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Groves and Ledyard (1977) construct a mechanism for public goods procurement that can 
be viewed as a direct-revelation Groves mechanism in which agents announce a parameter 
of a quadratic approximation of their true preferences. The mechanism’s Nash equilibrium 
outcomes are efficient. The budget is balanced because Groves mechanisms are balanced 
for the announced quadratic preferences. Tian (1996) subsequently discovered a richer set 
of budget-balancing preferences. We replicate the Groves–Ledyard construction using this 
expanded set of preferences, and uncover a new set of complex mechanisms that generalize 
the original Groves–Ledyard mechanism. The original mechanism, however, remains the 
most appealing in terms of both simplicity and stability.
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1. Introduction

Groves and Ledyard (1977) provided one of the first decentralized economic mechanisms to solve the free rider prob-
lem for general economies. Specifically, they devised a government (or, mechanism) such that self-interested equilibrium 
behavior by all parties always leads to a Pareto optimal allocation. This work has been cited widely, with many researchers 
building off its original insights.

What has not been appreciated, however, is the manner in which Groves and Ledyard (1977) actually construct their 
mechanism. The final mechanism looks simple: players announce a single number, and taxes are based on a proportional 
share of the cost and a quadratic penalty. In fact, the mechanism has a more complex foundation: Groves and Ledyard (1977)
present it as being derived from a Groves mechanism (Groves, 1973) in which agents announce entire quasilinear utility 
functions and are taxed (or rewarded) based on the Marshallian surplus calculated from the announced preferences of all 
other agents in the economy. But agents may not actually have quasilinear preferences, so these announcements represent
approximations of their true preferences. The space of admissible announcements is parameterized with a single parameter, 
which greatly simplifies agents’ messages. In equilibrium, agents with non-quasilinear preferences announce quasilinear 
preferences that best approximate their true willingness to pay at the Pareto optimal allocation, and that allocation is 
selected by the mechanism.1

What is crucial to the Groves-cum-Groves–Ledyard construction is that the set of approximating preferences that the 
agents are allowed to announce always generate a budget-balanced allocation in the Groves mechanism. Budget balance 
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1 Groves (1973) mechanisms are usually only discussed in settings where all agents actually have quasilinear preferences, and therefore have a dominant 
strategy of truthful revelation. Groves and Ledyard (1977) are novel in that they consider the Groves mechanism for more general preferences.
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does not always obtain with general quasilinear preferences; Groves and Loeb (1975) showed that balance is achieved if we 
further restrict agents to quadratic valuation functions. Following this insight, Groves and Ledyard (1977) only allow agents 
to announce quadratic (approximate) preferences, guaranteeing that the final allocation will balance the budget. Agents need 
only to announce the intercept of their (approximate) valuation function, and are charged according to the balanced Groves 
mechanism. Algebraic manipulation reveals that these outcome and tax functions reduce to the familiar Groves–Ledyard 
mechanism with its quadratic form.

For two decades it was believed that quadratic preferences are the only ones for which a Groves mechanism could be 
budget balanced.2 This belief was overturned when Tian (1996) discovered a much richer class of preferences for which 
Groves mechanisms can be balanced. And, like the quadratic preferences, these are parameterized by a single parameter.

In this paper we replicate the Groves–Ledyard procedure of turning a Groves mechanism into a one-dimensional, budget-
balanced, Pareto efficient mechanism, but we do so on Tian (1996)’s larger domain of preferences. In doing so, we uncover 
a broad family of complex mechanisms that, in theory, could also be used to solve the free-rider problem. We also gain a 
deeper understanding of the incentive properties of Groves mechanisms applied to general preferences. We see that getting 
the Samuelson condition (equating the sum of marginal rates of substitution to marginal costs) is a relatively trivial matter, 
so that the real difficulties in the design problem lie in achieving budget balance and equilibrium existence. We lean on Tian
(1996) to accomplish the former; for the latter, we devise a simple trick of allowing agents to announce transfers among 
their partners, providing just enough richness to the range of the mechanisms (without distorting incentives) to guarantee 
equilibrium existence in these mechanisms.

