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ABSTRACT. Groves and Ledyard (1977) construct a mechanism for public goods procure-

ment that can be viewed as a direct-revelation Groves mechanism in which agents an-

nounce a parameter of a quadratic approximation of their true preferences. The mecha-

nism’s Nash equilibrium outcomes are efficient. The budget is balanced because Groves

mechanisms are balanced for the announced quadratic preferences. Tian (1996) subse-

quently discovered a richer set of budget-balancing preferences. We replicate the Groves-

Ledyard construction using this expanded set of preferences, and uncover a new set of

complex mechanisms that generalize the original Groves-Ledyard mechanism. The orig-

inal mechanism, however, remains the most appealing in terms of both simplicity and

stability.
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I. INTRODUCTION

Groves and Ledyard (1977) provided one of the first decentralized economic mechanisms

to solve the free rider problem for general economies. Specifically, they devised a gov-

ernment (or, mechanism) such that self-interested equilibrium behavior by all parties

always leads to a Pareto optimal allocation. This work has been cited widely, with many

researchers building off its original insights.

What has not been appreciated, however, is the manner in which Groves and Ledyard

(1977) actually construct their mechanism. The final mechanism looks simple: players

announce a single number, and taxes are based on a proportional share of the cost and a

quadratic penalty. In fact, the mechanism has a more complex foundation: Groves and

Ledyard (1977) present it as being derived from a Groves mechanism (Groves, 1973) in

which agents announce entire quasilinear utility functions and are taxed (or rewarded)

based on the Marshallian surplus calculated from the announced preferences of all other
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agents in the economy. But agents may not actually have quasilinear preferences, so

these announcements represents approximations of their true preferences. The space

of admissible announcements is parameterized with a single parameter, which greatly

simplifies agents’ messages. In equilibrium, agents with non-quasilinear preferences

announce quasilinear preferences that best approximate their true willingness to pay at

the Pareto optimal allocation, and that allocation is selected by the mechanism.1

What is crucial to the Groves-cum-Groves-Ledyard construction is that the set of ap-

proximating preferences that the agents are allowed to announce always generate a

budget-balanced allocation in the Groves mechanism. Budget balance does not always

obtain with general quasilinear preferences; Groves and Loeb (1975) showed that bal-

ance is achieved if we further restrict agents to quadratic valuation functions. Following

this insight, Groves and Ledyard (1977) only allow agents to announce quadratic (ap-

proximate) preferences, guaranteeing that the final allocation will balance the budget.

Agents need only to announce the intercept of their (approximate) valuation function,

and are charged according to the balanced Groves mechanism. Algebraic manipulation

reveals that these outcome and tax functions reduce to the familiar Groves-Ledyard

mechanism with its quadratic form.

For two decades it was believed that quadratic preferences are the only ones for which

a Groves mechanism could be budget balanced.2 This belief was overturned when Tian

(1996) discovered a much richer class of preferences for which Groves mechanisms can

be balanced. And, like the quadratic preferences, these are parameterized by a single

parameter.

In this paper we replicate the Groves-Ledyard procedure of turning a Groves mecha-

nism into a one-dimensional, budget-balanced, Pareto efficient mechanism, but we do so

on Tian (1996)’s larger domain of preferences. In doing so, we uncover a broad family of

complex mechanisms that, in theory, could also be used to solve the free-rider problem.

We also gain a deeper understanding of the incentive properties of Groves mechanisms

applied to general preferences. We see that getting the Samuelson condition (equating

the sum of marginal rates of substitution to marginal costs) is a relatively trivial mat-

ter, so that the real difficulties in the design problem lie in achieving budget balance and

equilibrium existence. We lean on Tian (1996) to accomplish the former; for the latter,

1Groves (1973) mechanisms are usually only discussed in settings where all agents actually have quasi-
linear preferences, and therefore have a dominant strategy of truthful revelation. Groves and Ledyard
(1977) are novel in that they consider the Groves mechanism for more general preferences.
2This was conjectured by Laffont and Maskin (1980), who provide general conditions for budget balance.
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we devise a simple trick of allowing agents to announce transfers among their part-

ners, providing just enough richness to the range of the mechanisms (without distorting

incentives) to guarantee equilibrium existence in these mechanisms.

Finally, we study the stability properties of these Generalized Groves-Ledyard mecha-

nisms, since one beneficial property of the original Groves-Ledyard mechanism is that it

becomes dynamically stable under appropriate parameter values (Chen and Plott, 1996;

Page and Tassier, 2004; Healy, 2006; Healy and Mathevet, 2012). It is clear that stabil-

ity will become difficult to obtain in the generalized versions of the mechanism. We show

that in one generalized version the best response functions’ slopes depend crucially on

the messages sent. With very extreme messages the best response slopes become steep

enough that stability is violated. We argue that this will be a pervasive problem in any

of the generalized versions of the mechanism. This suggests that the original Groves-

Ledyard mechanism is not only the simplest among the generalized versions, but it is

likely the only one that can be made globally stable.

II. SETUP

The Economic Environment

We present here a simplified version of the Arrow-Debreu setting studied by Groves and

Ledyard (1977). Specifically, there is one private good and one public good, I consumers,

F firms, and a mechanism (that can be thought of as a government). The mechanism

receives messages from the consumers and uses this information to procure the pub-

lic good from the firms. This purchase is financed by (message-dependent) the taxes

collected from the consumers.

The price of the private good is normalized to one, and the price of the public good is

given by p ∈R. Quantities are given by x ∈R for the private good and y ∈R for the public

good. Each consumer i has a consumption set Xi ⊆ R2, a preference relation ºi on Xi

that is representable by a differentiable utility function ui, and an initial endowment of

private goods ωi ∈R. Firms are characterized by a production set Z f ∈R2 and a vector of

profit shares θ f = (θ1
f , . . . ,θI

f ). Production vectors are given by z f = (zx
f , zy

f ), with negative

components representing inputs. Firm profits are distributed to consumers according to

θ f . An economy is therefore represented by e = ((Xi,ºi,ωi)I
i=1, (Z f ,θ f )F

f=1).

We think of there being a set of admissible economies E , where each e ∈ E differs

only in the preference profiles of the consumers. We assume that, for every e ∈ E , each

ui is continuously differentiable, quasi-concave, and strictly increasing in the private

good. In some cases we may discuss further restrictions on E , such as requiring that all
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preferences are quasilinear (ui(xi, y) = vi(y)+ xi for some concave function vi), or even

quadratic-quasilinear (vi(y) is concave and quadratic).

