-state figures are scaled differently to max-
imize readability; recall that comparisons of errors across these
cases are not meaningful.
23 Specifically, of the 112 period-versus-period tests, we find that
four (or 3.6% of the tests) are significant at the 5% level in the
two-state experiments and none are significant at the 5% level in
the eight-state experiments.
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Figure 3 Box-and-Whisker Plots of the Distance Between the Mechanism Output Distribution and the Full-Information Posterior for (A) Each
Period in the Two-State Experiments, (B) Each Period in the Eight-State Experiments, (C) Each Mechanism Ordering in the Two-State
Experiments, and (D) Each Mechanism Ordering in the Eight-State Experiments
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greater than 0	168). The plots in panels (C) and (D) of
Figure 3 demonstrate this result.
Because we find no significant period or ordering

effects, we aggregate across all periods and both order-
ings in all subsequent analyses.

4.3. The Simple Environment: Two States

4.3.1. Mechanism Accuracy. To determine which
mechanisms are the most accurate, we perform a
comparison of the mechanism error (distance from
the mechanism output to the full-information poste-
rior) between each pair of mechanisms.24 For every
given pair, we aggregate across all periods and order-
ings from the two-state experiments and perform a
Wilcoxon test on the resulting distributions of errors.
From these comparisons, we can construct a “sig-
nificance relation” that ranks the four mechanisms
according to the degree of error they generate.

24 Because we use a distance measure, we do not separate error
caused by systematic bias and error caused by noise. In sepa-
rate tests for the simple environment, we do not reject the null
hypothesis that the average signed error is zero for each mech-
anism, indicating no systematic bias in the mechanisms’ output
distributions.

Formally, we define the significance relation by
A � B if mechanism A has a higher average error than
B and A 	 B if that difference is statistically signif-
icant at the 10% level. Because 	 is not negatively
transitive (it is possible to have A �	 B and B �	 C but
A 	 C), describing the relation between mechanisms
may require multiple statements. For example, from
the pair of statements A � B � C � D and A 	 C � D,
we conclude that A has significantly higher average
error than C and D, but that A’s average error is not
significantly greater than B’s and that no other com-
parisons are statistically significant.
The result of the pairwise comparison procedure is

reported in Table 4, and the distributions of errors for
each mechanism are shown in panel (A) of Figure 4.
The average error for each mechanism is reported
in the second row and second column of the table;
on average the MSR generates the largest errors and
the double auction generates the smallest errors. The
p-values of the pairwise Wilcoxon tests are reported in
the third through sixth columns and the third through
sixth rows. No differences are significant at the 5%
level, but the market scoring rule generates signifi-
cantly higher error than both the poll and the double
auction at the 10% level. From this, we generate the



Healy et al.: Prediction Markets: Alternative Mechanisms for Complex Environments with Few Traders
1988 Management Science 56(11), pp. 1977–1996, © 2010 INFORMS

Table 4 p-Values of Mechanism-by-Mechanism Wilcoxon Tests on
the Distance to the Full-Information Posterior for the
Two-State Experiments

Avg. Dbl. Mkt. scoring
Two states distance auction rule Pari-mutuel Poll

Avg. distance — 0.131 0.210 0.148 0.133
Dbl. auction 0.131 — 0.092 0.646 0.663
Mkt. scoring rule 0.210 — — 0.225 0.098
Pari-mutuel 0.148 — — — 0.519
Poll 0.133 — — — —

Notes. 10% Significance ordering: MSR� Pari� Poll� DblAuc and MSR	
Poll� DblAuc. Italicized entries are significant at the 10% level.

significance statements: “MSR � Pari � Poll � DblAuc
and MSR 	 Poll � DblAuc.” Thus, the MSR is the
only mechanism that generates significantly higher
error than any other mechanism. In other words, these
results are not particularly conclusive about which
mechanism is the best (in terms of error), but the
results are clear about which mechanism is the worst.
The Wilcoxon tests in Table 4 treat each period in
each session as an independent observation, poten-
tially biasing the results if cohort effects are present.
Using Wilcoxon tests to compare the error measures
from each pair of sessions in each mechanism, we
find little evidence of cohort effects: 2 of 24 session-
pairs have significant differences at the 10% level
(one in the double auction and one in the poll). This
is roughly the number of significant differences one
should expect under the null hypothesis of no cohort
effects, so we do not reject that hypothesis. Clearly,
if one were to treat each session as a single observa-
tion, the marginally significant comparisons in Table 4
would become insignificant.
If observations within a cohort can be viewed

as independent (which may be valid because no
period effects are found), controlling for cohorts can
strengthen the comparison between mechanisms. For
example, an ANOVA analysis treating cohorts as a
nested factor within each mechanism removes the
between-cohort variability from the error data.25 With
this extra statistical power the marginally signifi-
cant results in Table 4 (“MSR 	 Poll” and “MSR 	
DblAuc”) become significant at the 5% level (p-values
of 0.022 and 0.026, respectively). None of the other

25 Because there are no-trade periods, this becomes an unbalanced
nested two-factor design. We test for pairwise mechanism effects
by running dummy-variable regressions, comparing the error sum-
of-squares of a full model with all mechanism and cohort dummies
included to the error sum-of-squares of a restricted model where
two mechanisms’ effects are constrained to be equal. An F -test
then determines whether the full model gains significant explana-
tory power over the restricted model, and therefore whether or
not the true mechanism effects are equal. See Neter et al. (1996,
pp. 1138–1141) for details. Diagnostics of residuals suggest that the
required parametric assumptions are reasonably satisfied.