Finally, we study the stability properties of these Generalized Groves–Ledyard mechanisms, since one beneficial property 
of the original Groves–Ledyard mechanism is that it becomes dynamically stable under appropriate parameter values (Chen 
and Plott, 1996; Page and Tassier, 2004; Healy, 2006; Healy and Mathevet, 2012). It is clear that stability will become 
difficult to obtain in the generalized versions of the mechanism. We show that in one generalized version the best response 
functions’ slopes depend crucially on the messages sent. With very extreme messages the best response slopes become 
steep enough that stability is violated. We argue that this will be a pervasive problem in any of the generalized versions of 
the mechanism. This suggests that the original Groves–Ledyard mechanism is not only the simplest among the generalized 
versions, but it is likely the only one that can be made globally stable.

2. Setup

2.1. The economic environment

We present here a simplified version of the Arrow–Debreu setting studied by Groves and Ledyard (1977). Specifically, 
there is one private good and one public good, I consumers, F firms, and a mechanism (that can be thought of as a 
government). The mechanism receives messages from the consumers and uses this information to procure the public good 
from the firms. This purchase is financed by (message-dependent) the taxes collected from the consumers.

The price of the private good is normalized to one, and the price of the public good is given by p ∈ R. Quantities are 
given by x ∈ R for the private good and y ∈ R for the public good. Each consumer i has a consumption set Xi ⊆ R

2, 
a preference relation �i on Xi that is representable by a differentiable utility function ui , and an initial endowment of 
private goods ωi ∈ R. Firms are characterized by a production set Z f ∈ R

2 and a vector of profit shares θ f = (θ1
f , . . . , θ

I
f ). 

Production vectors are given by z f = (zx
f , z

y
f ), with negative components representing inputs. Firm profits are distributed to 

consumers according to θ f . An economy is therefore represented by e = ((Xi, �i, ωi)
I
i=1, (Z f , θ f )

F
f =1).

We think of there being a set of admissible economies E , where each e ∈ E differs only in the preference profiles of 
the consumers. We assume that, for every e ∈ E , each ui is continuously differentiable, quasi-concave, and strictly increas-
ing in the private good. In some cases we may discuss further restrictions on E , such as requiring that all preferences 
are quasilinear (ui(xi, y) = vi(y) + xi for some concave function vi ), or even quadratic-quasilinear (vi(y) is concave and 
quadratic).

An allocation is a vector ((xi)
I
i=1, y, (z f )

F
f =1) with xi ∈ R for each consumer i, y ∈ R, and z f ∈ R

2 for each firm f . An 
allocation is feasible if (i) (xi, y) ∈ Xi for each i, (ii) z f ∈ Z f for each j, and (iii) (

∑
i(xi − ωi), y) ≤ ∑

f z f . An allocation 
((xi)

I
i=1, y, (z f )

F
f =1) is Pareto optimal if it is feasible and there is no other feasible allocation ((x′

i)
I
i=1, y

′, (z′
f )

F
f =1) such that 

(x′
i, y

′) �i (xi, y) for all i and (x′
i, y

′) �i (xi, y) for some i.

2.2. Mechanisms and competitive equilibrium

A mechanism (or government) is simply tuple which specifies a message space M = ×i Mi (one for each consumer), an 
allocation rule y(m, p) selecting a public goods level for each message profile m and (public good) price p, and a list 

2 This was conjectured by Laffont and Maskin (1980), who provide general conditions for budget balance.
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of tax functions ti(m, p) indicating how much wealth each consumer must sacrifice for financing the public good.3 Thus, 
a mechanism is given by � = ((Mi)

I
i=1, y, (ti)

I
i=1).4

Firm f ’s profit is given by zx
f + pzy

f . Its supply correspondence φ f (p) is the set of production vectors z f ∈ Z f that 
maximize profit in Z f given price p. Resulting profits are then given by π f (p) := zx

f + pzy
f for any z f ∈ φ f (p).

At price p, consumer i has wealth wi(ωi, p) := ωi +∑
f θ i

f π f (p). This consumer must choose a private goods consump-
tion level xi and a message mi ∈ Mi to send to the government, taking as given p and m−i . She faces the constraint that 
(xi, mi) must be such that (xi, y(mi, m−i, p)) ∈ Xi and xi + ti(mi, m−i, p) ≤ wi(ωi, p). Let Bi(m−i, p) be the ‘budget set’ 
of choices (xi, mi) satisfying this constraint, and define βi(m−i, p) to be the set of �i -most-preferred (or ‘best response’) 
choices in Bi(m−i, p).