An allocation is a vector ((xi)I
i=1, y, (z f )F

f=1) with xi ∈R for each consumer i, y ∈R, and

z f ∈ R2 for each firm f . An allocation is feasible if (i) (xi, y) ∈ Xi for each i, (ii) z f ∈ Z f

for each j, and (iii) (
∑

i(xi −ωi), y) ≤ ∑
f z f . An allocation ((xi)I

i=1, y, (z f )F
f=1) is Pareto

optimal if it is feasible and there is no other feasible allocation ((x′i)
I
i=1, y′, (z′f )F

f=1) such

that (x′i, y′)ºi (xi, y) for all i and (x′i, y′)Âi (xi, y) for some i.

Mechanisms and Competitive Equilibrium

A mechanism (or government) is simply tuple which specifies a message space M =×iMi

(one for each consumer), an allocation rule y(m, p) selecting a public goods level for each

message profile m and (public good) price p, and a list of tax functions ti(m, p) indicating

how much wealth each consumer must sacrifice for financing the public good.3 Thus, a

mechanism is given by Γ= ((Mi)I
i=1, y, (ti)I

i=1).4

Firm f ’s profit is given by zx
f + pzy

f . Its supply correspondence φ f (p) is the set of

production vectors z f ∈ Z f that maximize profit in Z f given price p. Resulting profits

are then given by π f (p) := zx
f + pzy

f for any z f ∈φ f (p).

At price p, consumer i has wealth wi(ωi, p) := ωi +∑
f θ

i
fπ f (p). This consumer must

choose a private goods consumption level xi and a message mi ∈ Mi to send to the gov-

ernment, taking as given p and m−i. She faces the constraint that (xi,mi) must be such

that (xi, y(mi,m−i, p)) ∈Xi and xi + ti(mi,m−i, p)≤ wi(ωi, p). Let Bi(m−i, p) be the ‘bud-

get set’ of choices (xi,mi) satisfying this constraint, and define βi(m−i, p) to be the set of

ºi-most-preferred (or ‘best response’) choices in Bi(m−i, p).

We will define a competitive equilibrium for an economy with a given mechanism as

an allocation, a price p, and a vector of messages that satisfy preference maximization

and profit maximization given p. Groves and Ledyard (1977) further require exact mar-

ket clearing, which implies that the government balances the budget. We allow here the

possibility of governments that collect a surplus in equilibrium; equilibrium is defined

formally after a few simplifications.

For simplicity, we assume a linear production technology Z f = {z f ∈ R2 : zx
f +κzy

f ≤ 0}

for all j, meaning all firms have a constant marginal cost of κ > 0. Profit maximiza-

tion yields p = κ and π f (κ) = 0 (so that wi(ωi,κ) = ωi). The budget balance conditions

3We assume later a constant marginal cost of production, which implies that wealth is measured simply
by the private good endowment.
4We abuse notation, letting y represent both a public good level and the function that determines this
level; this should cause no confusion.
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simplify to
∑

f zy
f = y(m, p) and

∑
i xi+κy(m, p)=∑

iωi. Since we are not studying out-of-

equilibrium phenomena, we henceforth assume that p is in equilibrium and therefore

equals κ.5 We also drop p from the arguments of all functions, for brevity.

We further assume that Xi = R2 for each i, so that preference maximization implies

xi =ωi − ti(m). This simplifies our analysis by allowing for negative quantities of public

goods. It is well known that Nash implementation of Walrasian or Lindahl equilibria

is impossible when boundary equilibria are possible, so these must be ruled out either

by assumptions on preferences (as in Groves and Ledyard, 1977) or by allowing an un-

bounded strategy space (as in Healy and Mathevet, 2012). Our goal here is to discover

new mechanisms, and we want to do so under minimal assumptions on preferences, so

we take the latter route. Since the choice of xi is now trivial, we redefine βi(m−i) to be

the ºi-optimal messages in Mi, given m−i.6 This further simplifies the budget balance

conditions to
∑

f zy
f = y(m) and

∑
i ti(m)= κy(m, p).

Now, a (Nash or competitive) equilibrium is a message profile m∗ ∈ M such that (i)

m∗
i ∈ βi(m∗

−i) for all i, and (ii)
∑

i ti(m∗) ≥ κy(m∗)). If (ii) holds with equality, we call it

a balanced (Nash or competitive) equilibrium. It is unbalanced if (ii) holds with strict

inequality. Given an equilibrium m∗, the equilibrium allocation is the allocation that

results from m∗. A message m∗
i is a dominant strategy if m∗

i ∈βi(m−i) for all m−i.

Our ultimate goal is to design mechanisms such that (i) at least one balanced equi-

librium exists for every e ∈ E , and (ii) all balanced equilibrium allocations are Pareto

optimal.7 We refer to such mechanisms as Nash efficient mechanisms. If a mechanism

satisfies (ii) but not (i) then we say it is conditionally Nash efficient (conditional on exis-

tence).

Define agent i’s marginal rate of substitution at any allocation (xi, y) by

MRSi(xi, y)= ∂ui(xi, y)/∂y
∂ui(xi, y)/∂xi

.

A mechanism is conditionally Nash efficient if and only if for every e ∈ E and every

balanced equilibrium m∗ in e,

(1)
∑

i
MRSi(ωi − ti(m∗), y(m∗))= κ.

5In our section on stability, we do discuss a situation where consumers’ messages m are dynamically
adjusting out of equilibrium. There we assume that p does not adjust, for any deviation from p = κ would
cause firms to produce infinite (or negatively infinite) quantities. We view this as a very strong force that
stabilizes p at κ even when m is out of equilibrium.
6Formally, βi(m−i)= {mi ∈ Mi : (ωi − ti(mi,m−i), y(mi,m−i))ºi (ωi − ti(m′

i,m−i), y(m′
i,m−i)) ∀m′

i ∈ Mi}.
7Unbalanced equilibrium allocations cannot be Pareto optimal.
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We refer to (1) as the Samuelson (1954) condition, since it is necessary (but not sufficient)

for Pareto optimality. If, in addition, the allocation is budget-balanced then efficiency

obtains. Thus, if existence of a balanced equilibrium is guaranteed for every e ∈ E , then

conditional Nash efficiency implies Nash efficiency.

Direct, Quasi-Direct, and Indirect Mechanisms

A mechanism is called direct if each Mi is the space of possible preferences (or utility

functions) for consumer i. For example, the Vickrey-Clarke-Groves mechanism intro-

duced below is a direct mechanism when preferences are quasi-linear.