Figure 4 Box-and-Whisker Plots of the Distance Between the
Mechanism Output Distribution and the Full-Information
Posterior for Each Mechanism in (A) the Two-State
Experiments, and (B) the Eight-State Experiments
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comparisons becomes significant at the 10% level.
Thus, we strengthen our conclusion that the MSR gen-
erates the largest errors in the simple environment.

4.3.2. Catastrophes: No Trade. In theory, we pre-
dict no trade (or indifference to trade) in the dou-
ble auction and pari-mutuel mechanisms when agents
are (weakly) risk averse. In practice (see the second
row of Table 5), we observe trade in all 32 periods of
the double auction, but no trade in 4 of the 32 peri-
ods (12	5%) of the pari-mutuel mechanism, all in Ses-
sion 3. Despite the fact that it is subsidized—thus
circumventing the no-trade issue in theory—we do
observe one period of no trade in the MSR. Because
all instances of no trade occur in a single session for
both mechanism, we cannot disentangle mechanism
effects from session/cohort effects and therefore can-
not employ proper panel data techniques to compare
the rate of no-trade between mechanisms. Using a
simple two-sample binomial test (which incorrectly
assumes independence of no-trade periods) as a rough
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Table 5 Number of Periods in Each Session (Out of 8) and Number of Periods Total (Out of 32) in
Which Each Type of Catastrophic Failure Occurs in the Two-State Experiments

Dbl. auction Mkt. scoring rule Pari-mutuel Poll

(S5, S6, S7, S8) Tot. (S3, S4, S1, S2) Tot. (S1, S2, S3, S4) Tot. (S7, S8, S5, S6) Tot.

No trade (0, 0, 0, 0) 0 (0, 1, 0, 0) 1 (0, 0, 4, 0) 4 (0, 0, 0, 0) 0
Mirage (4, 4, 2, 3) 13 (3, 2, 3, 5) 13 (2, 4, 0, 3) 9 (2, 3, 2, 3) 10
Bayes-inconsistent (2, 0, 2, 1) 5 (3, 1, 3, 0) 7 (2, 2, 2, 0) 6 (3, 3, 1, 4) 11
Bayes-inc. mirage (0, 0, 0, 0) 0 (1, 0, 0, 0) 1 (0, 1, 0, 0) 1 (2, 1, 0, 0) 3
None (2, 4, 4, 4) 14 (3, 4, 2, 3) 12 (4, 3, 2, 5) 14 (5, 3, 5, 1) 14

guide, we conclude that the pari-mutuel mechanism
generates no-trade outcomes more frequently than the
double auction and poll (both with one-tailed p-values
of 0	034) but not the MSR (p-value: 0	118). We there-
fore suggest that the pari-mutuel is more vulnerable
to no-trade than either the double auction or poll.
Intuitively, we conjecture that subjects are prone to

trade, whether or not rational, in the more familiar
double auction mechanism and are prone to confusion
and, consequently, inactivity in the unfamiliar and
mathematically complex market scoring rule mech-
anism. As for the pari-mutuel mechanism, debrief-
ing discussions with subjects indicated that several
believed that first movers would be disadvantaged
in this zero-sum game because placing a wager may
reveal valuable private information, allowing com-
petitors to gain at the first mover’s expense.26

4.3.3. Catastrophes: Mirages. The frequency of
mirages for the two-state experiments is reported in
the third row of Table 5. Although all four mech-
anisms generate a substantial frequency of mirages
(ranging from 31% to 44%), the differences between
mechanisms not statistically significant in either sim-
ple binomial tests or in a random effects probit model,
which controls for cohort effects. Furthermore, several
periods of the pari-mutuel and poll had output dis-
tributions equal to the prior; if these periods are also
counted as mirages, the mechanisms perform very
similarly by this measure (with 13, 14, 15, and 13
mirages, respectively).