We will define a competitive equilibrium for an economy with a given mechanism as an allocation, a price p, and 
a vector of messages that satisfy preference maximization and profit maximization given p. Groves and Ledyard (1977)
further require exact market clearing, which implies that the government balances the budget. We allow here the possibility 
of governments that collect a surplus in equilibrium; equilibrium is defined formally after a few simplifications.

For simplicity, we assume a linear production technology Z f = {z f ∈R
2 : zx

f + κzy
f ≤ 0} for all j, meaning all firms have 

a constant marginal cost of κ > 0. Profit maximization yields p = κ and π f (κ) = 0 (so that wi(ωi, κ) = ωi ). The budget 
balance conditions simplify to 

∑
f zy

f = y(m, p) and 
∑

i xi +κ y(m, p) =∑
i ωi . Since we are not studying out-of-equilibrium 

phenomena, we henceforth assume that p is in equilibrium and therefore equals κ .5 We also drop p from the arguments 
of all functions, for brevity.

We further assume that Xi = R
2 for each i, so that preference maximization implies xi = ωi − ti(m). This simplifies our 

analysis by allowing for negative quantities of public goods. It is well known that Nash implementation of Walrasian or 
Lindahl equilibria is impossible when boundary equilibria are possible, so these must be ruled out either by assumptions 
on preferences (as in Groves and Ledyard, 1977) or by allowing an unbounded strategy space (as in Healy and Mathevet, 
2012). Our goal here is to discover new mechanisms, and we want to do so under minimal assumptions on preferences, so 
we take the latter route. Since the choice of xi is now trivial, we redefine βi(m−i) to be the �i -optimal messages in Mi , 
given m−i .6 This further simplifies the budget balance conditions to 

∑
f zy

f = y(m) and 
∑

i ti(m) = κ y(m, p).
Now, a (Nash or competitive) equilibrium is a message profile m∗ ∈ M such that (i) m∗

i ∈ βi(m∗
−i) for all i, and (ii) ∑

i ti(m∗) ≥ κ y(m∗)). If (ii) holds with equality, we call it a balanced (Nash or competitive) equilibrium. It is unbalanced if 
(ii) holds with strict inequality. Given an equilibrium m∗ , the equilibrium allocation is the allocation that results from m∗ . 
A message m∗

i is a dominant strategy if m∗
i ∈ βi(m−i) for all m−i .

Our ultimate goal is to design mechanisms such that (i) at least one balanced equilibrium exists for every e ∈ E , and 
(ii) all balanced equilibrium allocations are Pareto optimal.7 We refer to such mechanisms as Nash efficient mechanisms. If a 
mechanism satisfies (ii) but not (i) then we say it is conditionally Nash efficient (conditional on existence).

Define agent i’s marginal rate of substitution at any allocation (xi , y) by

MRSi(xi, y) = ∂ui(xi, y)/∂ y

∂ui(xi, y)/∂xi
.

A mechanism is conditionally Nash efficient if and only if for every e ∈ E and every balanced equilibrium m∗ in e,∑
i

MRSi(ωi − ti(m
∗), y(m∗)) = κ. (1)

We refer to (1) as the Samuelson (1954) condition, since it is necessary (but not sufficient) for Pareto optimality. If, in 
addition, the allocation is budget-balanced then efficiency obtains. Thus, if existence of a balanced equilibrium is guaranteed 
for every e ∈ E , then conditional Nash efficiency implies Nash efficiency.

2.3. Direct, quasi-direct, and indirect mechanisms

A mechanism is called direct if each Mi is the space of possible preferences (or utility functions) for consumer i. For 
example, the Vickrey–Clarke–Groves mechanism introduced below is a direct mechanism when preferences are quasi-linear.

We introduce here the notion of a quasi-direct mechanism, in which agents can be thought of as announcing their 
preferred allocation, rather than an abstract message.