We introduce here the notion of a quasi-direct mechanism, in which agents can be

thought of as announcing their preferred allocation, rather than an abstract message.

Definition 1. Mechanism Γ= ((Mi)I
i=1, y, (ti)I

i=1) is quasi-direct if

(1.1) y(·,m−i) is surjective for each i and m−i (meaning, for each m−i and yi there

exists some mi such that y(mi,m−i)= yi), and

(1.2) each ti(·) is measurable with respect to {(y(m),m−i)}m∈M (meaning, y(mi,m−i) =
y(m′

i,m−i) implies ti(mi,m−i)= ti(m′
i,m−i)).

We will see a direct mechanism that is also quasi-direct; these definitions are not

mutually exclusive. A mechanism is said to be indirect if it is neither direct nor quasi-

direct.

In a quasi-direct mechanism, choosing mi (given m−i) is equivalent to choosing a

public goods level yi(mi,m−i), and then paying a tax that depends only on yi and m−i.

With quasi-direct mechanisms we sometimes view the message as yi rather than mi,

and re-write the tax function as ti(yi,m−i).

Consider an agent in a quasi-direct mechanism choosing yi ∈ R to maximize ui(ωi −
ti(yi,m−i), yi) given m−i. Suppose ti(yi,m−i) is differentiable in yi. The individually-

optimal choice y∗i will be characterized by the first-order condition for utility maximiza-

tion that

(2)
∂ti(y∗i ,m−i)

∂yi
= MRSi(ωi − ti(y∗i ,m−i), y∗i ).

Combining this with the Samuelson condition (1) (and our assumption of quasiconcave

utilities) gives the following lemma.
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Lemma 1. A quasi-direct mechanism is conditionally Nash efficient if and only if for

every balanced equilibrium m∗

∑
i

∂ti(y(m∗),m∗
−i)

∂yi
= κ.

It is not hard to construct quasi-direct mechanisms that are conditionally Nash effi-

cient. For example, consider the proportional tax mechanism described by Groves and

Ledyard (1977).

Definition 2. The proportional tax mechanism ΓP is given by

(2.1) MP
i =R1 for each i,

(2.2) yP (m)=∑
i mi,

(2.3) tP
i (m)=αiκyP (m),

where (αi)I
i=1 is any vector of parameters satisfying

∑
iαi = 1.

The proportional tax mechanism is quasi-direct; we can view the agent as choosing

yi (by setting mi = yi −∑
j 6=i m j) and then paying tP

i (yi,m−i) =αiκyi. By Lemma 1, this

mechanism is conditionally Nash efficient. The difficulty, however, is that equilibrium

rarely exists. At any Nash equilibrium m∗, all agents must select the same value of

yi. Call this value y∗. By equation (2) we have MRSi(ωi −αiκy∗, y∗) = αiκ for each i.

Thus, we have equilibrium existence only in the knife-edge economies in which there

exists a y satisfying this requirement for all agents. In those economies the equilibrium

will be balanced and will generate Pareto optimal allocations. In all other economies no

equilibrium will exist.

The Original Groves-Ledyard Mechanism

The Groves-Ledyard mechanism can be viewed as an extension of the proportional tax

mechanism that guarantees existence of equilibrium by adding a quadratic penalty

term.

Definition 3. The Groves-Ledyard mechanism ΓL is given by

(3.1) ML
i =R1 for each i,

(3.2) yL(m)=∑
i mi,

(3.3) tL
i (m)=αiκy(m)+ γ

2

[ I−1
I (mi − m̄−i)2 −σ2(m−i)

]
,

where

• ((αi)I
i=1,γ) is a vector of parameters satisfying

∑
iαi = 1 and γ> 0,

• m̄−i = 1
I−1

∑
j 6=i m j, and
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• σ2(m−i)= 1
I−2

∑
j 6=i(m j − m̄−i)2.

Groves and Ledyard (1977, 1980) show that this mechanism is (unconditionally) Nash

efficient. One deficiency is that it may violate individual rationality, meaning there are

economies in which some agents prefer the initial endowment over the equilibrium allo-

cation of the mechanism. Hurwicz (1979a) shows that if one wants both Nash efficiency

and individual rationality for every economy (subject to a continuity condition), then one

must select a mechanism whose equilibrium outcomes are Lindahl allocations.8 We refer

to such mechanisms as Nash-Lindahl mechanisms. One of the first Nash-Lindahl mech-

anisms was identified by Walker (1981). Healy and Mathevet (2012) provide a full char-

acterization of continuously differentiable Nash-Lindahl mechanisms when the set of

admissible economies is sufficiently rich. They prove that, for any Nash-Lindahl mech-

anism, ti(m) must be of the form ti(m)= qi(m−i)y(m). The proportional tax mechanism

and the Walker mechanism satisfy this property, while the Groves-Ledyard mechanism

does not. Other Nash-Lindahl mechanisms have been proposed by Hurwicz (1979b);

Tian (1990); Kim (1993); Chen (2002); Healy and Mathevet (2012), and Van Essen

(2013), among others.

III. USING GROVES MECHANISMS TO CONSTRUCT NASH EFFICIENT MECHANISMS

Groves Mechanisms

We begin with the definition of the Groves mechanisms.

Definition 4. A Groves mechanism ΓG is given by

(4.1) MG
i is a set of strictly concave, differentiable functions mi such that, for all m,

argmaxy
{∑

i mi(y)−κy
}

is not empty,

(4.2) yG(m)= argmaxy
{∑

i mi(y)−κy
}

(4.3) tG
i (m)=αiκyG(m)−∑

j 6=i
(
m j(yG(m))−α jκyG(m)

)+hi(m−i),

where
∑

iαi = 1 and hi(m−i) is any function that does not depend on mi.

The tax function tG
i is measurable in {(yG(m),m−i)}m. Furthermore, for any yi and

m−i, player i can announce any mi ∈ MG
i with m′

i(yi)= κ−∑
j 6=i m′

j(yi) to get yG(mi,m−i)=
yi. Thus, Groves mechanisms are quasi-direct. If we restrict ourselves to economies

where the actual preferences are quasi-linear and the vi functions are in MG
i , then the

Groves mechanisms are also direct mechanisms, and truth-telling is a dominant strat-

egy (Groves, 1973). In the literature, Groves mechanisms are almost always applied to
8A Lindahl allocation is a vector ((x∗i )I

i=1, y∗) such that there exists some (p1, . . . , pI ) with
∑

i pi = κ for
which the maximizers (x̂i, ŷi) ∈ argmax{ui(xi, yi) : xi + pi yi ≤ωi} satisfy x̂i = x∗i and ŷi = y∗ for each i.
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quasi-linear economies and viewed as direct mechanisms. The key innovation of Groves

and Ledyard (1977) is to view them instead as quasi-direct mechanisms for more general

economies.