4.3.4. Catastrophes: Inconsistencies. The fourth
row of Table 5 displays the number of periods in
which Bayes-inconsistent outcomes occur in the two-
state experiments.27 Clearly the poll is the most

26 In several periods we do observe “meaningless” trade where
a trader submits a wager in the final second before the market
closes. If an individual is the only trader to place a wager in a
pari-mutuel mechanism and does so at the last second, he faces
no risk as long as he owns at least one of each security because
he is effectively betting against himself. Thus, these trades are not
informative (nor financially consequential) and are discarded from
the analysis.
27 We do find that, across all mechanisms, Bayes-inconsistent out-
comes are significantly more likely to occur in the first period. No
other period effects have been observed.

frequent; using a probit random effects model, we
conclude that the poll generates Bayes-inconsistent
outcomes significantly (at the 10% level) more fre-
quently than the double auction (p-value of 0	084).
Thus, our significance statement regarding Bayes-
inconsistency is “Poll � MSR � Pari � DblAuc and
Poll 	 DlbAuc.” Conditional on observing a Bayes-
inconsistent outcome, the average distance between h
and the convex hull (�0	2�0	4�) is 0.024, 0.171, 0.106,
and 0.052 for the double auction, MSR, pari-mutuel,
and poll, respectively. Thus, the “magnitude” of the
Bayes-inconsistency in the poll is less than in the
MSR or pari-mutuel, though it is difficult to interpret
this observation because all Bayes-inconsistent out-
comes lead to an inference failure, regardless of their
magnitude.
Conditional on observing a Bayes-inconsistent out-

put, the poll and pari-mutuel are more likely to
generate inconsistencies with hT �H� > 0	4 than with
hT �H� < 0	2; all 6 of the pari-mutuel’s Bayes-incon-
sistencies and 8 of the poll’s 11 Bayes-inconsistencies
have hT �H� > 0	4. The double auction and MSR split
the two types of errors evenly, with three of five peri-
ods giving hT �H� > 0	4 for the double auction and four
of seven giving hT �H� > 0	4 for the MSR. Thus, the
pari-mutuel and poll are somewhat handicapped by a
tendency toward a uniform distribution, as would be
predicted by the well-documented favorite-longshot
bias (see, e.g., Ali 1977).28

4.3.5. Summary. In three of our four measures
(error, no trade, and Bayes-inconsistencies), we found
one mechanism to be uniquely bad and the others
to be roughly equivalent. Specifically, the MSR gen-
erates the most error, the pari-mutuel generates the
most no-trade periods, and the poll is the most fre-
quently Bayes-inconsistent. The four mechanisms are
roughly equal in the frequency with which mirages
occur. The only mechanism that performed well in
all measures (or, did not perform poorly in any one
measure) is the double auction mechanism. A sum-
mary of the results appears in the second through fifth
columns of Table 11.

28 We thank an anonymous referee for suggesting we explore
favorite-longshot biases in our data.
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Table 6 p-Values of Mechanism-by-Mechanism Wilcoxon Tests on
the Distance to the Full-Information Posterior for the
Eight-State Experiments

Avg. Dbl. Mkt. scoring
Eight states distance auction rule Pari-mutuel Poll

Avg. distance — 0.696 0.527 0.605 0.418
Dbl. auction 0.696 — 0.002 0.093 <0.001
Mkt. scoring rule 0.527 — — 0.083 0.324
Pari-mutuel 0.605 — — — 0.001
Poll 0.418 — — — —

Notes. 10% Significance ordering: DblAuc 	 Pari 	 MSR � Poll. Italicized
(boldfaced) entries are significant at the 10% (5%) level.

4.4. The Complex Environment: Eight States

4.4.1. Mechanism Accuracy. As with the two-state
experiments, we measure a mechanism’s error as the
Euclidean (l2) distance between the mechanism output
distribution and the full-information posterior. The
distribution of errors for each mechanism is compared
against that of each other mechanism using aWilcoxon
rank sum test. This pairwise comparison procedure
generates a significance ordering that ranks the mech-
anisms by their average errors.29 The result of this pro-
cedure is reported in Table 6. The accuracy results for
the eight-state experiments can be summarized by the
significance statement “DblAuc	 Pari 	 MSR� Poll,”
which indicates that the double auction is uniquely the
worst mechanism (according to this error measure),
the pari-mutuel is uniquely the second-worst, and the
MSR and poll generate the lowest errors on average,
with no significant difference between them.
As in the two-state environment, these results may

be biased by the presence of cohort effects. Wilcoxon
tests on each pair of sessions in each mechanism find
8 of 24 session pairs with significant differences in
error at the 10% level (3 each in the double auction
and MSR and 1 each in the pari-mutuel and poll). To
account for these cohort effects we take a very con-
servative approach and view the average error dis-
tance of each session as a single observation, reducing
our sample size to only four observations per mech-
anism.30 Despite this dramatic loss in testing power,
we still achieve two significant results: the poll’s aver-
age error is significantly lower than both the double
auction (p-value: 0.0286) and the pari-mutuel (p-value:
0.0571). This occurs because the highest error of the

29 In contrast to the results in the simple environment and based on
a simple counting measure, we do find some evidence that prices
are biased in favor of long-shots in the complex environment. This
holds for all mechanisms, but is strongest for the double auction
and poll. We believe that this finding likely confounds a number of
sources of error, and we do not claim that we are able to identify
this as a major cause of the poor performance of the mechanisms.
30 The pari-mutuel has one session with no trade, leaving only
three session-level observations.

four poll sessions is still lower than the lowest error
of the four double auction sessions and the lowest
error of the four pari-mutuel sessions.31 No other com-
parisons of session-level errors are significant at the
10% level.
Controlling for between-cohort variability using a

nested ANOVA analysis alters the significance results
slightly; the significance statements from that analysis
are “DA � Pari�MSR	 Poll” and “DA	MSR,” and
all significant results are significant at the 5% level.
Thus, the poll is significantly better than all three com-
peting mechanisms, and the double auction is signifi-
cantly worse than all but the pari-mutuel.