3 We assume later a constant marginal cost of production, which implies that wealth is measured simply by the private good endowment.
4 We abuse notation, letting y represent both a public good level and the function that determines this level; this should cause no confusion.
5 In our section on stability, we do discuss a situation where consumers’ messages m are dynamically adjusting out of equilibrium. There we assume 

that p does not adjust, for any deviation from p = κ would cause firms to produce infinite (or negatively infinite) quantities. We view this as a very strong 
force that stabilizes p at κ even when m is out of equilibrium.

6 Formally, βi(m−i) = {mi ∈ Mi : (ωi − ti(mi , m−i), y(mi , m−i)) �i (ωi − ti(m′
i , m−i), y(m′

i , m−i)) ∀m′
i ∈ Mi}.

7 Unbalanced equilibrium allocations cannot be Pareto optimal.
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Definition 1. Mechanism � = ((Mi)
I
i=1, y, (ti)

I
i=1) is quasi-direct if

(1.1) y(·, m−i) is surjective for each i and m−i (meaning, for each m−i and yi there exists some mi such that y(mi, m−i) =
yi ), and

(1.2) each ti(·) is measurable with respect to {(y(m), m−i)}m∈M (meaning, y(mi, m−i) = y(m′
i, m−i) implies ti(mi, m−i) =

ti(m′
i, m−i)).

We will see a direct mechanism that is also quasi-direct; these definitions are not mutually exclusive. A mechanism is 
said to be indirect if it is neither direct nor quasi-direct.

In a quasi-direct mechanism, choosing mi (given m−i) is equivalent to choosing a public goods level yi(mi, m−i), and 
then paying a tax that depends only on yi and m−i . With quasi-direct mechanisms we sometimes view the message as yi
rather than mi , and re-write the tax function as ti(yi, m−i).

Consider an agent in a quasi-direct mechanism choosing yi ∈ R to maximize ui(ωi − ti(yi, m−i), yi) given m−i . Suppose 
ti(yi, m−i) is differentiable in yi . The individually-optimal choice y∗

i will be characterized by the first-order condition for 
utility maximization that

∂ti(y∗
i ,m−i)

∂ yi
= MRSi(ωi − ti(y∗

i ,m−i), y∗
i ). (2)

Combining this with the Samuelson condition (1) (and our assumption of quasiconcave utilities) gives the following lemma.

Lemma 1. A quasi-direct mechanism is conditionally Nash efficient if and only if for every balanced equilibrium m∗

∑
i

∂ti(y(m∗),m∗
−i)

∂ yi
= κ.

It is not hard to construct quasi-direct mechanisms that are conditionally Nash efficient. For example, consider the 
proportional tax mechanism described by Groves and Ledyard (1977).

Definition 2. The proportional tax mechanism �P is given by

(2.1) M P
i = R

1 for each i,
(2.2) y P (m) =∑

i mi ,
(2.3) t P

i (m) = αiκ y P (m),

where (αi)
I
i=1 is any vector of parameters satisfying 

∑
i αi = 1.

The proportional tax mechanism is quasi-direct; we can view the agent as choosing yi (by setting mi = yi −∑
j �=i m j) 

and then paying t P
i (yi, m−i) = αiκ yi . By Lemma 1, this mechanism is conditionally Nash efficient. The difficulty, however, 

is that equilibrium rarely exists. At any Nash equilibrium m∗ , all agents must select the same value of yi . Call this value y∗ . 
By equation (2) we have MRSi(ωi − αiκ y∗, y∗) = αiκ for each i. Thus, we have equilibrium existence only in the knife-edge 
economies in which there exists a y satisfying this requirement for all agents. In those economies the equilibrium will be 
balanced and will generate Pareto optimal allocations. In all other economies no equilibrium will exist.

2.4. The original Groves–Ledyard mechanism

The Groves–Ledyard mechanism can be viewed as an extension of the proportional tax mechanism that guarantees 
existence of equilibrium by adding a quadratic penalty term.