Groves and Ledyard (1977) prove the following properties of Groves mechanisms in

general economies.

Lemma 2 (Groves and Ledyard (1977), Theorem 3.1). Consider any e ∈ E and any equi-

librium m∗ of a Groves mechanism ΓG in e.

(2.1) Each agent’s message reveals their marginal rate of substitution at the realized

allocation:9

∂m∗
i (yG(m∗))
∂y

= MRSi(ωi − tG
i (m∗), yG(m∗)).

(2.2) The Samuelson condition is satisfied:
∑

i MRSi(ωi − tG
i (m∗), yG(m∗))= κ.

A proof appears in the appendix.

Remark 1. There are many possible best responses to a given m−i, even with quasi-

linear preferences. For example, consumer i can directly affect the taxes of others by

adding a scalar to their message. The resulting message will still be a best response,

and the added scalar will not alter the public good level or their own tax. Other similar

manipulations are possible.

Remark 2. In quasi-linear economies, any mi with m′
i(yG(mi,m−i)) = v′i(yG(mi,m−i))

is a best response to m−i. If other agents change their message to some m̂−i at which

m′
i(yG(mi, m̂−i)) 6= v′i(yG(mi, m̂−i)), then mi is no longer a best response to m̂−i. Thus,

mi is not a dominant strategy. If, however, mi ≡ vi (up to an additive scalar), then mi is a

best response regardless of the value of yG . Thus, truth-telling is a dominant strategy in

Groves mechanisms with quasi-linear preferences. With general preferences, however,

consumer i’s MRSi depends on the level of taxes; as others change their message (for

example, by adding scalars), consumer i must alter her message in response to match

the resulting change in MRSi.

That the Samuelson condition is satisfied is only one step toward establishing Nash

efficiency. What remains is to ensure that an equilibrium exists, and that it is balanced.

For General Groves mechanisms, equilibrium existence is impossible if the mechanism

fails to collect sufficient funds to finance yG(m). The VCG mechanism cures this problem

by ensuring that hi(m)≥αiκy(m) for all m.
9Groves and Ledyard (1977) actually show that agents reveal their ‘marginal willingness to pay’, but it is
equivalent here to the MRSi function.
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Definition 5. A mechanism ΓV = ((MV
i )i, yV , (tV

i )i) is the VCG mechanism if it is a

Groves mechanism in which

(5.1) hi(m−i)=maxy−i

∑
j 6=i

(
m j(y−i)−α jκy−i

)
.

Though the VCG mechanism will never run a shortage, it collects excess funds in

many economies. The excess cannot be returned to agents in the economy without al-

tering their preferences, and therefore represents social inefficiency. To achieve Pareto

optimality, we must use a Groves mechanism that is exactly balanced.

Unfortunately, it is well-known that balanced Groves mechanisms are impossible

when MG
i is sufficiently large.10 Thus, we must look to smaller domains of quasilin-

ear preferences to achieve balance.

Quadratic Preferences and the Groves-Ledyard Mechanism

Groves and Loeb (1975) show that the Groves mechanism can be exactly balanced when

preferences are quadratic-quasilinear and only vary in the intercept of the marginal

utility for y. Groves and Ledyard (1977) use this space of preferences to construct their

mechanism in general economies. Specifically, they apply the Groves mechanism with

message space

(3) MQ
i :=

{
vi(·|θi) : vi(y|θi)= (γθi +αiκ)y− γ

2I
y2, θi ∈R

}
,

where ((αi)I
i=1,γ) is a fixed vector of parameters satisfying

∑
iαi = 1 and γ > 0. Each

θi ∈ R is a free parameter that indexes the set of functions in MQ
i . Thus, we can view

consumers as selecting a θi ∈R and then submitting mi = vi(·|θi) to the VCG mechanism.

Letting θ be the vector of chosen parameter values, a few calculations reveals that

yG(θ) = ∑
i
θi,

tG
i (θ) = αiκ+ γ

2

[
I −1

I
(
θi − θ̄−i

)2 −σ2(θ−i)
]

.

This is exactly the Groves-Ledyard mechanism ΓL. Because it is balanced, we have from

Lemma 2 that this mechanism is conditionally Nash efficient. Furthermore, Groves and

Ledyard (1980) show that equilibrium exists for a wide class of economies, giving the

following result.

Proposition 1 (Groves and Ledyard (1977,1980)). Let Γ be a Groves mechanism in

which MG
i = MQ

i (the space of parameterized quadratic-quasilinear functions given in

10See footnote 22 of Groves and Ledyard (1977).
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(3)). Then Γ is equivalent to the Groves-Ledyard mechanism ΓL, has a balanced equilib-

rium for every e, and is Nash efficient.

Tian’s Preferences and the Generalized Groves-Ledyard Mechanism

Originally, it was conjectured that quadratic-quasilinear preferences are the only pref-

erences for which Groves mechanisms can be balanced (see Laffont and Maskin, 1980).

Then Tian (1996) showed that budget balance could be obtained on a wider class of

polynomial functions that may have an order higher than two. Liu and Tian (1999) ex-

tended this line of inquiry by providing a characterization of domains of functions on

which there exists a balanced Groves mechanism.

We can now replicate Groves and Ledyard’s construction of their mechanism, but with

the more general budget-balancing preferences of Tian (1996). The resulting mechanism

will generalize the original Groves-Ledyard mechanism.

Tian (1996)’s preferences were derived for the case of κ= 0. And his proof that these

preferences result in a balanced budget rely on the arguments of Laffont and Maskin

(1980), who also assume κ= 0. For completeness we now verify that the Laffont-Maskin

result holds for κ> 0 and then re-derive Tian’s preferences, accounting for κ.11

Lemma 3 (Based on Laffont and Maskin (1980), Theorem 4.1). Assuming yG(m) is dif-

ferentiable and κ ≥ 0, there exists a balanced Groves mechanism if and only if there

exist (αi)I
i=1 such that

∑
iαi = 1 and

I∑
i=1

∂I−1

∂m−i

[(
v′i(y(m)|θi)−αiκ

) ∂y
∂θi

]
≡ 0.