4.4.2. Catastrophes: No Trade. In the eight-state
experiments, no-trade periods were observed only
in the pari-mutuel mechanism. One group of sub-
jects traded in none of the eight periods and another
group failed to trade in their fifth period. As with
the two-state data, panel data techniques are unable
to reliably disentangle mechanism effects from session
effects because nearly all incidences of no-trade occur
in a single session. The qualitative evidence, however,
is sufficiently suggestive to lead us to conclude that
the pari-mutuel mechanism is more susceptible to no-
trade than the other three mechanisms. This conclu-
sion is easily verified by binomial tests that incorrectly
assume independence across all periods.

4.4.3. Catastrophes: Mirages. Recall that we
define a mirage to be a mechanism output distribution
that lies in an opposite direction from the prior as the
full-information posterior. Mathematically, this occurs
when �h − p0� · �pFI − p0� < 0; this is demonstrated in
panel (B) of Figure 1.
Looking at the frequency of mirages (see Table 7),

the double auction is most prone to mirage outcomes
whereas the poll is the least prone. In a probit random
effects test, the double auction is significantly worse
than the poll (p-value: 0.009) but insignificantly worse
than the other two mechanisms.
Comparing the angles between the vectors �h − p0�

and �pFI − p0� and applying pairwise Wilcoxon tests
(see Table 8), we see that the double auction is
uniquely the worst mechanism by this measure
because its average output distribution points in a
direction farthest from the full-information posterior.
In fact, its average angle is nearly 90 degrees, indi-
cating that the mechanism provides little to no infor-
mation that is not already contained in the prior. In
contrast, the other mechanisms do, on average, move
toward the full-information posterior, indicating that

31 The difference in p-values between these two comparisons stems
only from the fact that the pari-mutuel has one entire session
with no trade and therefore only three session-level observations
available.
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Table 7 Number of Periods in Each Session (Out of 8) and Number of Periods Total (Out of 32) in
Which Each Type of Catastrophic Failure Occurs in the Eight-State Experiments

Dbl. auction Mkt. scoring rule Pari-mutuel Poll

(S5, S6, S7, S8) Tot. (S3, S4, S1, S2) Tot. (S1, S2, S3, S4) Tot. (S7, S8, S5, S6) Tot.

No trade (0, 0, 0, 0) 0 (0, 0, 0, 0) 0 (0, 0, 8, 1) 9 (0, 0, 0, 0) 0
Mirage (3, 1, 4, 4) 12 (1, 1, 2, 3) 7 (3, 1, 0, 3) 7 (0, 1, 2, 0) 3
None (5, 7, 4, 4) 20 (7, 7, 6, 5) 25 (5, 7, 0, 4) 16 (8, 7, 6, 8) 29

Note. Every mechanism is Bayes-inconsistent in every period.

all mechanisms other than the double auction do pro-
vide more information than the prior, or the prior plus
random noise.
A third way to measure the incidence of mirages is

simply to count the number of dimensions of (h − p0)
that have the same sign as the corresponding dimen-
sion of (pFI − p0), excluding the first and last dimen-
sion since, in theory, they should not change. Table 9
reports the p-values of the pairwise Wilcoxon tests
on the number of dimensions. The results are in line
with the other two measures; the double auction is
uniquely the most prone to mirages and the other
three mechanisms do not significantly differ in the fre-
quency or magnitude of observed mirages.

4.4.4. Catastrophes: Bayes-Inconsistency. Recall
that an output distribution is labeled “Bayes-
inconsistent” if it does not lie in the convex hull of the
limit posteriors. In the eight-state case, distributions

Table 8 p-Values of Mechanism-by-Mechanism Wilcoxon Tests
Comparing the Angle (in Degrees) Between the Mechanism
Output (h−p0) and the Full-Information Posterior �pF I −p0�

Avg. Dbl. Mkt. scoring
Eight states angle auction rule Pari-mutuel Poll

Average angle — 89.23 66�12 74.68 69�07
Dbl. auction 89.23 — <0�001 0.011 <0�001
Mkt. scoring rule 66.12 — — 0.180 0�773
Pari-mutuel 74.68 — — — 0�286
Poll 69.07 — — — —

Notes. 10% Significance ordering: MSR � Poll � Pari 	 DblAuc. Larger
values imply more error.