Definition 3. The Groves–Ledyard mechanism �L is given by

(3.1) ML
i =R

1 for each i,
(3.2) yL(m) =∑

i mi ,

(3.3) tL
i (m) = αiκ y(m) + γ

2

[
I−1

I (mi − m̄−i)
2 − σ 2(m−i)

]
,

where

• ((αi)
I
i=1, γ ) is a vector of parameters satisfying 

∑
i αi = 1 and γ > 0,

• m̄−i = 1
I−1

∑
j �=i m j , and

• σ 2(m−i) = 1 ∑
j �=i(m j − m̄−i)

2.
I−2
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Groves and Ledyard (1977, 1980) show that this mechanism is (unconditionally) Nash efficient. One deficiency is that it 
may violate individual rationality, meaning there are economies in which some agents prefer the initial endowment over 
the equilibrium allocation of the mechanism. Hurwicz (1979a) shows that if one wants both Nash efficiency and individual 
rationality for every economy (subject to a continuity condition), then one must select a mechanism whose equilibrium 
outcomes are Lindahl allocations.8 We refer to such mechanisms as Nash–Lindahl mechanisms. One of the first Nash–Lindahl 
mechanisms was identified by Walker (1981). Healy and Mathevet (2012) provide a full characterization of continuously 
differentiable Nash–Lindahl mechanisms when the set of admissible economies is sufficiently rich. They prove that, for 
any Nash–Lindahl mechanism, ti(m) must be of the form ti(m) = qi(m−i)y(m). The proportional tax mechanism and the 
Walker mechanism satisfy this property, while the Groves–Ledyard mechanism does not. Other Nash–Lindahl mechanisms 
have been proposed by Hurwicz (1979b), Tian (1990), Kim (1993), Chen (2002), Healy and Mathevet (2012), and Van Essen
(2013), among others.

3. Using Groves mechanisms to construct Nash efficient mechanisms

3.1. Groves mechanisms

We begin with the definition of the Groves mechanisms.

Definition 4. A Groves mechanism �G is given by

(4.1) MG
i is a set of strictly concave, differentiable functions mi such that, for all m, arg maxy

{∑
i mi(y) − κ y

}
is not empty,

(4.2) yG(m) = arg maxy
{∑

i mi(y) − κ y
}

(4.3) tG
i (m) = αiκ yG(m) −∑

j �=i

(
m j(yG(m)) − α jκ yG(m)

)+ hi(m−i),

where 
∑

i αi = 1 and hi(m−i) is any function that does not depend on mi .

The tax function tG
i is measurable in {(yG (m), m−i)}m . Furthermore, for any yi and m−i , player i can announce any 

mi ∈ MG
i with m′

i(yi) = κ −∑
j �=i m′

j(yi) to get yG(mi, m−i) = yi . Thus, Groves mechanisms are quasi-direct. If we restrict 
ourselves to economies where the actual preferences are quasi-linear and the vi functions are in MG

i , then the Groves 
mechanisms are also direct mechanisms, and truth-telling is a dominant strategy (Groves, 1973). In the literature, Groves 
mechanisms are almost always applied to quasi-linear economies and viewed as direct mechanisms. The key innovation of 
Groves and Ledyard (1977) is to view them instead as quasi-direct mechanisms for more general economies.

Groves and Ledyard (1977) prove the following properties of Groves mechanisms in general economies.

Lemma 2. (See Groves and Ledyard, 1977, Theorem 3.1.) Consider any e ∈ E and any equilibrium m∗ of a Groves mechanism �G in e.

(2.1) Each agent’s message reveals their marginal rate of substitution at the realized allocation9:

∂m∗
i (yG(m∗))

∂ y
= MRSi(ωi − tG

i (m∗), yG(m∗)).

(2.2) The Samuelson condition is satisfied: 
∑

i MRSi(ωi − tG
i (m∗), yG(m∗)) = κ .

A proof appears in the appendix.

Remark 1. There are many possible best responses to a given m−i , even with quasi-linear preferences. For example, con-
sumer i can directly affect the taxes of others by adding a scalar to their message. The resulting message will still be a 
best response, and the added scalar will not alter the public good level or their own tax. Other similar manipulations are 
possible.

Remark 2. In quasi-linear economies, any mi with m′
i(yG(mi, m−i)) = v ′

i(yG(mi, m−i)) is a best response to m−i . If other 
agents change their message to some m̂−i at which m′

i(yG(mi, m̂−i)) �= v ′
i(yG(mi, m̂−i)), then mi is no longer a best response 

to m̂−i . Thus, mi is not a dominant strategy. If, however, mi ≡ vi (up to an additive scalar), then mi is a best response 
regardless of the value of yG . Thus, truth-telling is a dominant strategy in Groves mechanisms with quasi-linear preferences. 
With general preferences, however, consumer i’s MRSi depends on the level of taxes; as others change their message (for 
example, by adding scalars), consumer i must alter her message in response to match the resulting change in MRSi .