Lemma 4 (Based on Tian (1996), Theorem 1). Assume yG(m) is differentiable and κ≥ 0.

Fix any (αi)I
i=1 such that

∑
iαi = 1, any c > 0 and d ≥ 0, and any continuously differen-

tiable functions f (y) and (ψi(θi))i such that f (y) ≥ 0 for all y, f ′(y) 6= 0 for all y, f is

invertible, and ψ′
i(θi) 6= 0 for all i and θi. For each r ∈ {2,3, . . . , I − 1}, there exists a

balanced Groves mechanism if MG
i = MTr

i , where

MTr
i =

{
vi(·|θi) : vi(y|θi)=αiκy+ f (y)ψi(θi)− r−1

rc
(c f (y)+d)r/(r−1) , θi ∈R1

}
.

We now describe how Tian (1996)’s preferences are a generalization of the quadratic

preferences MQ
i above. First, the public good level y can be transformed by an invertible,

non-negative function f (y) which is identical across agents. Second, the type of the

agent θi can be transformed an increasing or decreasing function ψi(θi) which can differ

11Proofs for both lemmata follow closely the original proofs and are available upon request.
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across agents. Third, the quadratic term can be raised to any fractional power r/(r−1),

where r ∈ {2,3, . . . , I − 1}. Finally, the quadratic term can be linearly transformed by

multiplicative scalar c > 0 and additive scalar d ≥ 0. Tian’s preferences are identical to

quadratic preferences when r = 2, f (y)= y, ψi(θi)= γθi for any γ> 0, c = γ/I, and d = 0.

Now we apply the Tian preferences to generate a family of Generalized Groves-Ledyard

mechanisms, in exactly the same way that Groves and Ledyard (1977) applied qua-

dratic preferences to develop the original Groves-Ledyard mechanism. Specifically, we

note that announcing one’s preferences (in either the Tian family or the quadratic fam-

ily) requires announcing only a single real number θi, so we take the balanced Groves

mechanism and perform simple algebraic manipulation to derive a simpler form for the

expression of the Groves mechanism in terms of those single-number announcements.

Proposition 2. (Generalized Groves-Ledyard Mechanisms.) Fix r ∈ {2,3, . . . , I −1}

and parameters (αi)I
i=1 such that

∑
iαi = 1, c > 0, d ≥ 0, f (·), and (ψi(·))i. Using message

space MTr
i in the Groves mechanism gives the following Generalized Groves-Ledyard

mechanism.

(2.1) M∗
i =R,

(2.2) y∗(θ)= f −1 (1
c
(
ψ̄(θ)r−1 −d

))
,

(2.3) t∗i (θ)=αiκy∗(θ)− (I −1)
[1

c
(
ψ̄(θ)r−1 −d

)
ψ̄−i(θ−i)+ r−1

rc ψ̄(θ)r]+hi(θ−i),

where ψ̄(θ) = ∑
iψi(θi)/I and ψ̄−i(θ−i) = ∑

j 6=iψ j(θ j)/(I −1). The mechanism is balanced

if, in addition,

hi(θ−i)=
r∑

q=1

∑
Tq,r

[
I −1
Ir−1

2r−1
cr

( r
t1,t2,...,tq

)
I − q

( ∑
i1 6=i

∑
i2 6∈{i,ik}k<2

· · · ∑
iq 6∈{i,ik}k<q

q∏
k=1

ψik (θik )tk

)]
(2.4)

− d
c

∑
j 6=i
ψ j(θ j),

where

(2.5) Tq,r =
{

(t1, . . . , tq) ∈Nq :
q∑

k=1
tk = r and (∀k > 1)tk−1 > tk

}
is the set of all strictly decreasing length-q sequences of positive integers that sum to r,

and

(2.6)

(
r

t1, t2, . . . , tq

)
= r!

t1!t2! · · · tq!

is the multinomial coefficient.

A detailed derivation appears in the appendix. We have also verified that the original

Groves-Ledyard mechanism is obtained in the special case where Tian’s preferences
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reduce to the quadratic preferences (r = 2, f (y) = y, ψi(θi) = γθi for any γ > 0, c = γ/I,

and d = 0).

Example Mechanisms

In this section we adapt the parametric restrictions that imply the Groves-Ledyard

mechanism, but consider higher-order preferences represented by r > 2.12 For any

r ∈ {2,3, . . . , I −1}, define

M∗
i =

{
vi(·|θi) : vi(y|θi)=αiκy+γθi f (y)− γ(r−1)

rI
f (y)

r
r−1 , θi ∈R

}
.

The resulting public good function is characterized by

f (y∗(θ))= (
∑

i
θi)r−1,

and the tax function is given by

(4) t∗i (θ)=αiκy∗(θ)−∑
j 6=i

[
γθ j(

∑
k
θk)r−1 − γ(r−1)

rI
(
∑
k
θk)r

]
+hi(θ−i).

Algebraic manipulation of equation 4 yields a version of the tax function somewhat

similar to the original Groves-Ledyard mechanism. Specifically, we find

t∗i (θ)=αiκ(
I∑

i=1
θi)r−1 + γ(r−1)

r

(
I −1

I
(
θi − θ̄−i

)r +
r−1∑
j=1

θ
r− j
i b j(I −1) jθ̄

j
−i

)

+γ I −1
I

(r−1)
r

br(I −1)rθ̄r
−i +hi(θ−i),

where

bi =−
( (−1)i(r

i
)

(I −1)i +
r

r−1 I
(r−1

i−1

)− (I −1)
(r

i
)

I −1

)
.

For the case of r = 2 and f (y)= y, we have y∗(θ)=∑
i θi, as in Groves-Ledyard, and

hi(θ−i)= γ

2
(I −1)

[
1

I −1

∑
j 6=i
θ2

j +
2

I −2

∑
j 6=i

∑
k 6=i, j

θ jθk

]
.

Further manipulation gives the exact form for tL
i above.

Finally, if r = 3, and f (y)= y, we have

y∗(θ)= (
∑

i
θi)2

12Technically, these preferences deviate from from MTr defined above by adding a scalar multiple to the
f (y)r/(r−1) term, but it can be shown easily that this does not impact budget balance.
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and

t∗i (θ)=αiκ
( I∑

i=1
θi

)2+γ(r−1)
r

( I −1
I

(
θi−θ̄i−1

)3+
2∑

j=1
θ

3− j
i b j(I−1) jθ̄

j
−i

)
+2

3
γ

I −1
I

b3(I−1)3θ̄3
−i+hi(θ−i),

where

hi(θ−i)= 2γ
3

(I −1)[
1

I −1

∑
j 6=i
θ3

j +
3

I −2

∑
j 6=i

∑
k 6=i, j

θ2
jθk +

1
I −3

∑
j 6=i

∑
k 6=i, j

∑
l 6=i, j,k

θ jθkθl].