Table 9 p-Values of Mechanism-by-Mechanism Wilcoxon Tests
Comparing the Number of Dimensions (Out of 6) of the
Mechanism Output That Move in the Same Direction
(from the Prior) as the Full-Information Posterior

Dbl. Mkt. scoring
Eight states Avg. no. auction rule Pari-mutuel Poll

Avg. no. dim. — 2.69 3�69 3�70 3�97
Dbl. auction 2.69 — 0�002 0�003 <0�001
Mkt. scoring rule 3.69 — — 0�798 0�239
Pari-mutuel 3.70 — — — 0�467
Poll 3.97 — — — —

Note. 10% Significance ordering: Poll� Pari�MSR	 DblAuc.

live in �8, but because the first and last dimensions
should never differ from the prior, the convex hull
lives in the six-dimensional subspace where those two
dimensions are fixed at the prior level. Thus, an out-
put distribution is automatically “Bayes-inconsistent”
if either the first or last dimension differs from the
prior. See Figure 2 for a simplified representation of
this issue. In practice, Bayes-inconsistency occurs in
every period under every mechanism in our eight-
state experiments precisely because these first and last
dimensions never perfectly match the prior probabil-
ities, therefore indicating Bayes-inconsistency with a
binary indicator variable is not informative. Therefore,
we measure the “degree” of inconsistency as the dis-
tance between the output distribution and the convex
hull. Using pairwise Wilcoxon tests (see Table 10), we
find that neither the MSR nor the poll have signifi-
cantly greater median distances than any other mech-
anism and that the double auction and pari-mutuel
do have significantly greater median distances than
at least one other mechanism. Thus, the MSR and the
poll are less prone to large deviations from the con-
vex hull.
An alternative way to measure the propensity for

Bayes-inconsistency is to count the number of peri-
ods in which the distance between the output distribu-
tion and the convex hull is within � for each � greater
than zero. The resulting graph of frequencies versus
� for each mechanism appears in Figure 5. The MSR
and the poll generate output distributions within � of
the convex hull most frequently when � is small. As

Table 10 p-Values of Mechanism-by-Mechanism Wilcoxon Tests
Comparing the Severity of Bayes-Inconsistency, as
Measured by the Distance Between the Mechanism Output
Distribution and the Convex Hull of the Limit Posteriors

Dbl. Mkt. scoring
Eight states Avg. dist auction rule Pari-mutuel Poll

Avg. distance — 0.447 0.362 0.398 0�312
Dbl. auction 0.447 — 0.001 0.107 < 0�001
Mkt. scoring rule 0.362 — — 0.180 0�257
Pari-mutuel 0.398 — — — 0�008
Poll 0.312 — — — —

Note. 10% Significance ordering: DblAuc � Pari � MSR � Poll, DblAuc 	
MSR� Poll, DblAuc� Pari	 Poll.
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Figure 5 Frequency of Periods (with Trade) in Which
Bayes-Inconsistency Is Less Than �
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� is increased, however, the MSR moves from most
frequent to least frequent and the pari-mutuel moves
from second-least frequent to most frequent. In other
words, the MSR output tends to lie either very close to
the convex hull or very far, whereas the pari-mutuel
output consistently lies an intermediate distance from
the convex hull. Thus, a market observer who is con-
cerned about extreme levels of Bayes-inconsistency
should prefer the pari-mutuel mechanism over the
MSR in the eight-state environment. As for the double
auction mechanism, however, the results are poor in
either measure; its average distance from the convex
hull is the highest, and the frequency with which it
lands within � of the convex hull is typically the low-
est or second-lowest among the four mechanisms.

4.4.5. Summary. As with the two state case, we
found one or two mechanisms to be uniquely bad
according to each of our four measures (error, no
trade, mirages, and Bayes-inconsistency), though the
poorly performing mechanism varies with the mea-
sure. Specifically, the double auction and pari-mutuel
generate larger errors, the pari-mutuel is the most
prone to no trade, the double auction creates the most

Table 11 Summary of Results

Two states Eight states

Summary Error No trade Mirage Inconsistent Error No trade Mirage Inconsistent

Dbl. auction � � � � × � × ×
MSR ×∗ � � � � � � �

Pari-mutuel � ×∗ � � × ×∗ � ×
Poll � � � ×∗ � � � �

Notes. A � indicates the mechanism was not significantly outperformed by some other mechanism in that
measure and an × indicates that it was. An ×∗ denotes either marginal significance (all p-values less than but
close to 0.10) or cases where proper statistical tests were unavailable.

mirages, and the double auction and pari-mutuel gen-
erate the greatest amount of Bayes-inconsistency. The
two mechanisms that did not perform poorly in any of
the four measures are the poll and the MSR. Between
these two the poll appears to outperform the MSR,
though at statistically insignificant levels. The results
for the eight-state experiments are summarized in the
sixth through ninth columns of Table 11.