8 A Lindahl allocation is a vector ((x∗
i )I

i=1, y∗) such that there exists some (p1, . . . , pI ) with ∑i pi = κ for which the maximizers (x̂i , ̂yi) ∈
arg max{ui(xi , yi) : xi + pi yi ≤ ωi} satisfy x̂i = x∗

i and ŷi = y∗ for each i.
9 Groves and Ledyard (1977) actually show that agents reveal their ‘marginal willingness to pay’, but it is equivalent here to the MRSi function.
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That the Samuelson condition is satisfied is only one step toward establishing Nash efficiency. What remains is to ensure 
that an equilibrium exists, and that it is balanced. For General Groves mechanisms, equilibrium existence is impossible if 
the mechanism fails to collect sufficient funds to finance yG (m). The VCG mechanism cures this problem by ensuring that 
hi(m) ≥ αiκ y(m) for all m.

Definition 5. A mechanism �V = ((M V
i )i, yV , (tV

i )i) is the VCG mechanism if it is a Groves mechanism in which

(5.1) hi(m−i) = maxy−i

∑
j �=i

(
m j(y−i) − α jκ y−i

)
.

Though the VCG mechanism will never run a shortage, it collects excess funds in many economies. The excess cannot be 
returned to agents in the economy without altering their preferences, and therefore represents social inefficiency. To achieve 
Pareto optimality, we must use a Groves mechanism that is exactly balanced.

Unfortunately, it is well-known that balanced Groves mechanisms are impossible when MG
i is sufficiently large.10 Thus, 

we must look to smaller domains of quasilinear preferences to achieve balance.

3.2. Quadratic preferences and the Groves–Ledyard mechanism

Groves and Loeb (1975) show that the Groves mechanism can be exactly balanced when preferences are quadratic-
quasilinear and only vary in the intercept of the marginal utility for y. Groves and Ledyard (1977) use this space of 
preferences to construct their mechanism in general economies. Specifically, they apply the Groves mechanism with message 
space

M Q
i :=

{
vi(·|θi) : vi(y|θi) = (γ θi + αiκ)y − γ

2I
y2, θi ∈R

}
, (3)

where ((αi)
I
i=1, γ ) is a fixed vector of parameters satisfying 

∑
i αi = 1 and γ > 0. Each θi ∈ R is a free parameter that 

indexes the set of functions in M Q
i . Thus, we can view consumers as selecting a θi ∈R and then submitting mi = vi(·|θi) to 

the VCG mechanism. Letting θ be the vector of chosen parameter values, a few calculations reveals that

yG(θ) =
∑

i

θi,

tG
i (θ) = αiκ + γ

2

[
I − 1

I

(
θi − θ̄−i

)2 − σ 2(θ−i)

]
.

This is exactly the Groves–Ledyard mechanism �L . Because it is balanced, we have from Lemma 2 that this mechanism 
is conditionally Nash efficient. Furthermore, Groves and Ledyard (1980) show that equilibrium exists for a wide class of 
economies, giving the following result.

Proposition 1. (See Groves and Ledyard, 1977, 1980.) Let � be a Groves mechanism in which MG
i = M Q

i (the space of parameterized 
quadratic-quasilinear functions given in (3)). Then � is equivalent to the Groves–Ledyard mechanism �L , has a balanced equilibrium 
for every e, and is Nash efficient.

3.3. Tian’s preferences and the generalized Groves–Ledyard mechanism

Originally, it was conjectured that quadratic-quasilinear preferences are the only preferences for which Groves mecha-
nisms can be balanced (see Laffont and Maskin, 1980). Then Tian (1996) showed that budget balance could be obtained on 
a wider class of polynomial functions that may have an order higher than two. Liu and Tian (1999) extended this line of 
inquiry by providing a characterization of domains of functions on which there exists a balanced Groves mechanism.