IV. EQUILIBRIUM EXISTENCE AND TWO-DIMENSIONAL MECHANISMS

Groves and Ledyard (1980) prove that a competitive equilibrium exists for their mecha-

nism in a wide range of economies. Here we find conditions on the strategy space under

which equilibrium existence is assured for Groves mechanisms, and then ask whether

or not those conditions can translate to the Generalized Groves-Ledyard mechanisms

with their more restrictive strategy spaces.

Proposition 3. Suppose ΓG is a Groves mechanism such that, for every i, mi ∈ MG
i ,

and scalar ai, the function mi(·)+ ai is also in MG
i . If an economy e has an allocation

((xo
i )i, yo) satisfying the Samuelson condition (eq. 1) and there is a message m̂ ∈ MG for

which m̂′
i(yo) = MRSi(xo

i , yo) for all i, then there exists a Nash equilibrium of ΓG in e

whose allocation is ((xo
i )i, yo).

Unfortunately, this existence result does not apply to the Generalized Groves-Ledyard

mechanisms proposed above because their message spaces do not contain functions that

differ only by a scalar. But if we add a scalar to each function as a second parameter—

which the agent must also announce—then the message space becomes rich enough to

permit equilibrium existence via Proposition 3. We now briefly formalize the develop-

ment of the resulting mechanism.

Fix any Generalized Groves-Ledyard mechanism, which is a Groves mechanism ΓG =
((MTr

i )i, yG , (tG
i )i) with Tian preferences MTr for some r ∈ {2, . . . , I −1}. Now, construct a

new ‘shifting’ mechanism ΓS = ((MS
i )i, yS, (tS

i )i) as follows. First, set

MS
i =

{
vi(·|θi,βi)= vi(·|θi)+βi : vi(·|θi) ∈ MTr

i , βi ∈R
}

.

We can equivalently view agents as submitting (θi,βi) instead of mi. Next, set yS(θ,β)=
yG(θ). Now, if we simply apply the Groves tax function with these new preferences, we

would have that tS
i (θ,β) = tG

i (θ)−∑
j 6=iβ j for each i. This is undesirable; if the original

mechanism were balanced, this new mechanism would be unbalanced by a factor of∑
i
∑

j 6=iβ j. To compensate, we need to add this amount into
∑

i hi(θ−i,β−i). This can be

done by adding (I−1)βi+1 to each hi(θ−i,β−i), where i+1 is taken modulo I. In total, we
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now have

tS
i (θ,β)= tG

i (θ)−∑
j 6=i
β j + (I −1)βi+1.

The added terms clearly balance out in aggregate, preserving the balance properties of

the original mechanism.

Since βi does not affect consumer i’s allocation, this added dimension does not alter

the strategic properties of the mechanism. It does, however, give us enough flexibility to

use the above existence result. Thus, we have the following proposition.

Proposition 4. For any Generalized Groves-Ledyard mechanism Γ∗, the two-dimensional

‘shifting’ mechanism ΓS defined above

(4.1) satisfies the Samuelson condition (Lemma 2) at any equilibrium,

(4.2) is budget balanced (
∑

i tS
i (θ,β)= κyS(θ,β)) for every θ and β, and

(4.3) has an equilibrium in every economy e ∈ E .

Consequently, ΓS is a Nash efficient mechanism.

A simple interpretation of this mechanism is that it is identical to Γ∗, except each

agent i also gets to take any amount of private good from their neighbor and redis-

tribute it equally among j 6= i. This makes any vector of private goods consumption

obtainable at any public goods level, subject to the aggregate resource constraint. Any

Generalized Groves-Ledyard mechanism can be augmented in this way to guarantee

existence, including the original Groves-Ledyard mechanism.

V. ISSUES WITH STABILITY

The original Groves-Ledyard mechanism has nice stability properties. With quasi-linear

preferences and a suitable choice of γ, the mechanism always induces a game with con-

tractive best response functions.13 Formally, if βi(m−i) is player i’s best response func-

tion, then for any j 6= i,

(5)
∂βi(m−i)
∂m j

= γ+ I v′′i (y(m))
γ(I −1)− I v′′i (y(m))

.

Assuming v′′i is bounded and letting γ grow large, this slope converges to 1/(I −1) from

below. And this is true at every message profile m ∈ RI , since messages only affect the

13See Healy and Mathevet (2012) for a discussion of contraction as a notion of stability.
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slope through v′′i . Thus,
∑

j ∂βi/∂m j ∈ (0,1) for large γ, establishing that the mechanism

is both contractive and supermodular (hence, stable).14

A natural question is whether the Generalized Groves-Ledyard mechanisms inherit

the same stability properties. We conjecture that, generically, the answer is negative.

Consider the example mechanism with r = 3 and f (y) = y from the end of Section III. If

βi(θ−i) is player i’s best response function, then for any j 6= i,

(6)
∂βi(θ−i)
∂θ j

= A i(θ)−2 (I−1)2
I−1 b2θ̄−i + 1

I−1 [4 I−1
I γ(θi − θ̄−i)−2(I −1)b1θi]

4 I−1
I γ(θi − θ̄−i)+2(I −1)b1θ̄−i − A i(θ)

,

where θ̄−i =∑
j 6=i θ j/(I −1) and

A i(θ)= 2v′i(y(θ))+4v′′i (y(θ))(
∑

j
θ j)2 −2αiκ.

The difficulty with establishing stability is that the slope of the best response function

depends directly on the message profile θ ∈ RI . In the original mechanism the slope de-

pended on θ only through v′′i . Messages can be arbitrarily large or small, which means

it may be difficult to bound the slope when messages affect the slope directly. For exam-

ple, the slope given in (6) converges to −1 as θi grows large (holding θ−i fixed). Since∑
j 6=i ∂βi/∂θ j converges to −(I −1), the mechanism is not stable for extreme messages.