5. Five Observations
The results indicate that the poll and (to a somewhat
lesser extent) the MSR perform well and the double
auction poorly in the more complex environment. This
raises the deeper question of why this occurs. What
features of the poll and MSR make them successful
that are not shared by the double auction? Based on
our analysis of the data we state five observations
about these three mechanisms that we believe are pri-
marily responsible for the performance differences.

Observation 1. Preferences are aligned in the poll, so
traders have no incentive to misrepresent their informa-
tion, whereas truth-telling in the MSR is weakly incentive
compatible.

A subject misrepresents his private information
when he takes an action intended to send a false sig-
nal of his private information. Misrepresentation can
interfere with the performance of a mechanism by
adding noise to the public signals sent by a subjects
actions. Although the potential for misrepresentation
in equilibrium is a difficult question, it is clear that
misrepresentation might present profit opportunities
in mechanisms where incentives are not aligned. In
the poll, however, a subject’s payoff will generally
increase in the quality of the information available to
other subjects. Thus, the poll may be less subject to
problems with misrepresentation. In the MSR a sub-
ject may have an incentive to misrepresent early, but
his final announcement (if he believes it to be his final
announcement) should be truth-telling; see the discus-
sion of the MSR at the end of §2.
We construct a rough measure of misrepresentation

as follows. Recall that each mechanism generates a
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Table 12 Number of Observations of
Misrepresentation by Mechanism

Mechanism No. of misrepresentations

Dbl. auction 14
Mkt. scoring rule 5
Pari-mutuel 12
Poll 3

sequence of distributions �ht�
T
t=0. An action at time t is

said to move the posterior toward the full-information
posterior if �ht − pF � ≤ �ht−1 − pF �; otherwise, the
action moves the posterior away.32 A subject is iden-
tified as a misrepresenter in a period if his moves
include at least one move toward the full-information
posterior and at least one move away, and all moves
away precede all moves toward. We have 96 oppor-
tunities to observe misrepresentation for each mecha-
nism (three subjects each in a total of 32 periods). The
number of misrepresentations in each mechanism are
presented in Table 12. We observe the fewest instances
of misrepresentation in the poll and MSR. This is con-
sistent both with the aligned incentives in the poll and
the weak incentive compatibility built into the MSR.

Observation 2. Traders have an incentive to partic-
ipate in both the poll and the MSR because they are
subsidized.

Excluding the value of initial endowments, the dou-
ble auction is a zero-sum game. A trader who does not
participate earns her expected value of participating
and, according to the no-trade theorem argument, she
strictly prefers nonparticipation if rationality is com-
mon knowledge and she is risk averse. Even if ratio-
nality is not known, only those traders who expect
to perform better than average will prefer to partic-
ipate. Although trade occurs in every period in our
data, there are 4 periods (of 64) where one of the three
traders abstains from trading.
In the poll, however, there is no benefit to absten-

tion; any trader can (weakly) improve the group’s
average report (relative to his posterior beliefs) by
appropriately incorporating his private information
into his own final report. Improving the final average
report improves the payoff of everyone in the group.33

Similarly, the MSR involves a subsidy when partici-
pants perform well as a group.

32 For the poll, actions are ordinal, and we adopt the conven-
tion that t ∈ �0�2�4�6�8� represent individual reports and t ∈
�1�3�5�7�9� represent aggregate reports. Therefore, ht is not
unique when t is even. The different timing structure for the poll
makes formal statistical comparisons difficult.
33 The average payoff per trader per period in the poll is 25.9 cents
and 35.0 cents for the two-state and eight-state treatments,
respectively.

Observation 3. Traders in the poll must submit entire
probability distributions, preventing them from focusing on
a small number of securities.

It appears that market thinness in the eight-state
world prevents the double auction from aggregat-
ing information properly. We find that there are only
2.60 transactions per minute across all markets in
the eight-state environment, compared to 5.00 trans-
actions per minute in the two-state environment;
traders are trading half as frequently in the eight-
state environment despite the fact that there are four
times as many markets. Interestingly, total volume
per minute is much higher in the eight-state environ-
ment (14.47 units per minute compared to 6.48 units
per minute in the two-state environment), indicating
that traders in the eight-state environment are mak-
ing a small number of large transactions. Trades in the
eight-state environment tend to focus on a small num-
ber of securities. Averaging across the four double auc-
tion sessions, trade on the two most active securities
accounted for 46% of the transactions while trade on
the two least active securities accounted for only 8%
of the transactions.34

We conjecture that subjects focusing on a small num-
ber of securities indicates that attention is a constraint
that binds in mechanisms that require separate focus
on each event or security. In the double auction, sub-
jects must analyze the market for each security sep-
arately. Given bounded attention, subjects are likely
to focus or coordinate on a small number of secu-
rities, forgoing profits on other securities. Thus, we
should expect some market prices to be far from equi-
librated. To examine this conjecture, we consider the
states TTT and HHH , whose posterior probabilities
equal the prior probabilities of 24/75 and 4/75, respec-
tively, because the ordering of the coins obviously
does not affect the probability of these two states. If
market prices are far from these values then profit
opportunities may exist in these markets. In fact, we
observe that the average distance between the final
price and the prior probability is 13% for TTT and
7.6% for HHH. Both of these distances are significantly
greater than the distances for any other mechanism
(Wilcoxon p-values of <0	001).

Observation 4. The poll averages the elicited beliefs, so
the effects of a single aberrant trader are mitigated.

Our final observation is that the poll performs rela-
tively well compared to the other mechanisms because
of lessened sensitivity to erroneous last actions. To
identify the frequency of large errors in individual
reports, we first calculate the average error in final

34 There does not appear to be a systematic trend in which securi-
ties were traded the most or least frequently.
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Table 13 Number of Periods with Far-Off Last Report and
Final Prediction

Two states Eight states

Last Output Last Output
Mechanism report distribution report distribution

Dbl. auction 11 11 24 24
Mkt. scoring rule 18 18 9 9
Pari-mutuel 11 11 9 9
Poll 28 8 21 8

predictions across all the mechanism. Using the nor-
malized l
, the size of average errors in the two-state
experiments is 0.155; in the eight-state experiments it
is 0.5996. We define a period with far-off last report
as one where the last action implies an individual
posterior with a larger-than average prediction error.
Because the poll requires all three individuals to sub-
mit their report simultaneously, we use the report with
the largest prediction error as the last report. The num-
ber of periods with far-off reports in each mechanism
are presented in Table 13.
In the double auction, pari-mutuel, and MSR,

this last report has a direct effect on the mecha-
nism’s output. The number of periods with a far-off
prediction—defined as a prediction with larger-than-
average error—is necessarily the same as the number
of periods with far-off reports. However, the poll bal-
ances out this errant last report by averaging it with
the other two players’ reports.
Despite the large numbers of far-off last reports,

the poll produces the fewest instances of far-off final
predictions. This is consistent with our claim that
averaging in the poll makes it less sensitive to individ-
ual errors at end of the period. Note that if the players’
final reports are derived from the same distribution,
Jensen’s inequality and the convexity of our error mea-
sure will imply lower prediction error for the poll.
Another interesting observation from Table 13 is that
the number of far-off last reports in the poll is among
the highest compared to other mechanisms, which
point to the possibility of players strategically using
the averaging mechanism to offset expected error in
other players’ reports.
The risk that a far-off last report can unduly influ-

ence the outcome of the continuous mechanisms sug-
gests that smoothing over the actions near the end of
the period might provide an improvement over focus-
ing exclusively on the final outcome of the mecha-
nism. To evaluate this possibility, we average over
the outcomes implied by the final 20% and 50% of
actions in each of these mechanisms. For both the dou-
ble auction and the pari-mutuel, this has no appre-
ciable effect on the performance of the mechanism,
as measured by average distance. For the MSR, how-
ever, smoothing over the last 20% of moves in the

simple environment and smoothing over the last 50%
of moves in the complex environment bring substan-
tial improvements in performance. In the simple envi-
ronment, the average error of the MSR drops from
0.210 to 0.119, whereas in the complex case, the error
drops from 0.527 to 0.411. In both of these cases, the
alternative degree of smoothing provides no appre-
ciable improvement in performance. Although statisti-
cal comparisons between these smoothed outputs and
the original outputs is inappropriate because of con-
cerns about data mining, we note that the smoothed
MSR produces the smallest average error for the sim-
ple environment, though this error would not have
been significantly different than the errors in any
of the other mechanisms. In the complex environ-
ment, the errors for the smoothed MSR would have
made that mechanism statistically indistinguishable
from the poll in the sense that both the poll and the
smoothed MSR would outperform the other mecha-
nisms at the same significance level. We also note,
however, that the optimal degree of smoothing seems
to vary with the complexity of the environment, leav-
ing no obvious recommendation for a better means
to evaluate the output of the MSR. Regardless, we do
believe these results suggest the possibility of design-
ing a mechanism that exploits the weak incentive com-
patibility of the MSR while also generating an output
that is more robust to the behavioral characteristics
identified here.

Observation 5. Transactions in the double auction are
bilateral; in all other mechanisms transactions are executed
unilaterally. The double auction is therefore more labor
intensive.