It is clear from inspection that the best response slopes will depend on messages di-

rectly (rather than through v′′i ) for any r > 2. Even with r = 2 this appears to be a

problem unless f and each ψi are all linear. Thus, we conjecture that the only Gener-

alized Groves-Ledyard mechanisms that achieve stability are those for which r = 2 and

f and each ψi are linear. In our view, this represents a trivial generalization, so we

conjecture that the original Groves-Ledyard mechanism is essentially the only one for

which stability can be assured.

VI. DISCUSSION

We do not claim that the Generalized Groves-Ledyard mechanisms are in any way more

practical or useful than the original mechanism. Instead, our goal here is to highlight

how the method of creating mechanisms used by Groves and Ledyard (1977) could be

extended to find other mechanisms. In some sense, we view our results as negative;

the Tian preferences are the broadest class of preferences for which it is known that

14Quasi-linearity appears important to establish this result. For example, Kim (1987)—building off of
Jordan (1986)—shows that stability of any Nash-efficient mechanism is impossible to achieve if a broad
enough family of (non-quasilinear) preferences is considered.
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the Groves mechanism can be balanced, and we fully characterize the mechanisms that

can be created using these preferences. For all but the simplest quadratic preferences,

the resulting mechanisms are quite unruly. They are both mathematically complex and

possibly cannot be made stable. But, if there are no other preferences that balance the

Groves mechanism, then there are no other mechanisms that can be constructed in this

way.

Of course, this is also not the only way to construct Nash efficient mechanisms. Brock

(1980) used a differential approach to show how such mechanisms might be constructed.15

Healy and Mathevet (2012) used this approach to characterize Nash-Lindahl mecha-

nisms. In their setting it is easy to see that conditional Nash efficiency (ignoring the

Lindahl requirement) is characterized by
∑

i(∂ti/∂mi)/(∂y/∂mi)= κ for all m. And budget

balance is given by
∑

i ti(m)= κy(m) for all m. These are fairly easy to satisfy. Thus, it is

the equilibrium existence requirement that is the real challenge, not conditional Nash

efficiency.

We study a two-good economy for simplicity. Groves and Ledyard (1977) study economies

with arbitrary finite numbers of goods. They demonstrate that the procedure of using

the Groves mechanisms to construct Nash efficient mechanisms faces no difficulty with

the larger number of goods. Messages simply become vectors instead of scalars. Thus, it

is immediately clear that our more generalized construction will similarly apply to the

larger setting.

Though our ‘shifting’ mechanism has the benefit of equilibrium existence, it has a

few undesirable properties. It is not symmetric. Agents are forced to treat their neigh-

bors (and to be treated by their neighbors) differently than everyone else. This cre-

ates obvious political difficulties in practice. But it appears there is no simple way to

make the mechanism symmetric without sacrificing either budget balance or equilib-

rium existence. Behavior would also be distorted by the slightest degree of social pref-

erences. Each agent essentially engages in a dictator game in which they unilaterally

redistribute money among the other parties. The required vector of redistribution that

guarantees equilibrium for some economy may be seen by some agents as undesirable,

leading again to a non-existence result. Agents in a larger context may also fear reci-

procity for their redistribution decisions. Finally, equilibrium existence may require a

very specific vector of transfers, to be executed simultaneously by all parties, all of whom

15Groves and Ledyard (1987) describe the procedure in detail. Like us, Brock (1980) finds that the Groves-
Ledyard mechanism is the ‘simplest’ mechanism one might hope to construct that guarantees existence.
Another notably simple mechanism was constructed by Walker (1981).
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are indifferent over their own choices. It seems unlikely that equilibrium would obtain

in practice.



GENERALIZED GROVES LEDYARD MECHANISMS 19

APPENDIX A. PROOFS

Proof of Lemma 2

In any quasi-direct mechanism, agent i chooses yi in response to m−i to maximize

ui (wi − ti (yi,m−i) , yi) .

At any best response y∗i we have the first-order condition

∂ti
(
y∗i ,m−i

)
∂y

= ∂ui
(
wi − ti

(
y∗i ,m−i

)
, y∗i

)
/∂y

∂ui
(
wi − ti

(
y∗i ,m−i

)
, y∗i

)
/∂xi

.

The best response message m∗
i is that which generates y(m∗

i ,m−i)= y∗i .

The Groves mechanism is quasi-direct. By the definition of tG
i , we have that

∂tG
i (yi,m−i)
∂y

= q−∑
j 6=i

m′
j (yi) .

Recall yG (m) sets
∑

i m′
i
(
yG (m)

)= κ. Thus, at any yi and m−i, the message mi that will

lead to yi = yG (m) must satisfy

m′
i (yi)=

∂tG
i (yi,m−i)
∂y

.

If the message is in equilibrium then it is a best response, and so m′
i
(
yG (m)

)
is agent i’s

marginal rate of substitution at
((
ωi − tG

i (m)
)I

i= , yG (m)
)
. The Samuelson condition then

follows from
∑

i m′
i
(
yG (m)

)= κ.

Proof of Proposition 2

Consider an agent with Tian preferences that submits them truthfully to the Groves

mechanism ΓG . Recall that, with Tian preferences there is only one free parameter θi,

and the vi function is given by

vi(y|θi)=αiκy+ f (y)ψi(θi)− r−1
rc

(c f (y)+d)r/(r−1) .

Thus,

v′i(y|θi)=αiκ+ f ′(y)ψi(θi)− f ′(y)(c f (y)+d)1/r−1

Because yG (θ) equates
∑

i v′i with κ, we have that yG(θ) solves

∑
i
ψi (θi)− I

(
c f

(
yG (θ)

)
+d

) 1
r−1 = 0
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at every θ. Or, equivalently,

(7)
(
c f

(
yG (θ)

)
+d

) 1
r−1 = ψ̄ (θ) .

The Generalized Groves-Ledyard mechanism uses the same public good function as the

Groves mechanism, so we have

y∗ (θ)≡ f −1
(
1
c
ψ̄ (θ)r−1 − d

c

)
.

The Groves tax function is

ti (θ)=αiκy (θ)−
∑
j 6=i

[
v j

(
y (θ) |θ j

)−α jκy (θ)
]+hi (θ−i) ,

where hi is arbitrary. Substituting in the parameterized preferences and using the fact

that (c f (y (θ))+d) 1/(r−1) = ψ̄ (θ), this reduces to

t∗i (θ)=αiκy∗ (θ)− (I −1)
[
ψ̄−i (θ−i) f

(
y∗ (θ)

)+ r−1
rc

ψ̄ (θ)r
]
+hi (θ−i) .

Plugging in f (y (θ)) gives

t∗i (θ)=αiκy∗ (θ)− I −1
c

[
ψ̄−i (θ−i)

(
ψ̄ (θ)r−1 −d

)+ r−1
r

ψ̄ (θ)r
]
+hi (θ−i) .

To get balance we need∑
i

hi (θ−i)=
∑

i
(I −1)

[
ψ̄−i (θ−i) f

(
y∗ (θ)

)+ r−1
rc

ψ̄ (θ)r
]

.

After manipulation, this yields

∑
i

hi (θ−i)= 1
c

[
I −1
Ir−1

2r−1
r

(∑
i
ψi (θi)

)r

−d
∑

i

∑
j 6=i
ψ j

(
θ j

)]
.

The goal is to express the right-hand side as sums over i of terms that do not depend

on θi. To accomplish this, we need to break apart the
(∑

iψi (θi)
)r term. The following

describes the procedure.

For this notational simplicity, assume temporarily that ψi (θi) = θi for all i. It is easy

to see that

(8)

(∑
i
θi

)r

=∑
i1

∑
i2

· · ·∑
ir

θi1θi2 . . .θir .

Now we can break that sum into partial sums based on exponent groupings, to get(∑
i
θi

)r

=∑
i1

θr
i1
+∑

i1

∑
i2 6=i1

θr−1
i1

θi2 +
∑
i1

∑
i2 6=i1

θr−2
i1

θ2
i2
+∑

i1

∑
i2 6=i1

∑
i3 6∈{ik}k<3

θr−2
i1

θi2θi3 +·· · .
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Take any one grouping in this sum, written generically as∑
i1

∑
i2 6=i1

· · · ∑
iq 6∈{ik}k<q

θ
t1
i1
θ

t2
i2
· · ·θtq

iq
,

where
∑q

k=1 tk = r and tk > tk+1 for all k < q. Now, suppose for each i, we remove all

terms containing the ith index, but then sum the entire expression over i. That would

be

(9)
∑

i

 ∑
i1 6=i

∑
i2 6∈{i,ik}k<2

· · · ∑
iq 6∈{i,ik}k<q

θ
t1
i1
θ

t2
i2
· · ·θtq

iq

 .

There are (I −1)(I −2) · · · (I − q) terms inside the bracket. But we have I total brackets,

so in total this expression counts I (I −1) · · · (I − q) terms.

If we return to the original sum (8), how many of those terms can be written as

θ
t1
i1
θ

t2
i2
· · ·θtq

iq
? In total, there are

I

(
r
t1

)
(I −1)

(
r− t1

t2

)
(I −2)

(
r− t1 − t2

t3

)
· · · (I − q+1)

(
r−∑q−2

k=1 tk

tq−1

)
such terms in the original sum. This reduces to(

r
t1, t2, . . . , tq

)
I (I −1) · · · (I − q+1) ,

where the bracketed term is the multinomial coefficient r!/
(
t1!t2! · · · tq!

)
.

Thus, in expression (9) we ‘overcounted’ terms by a factor of

I (I −1) · · · (I − q)( r
t1,t2,...,tq

)
I (I −1) · · · (I − q+1)

= (I − q)( r
t1,t2,...,tq

) .

To adjust for this, we alter (9) to get

(10)
∑

i

( r
t1,t2,...,tq

)
I − q

 ∑
i1 6=i

∑
i2 6∈{i,ik}k<2

· · · ∑
iq 6∈{i,ik}k<q

θ
t1
i1
θ

t2
i2
· · ·θtq

iq

 .

Return now to the expression

(∑
i
θi

)r

=∑
i1

θr
i1
+∑

i1

∑
i2 6=i1

θr−1
i1

θi2 +
∑
i1

∑
i2 6=i1

θr−2
i1

θ2
i2
+∑

i1

∑
i2 6=i1

∑
i3 6∈{ik}k<3

θr−2
i1

θi2θi3 +·· · .

For any r and q, let the set of decreasing sequences of positive integers that sum to r be

given by

Tq,r =
{(

t1, . . . , tq
) ∈Nq :

q∑
k=1

tk = r & (∀k > 1) tk−1 > tk

}
.
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Using (10), we now have(∑
i
θi

)r

=∑
i

r∑
q=1

∑
Tq,r

( r
t1,t2,...,tq

)
I − q

 ∑
i1 6=i

∑
i2 6∈{i,ik}k<2

· · · ∑
iq 6∈{i,ik}k<q

θ
t1
i1
θ

t2
i2
· · ·θtq

iq

 .

Returning to the question of budget balance, we derive that

∑
i

hi (θ−i)=
∑

i

1
c

 r∑
q=1

∑
Tq,r

 I −1
Ir−1

2r−1
r

( r
t1,t2,...,tq

)
I − q

 ∑
i1 6=i

· · · ∑
iq 6∈{i,ik}k<q

q∏
k=1

ψik

(
θik

)tk


−d

∑
j 6=i
ψ j

(
θ j

)}
,

giving the desired expression for each hi (θ−i).

Proof of Proposition 3

Fix any allocation ((xo
i )i, yo) in the range of ΓG satisfying the Samuelson condition∑

i
MRSi(xo

i , yo)= κ,

and some message profile m̂ such that m̂′
i(yo)= MRSi(xo

i , yo) for all i. Because
∑

i m̂′
i(yo)=

κ, the mechanism selects yG(m̂) = yo. Note that if we add a scalar a j to each m̂ j then

yG(·) is unaffected, but each tG
i (·) decreases by

∑
j 6=i a j. Define ma

i (·)= m̂i(·)+ai for each

i and let (ai)I
i=1 be the unique vector of scalars such that ωi − tG

i (ma) = xo
i for all i.16

Suppose all agents j 6= i announce ma
j . By the arguments in Lemma 1, agent i’s best

response will be a message m∗
i satisfying

MRSi(ωi − tG
i (m∗

i ,ma
−i), yG(m∗

i ,ma
−i))= κ−

∑
j 6=i

dma
j (yG(m∗

i ,ma
−i))

d y
.

The message ma
i satisfies this condition, because MRSi(ωi−tG

i (ma), yG(ma))= MRSi(xo
i , yo),

dma
j (yG(ma))/d y= MRS j(xo

j , yo) for all j, and
∑

i MRSi(xo
i , yo)= κ. This is true for all i,

so ma is a Nash equilibrium.

16To find a, let A be the I× I matrix with zeros on the main diagonal and ones in every other entry. Then
a = xo · A−1.
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