Because a transaction in the double auction requires
the active involvement of two parties, it is simply a
more labor-intensive mechanism. With a small num-
ber of traders whose time is either constrained or
costly, it is reasonable to expect that information
aggregation will be inhibited by the fact that subjects
must seek out trading partners in every transaction. By
contrast, the poll simply requires that each trader send
a fixed number of discrete messages, and the market
scoring rule and pari-mutuel effectively use market
makers that allow traders to act without coordinating
with other traders. An analysis of transaction times in
the double auction reveals that traders may well have
been time constrained; there is no perceptible change
in transaction volumes toward the end of the five-
minute periods. Given enough time, the mechanism’s
performance may significantly improve. In many field
applications, however, labor cost and time constraints
are very real issues that may hinder the double auc-
tion’s ability to aggregate information and generate
useful predictions.
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6. Discussion
In comparing these four mechanisms (the double auc-
tion, the market scoring rule, the pari-mutuel, and the
poll), we find that the performance of the mechanisms
is significantly affected by the complexity of the envi-
ronment. In particular, the double auction mechanism
appears to perform relatively better when the number
of states is small relative to the number of traders and
the inference problem of inverting beliefs back into
received signals and then converting aggregated sig-
nals into an aggregated belief is relatively easy. When
the environment becomes more complicated, both in
the number of states and in the difficulty of the infer-
ence problem, the performance of the double auction
market breaks down and other mechanisms emerge
as superior. In particular, the iterative poll is the only
mechanism in our experiment that was not outper-
formed by some other mechanism in any of the four
measures of error considered.
Identifying which mechanisms perform well in

given environments is only the first step in this
research. The most compelling line of inquiry is into
the underlying reasons for a mechanism to succeed or
fail in a given environment. For example, we observe
that the failure of the double auction in the eight-
state experiments is due in part to the increased ratio
of the number of securities to the number of traders:
the “thin markets” problem. As the number of secu-
rities exceeds the number of traders, agents appar-
ently focus their limited attention on a small subset of
the securities during the trading period. This creates
an additional coordination problem as traders seek to
focus their attention on markets in which trading is
currently most profitable, perhaps because of the trad-
ing volume in that market and the private information
of the given trader. If some securities are ignored and
receive no trades, then information aggregation is nec-
essarily incomplete.
One open question is how these mechanisms would

perform if the number of traders were increased
beyond three. In previously unpublished pilot experi-
ments, Joel Grus and John Ledyard (see Ledyard 2005)
compare the same four mechanisms (double auction,
MSR, pari-mutuel, and poll) in a two-state environ-
ment similar to ours using 3, 7, and 12 participants.35

The Grus–Ledyard experiments do not include the
eight-state design. Agents participate in the same
group of n subjects for the entire experiment. Each

35 The major differences between their design and ours are the
number of subjects, f �X� = f �Y � = 1/2, f �H � X� = 0	2, and
f �H � Y � = 0	8, and subjects always see two sample flips for their
private information. Their periods also lasted five minutes, though
their poll with 12 participants ran through five iterations instead
of three. The seven-subject sessions of the pari-mutuel and MSR
actually had eight subjects.

Table 14 Average Errors (Using KL Distance)
from the Grus–Ledyard Pilot Data

No. of participants 3 7 12

Dbl. auction 0.243 0.198 0.016
MSR 0.045 0.001 0.000
Pari-mutuel 0.158 0.019 0.006
Poll 0.046 0.004 0.001

group participates in three mechanisms for eight peri-
ods each, as opposed to two mechanisms per group in
our design. Their measure of error uses the Kullback–
Leibler information criterion (“KL distance”) instead
of the Euclidean distance (Kullback and Leibler 1951;
this follows Ledyard et al. 2009), though in our data
these two measures are highly correlated. The average
KL distances are summarized in Table 14.
Unsurprisingly, each mechanism becomes more

accurate as the number of traders increases.36 The
absolute improvement is larger for those mechanisms
with larger errors (double auction and pari-mutuel),
but the percentage improvement per additional trader
is 10.4%, 11.1%, 10.7%, and 10.9% for the double auc-
tion, MSR, pari-mutuel, and poll, respectively.37 This
suggests that, for the simple two-state environment,
increases in the number of traders will have little
effect on the relative performance of these mecha-
nisms. Whether this similarity extends to the more
complex environment is an open question, though the
success of fairly complex double auction prediction
markets with many traders (such as TradeSports) sug-
gests that the double auction eventually does benefit
differentially from increased thickness.38

Many other open questions remain. Fine details
such as the complexity of the information structure
could be altered and results compared. New mech-
anisms or perturbed versions of these mechanisms
could be compared in the laboratory. The context of
various business environments could be overlaid on
our sterile laboratory environment to explore partic-
ular real-world implementations. On the theoretical
front, little is known about the equilibrium andmanip-
ulability of these mechanisms played by fully rational
agents, let alone boundedly rational agents prone to
various biases and cognitive errors.

36 This improvement in accuracy is also correlated with increases
in the number of trades per minute per subject.
37 The Grus–Ledyard data indicates that in the two-state case the
double auction gains less when the number of traders is still
small and more as the number becomes larger. Data on the
effect of increasing cohort size on the eight-state environment is
unavailable.
38 Grus and Ledyard also examined subsidized versions of the
double auction and pari-mutuel. They find that subsidies signifi-
cantly improve the accuracy of both mechanisms, supporting our
Observation 2.
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Our larger goal with this research is to help develop
the practice of behavioral mechanism design, where
behavioral insights inform both the design of mecha-
nisms for the immediate future and the modification of
theories that can be used to find optimal mechanisms
for practical applications into the future.
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