We can now replicate Groves and Ledyard’s construction of their mechanism, but with the more general budget-balancing 
preferences of Tian (1996). The resulting mechanism will generalize the original Groves–Ledyard mechanism.

Tian (1996)’s preferences were derived for the case of κ = 0. And his proof that these preferences result in a balanced 
budget rely on the arguments of Laffont and Maskin (1980), who also assume κ = 0. For completeness we now verify that 
the Laffont–Maskin result holds for κ > 0 and then re-derive Tian’s preferences, accounting for κ .11

10 See footnote 22 of Groves and Ledyard (1977).
11 Proofs for both lemmata follow closely the original proofs and are available upon request.
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Lemma 3. (Based on Laffont and Maskin, 1980, Theorem 4.1.) Assuming yG(m) is differentiable and κ ≥ 0, there exists a balanced 
Groves mechanism if and only if there exist (αi)

I
i=1 such that 

∑
i αi = 1 and

I∑
i=1

∂ I−1

∂m−i

[(
v ′

i(y(m)|θi) − αiκ
) ∂ y

∂θi

]
≡ 0.

Lemma 4. (Based on Tian, 1996, Theorem 1.) Assume yG(m) is differentiable and κ ≥ 0. Fix any (αi)
I
i=1 such that 

∑
i αi = 1, any 

c > 0 and d ≥ 0, and any continuously differentiable functions f (y) and (ψi(θi))i such that f (y) ≥ 0 for all y, f ′(y) �= 0 for all y, 
f is invertible, and ψ ′

i (θi) �= 0 for all i and θi . For each r ∈ {2, 3, . . . , I − 1}, there exists a balanced Groves mechanism if MG
i = MTr

i , 
where

MTr
i =

{
vi(·|θi) : vi(y|θi) = αiκ y + f (y)ψi(θi) − r − 1

rc
(cf (y) + d)r/(r−1) , θi ∈R

1
}

.

We now describe how Tian (1996)’s preferences are a generalization of the quadratic preferences M Q
i above. First, the 

public good level y can be transformed by an invertible, non-negative function f (y) which is identical across agents. Second, 
the type of the agent θi can be transformed an increasing or decreasing function ψi(θi) which can differ across agents. Third, 
the quadratic term can be raised to any fractional power r/(r − 1), where r ∈ {2, 3, . . . , I − 1}. Finally, the quadratic term can 
be linearly transformed by multiplicative scalar c > 0 and additive scalar d ≥ 0. Tian’s preferences are identical to quadratic 
preferences when r = 2, f (y) = y, ψi(θi) = γ θi for any γ > 0, c = γ /I , and d = 0.

Now we apply the Tian preferences to generate a family of Generalized Groves–Ledyard mechanisms, in exactly the same 
way that Groves and Ledyard (1977) applied quadratic preferences to develop the original Groves–Ledyard mechanism. 
Specifically, we note that announcing one’s preferences (in either the Tian family or the quadratic family) requires announc-
ing only a single real number θi , so we take the balanced Groves mechanism and perform simple algebraic manipulation to 
derive a simpler form for the expression of the Groves mechanism in terms of those single-number announcements.

Proposition 2 (Generalized Groves–Ledyard mechanisms). Fix r ∈ {2, 3, . . . , I − 1} and parameters (αi)
I
i=1 such that 

∑
i αi = 1, 

c > 0, d ≥ 0, f (·), and (ψi(·))i . Using message space MTr
i in the Groves mechanism gives the following Generalized Groves–Ledyard 

mechanism.

(2.1) M∗
i =R,

(2.2) y∗(θ) = f −1
(

1
c

(
ψ̄(θ)r−1 − d

))
,

(2.3) t∗
i (θ) = αiκ y∗(θ) − (I − 1) 

[
1
c

(
ψ̄(θ)r−1 − d

)
ψ̄−i(θ−i) + r−1

rc ψ̄(θ)r
]
+ hi(θ−i),

where ψ̄(θ) =∑
i ψi(θi)/I and ψ̄−i(θ−i) =∑

j �=i ψ j(θ j)/(I − 1). The mechanism is balanced if, in addition,

hi(θ−i) =
r∑

q=1

∑
Tq,r

⎡
⎣ I − 1

Ir−1

2r − 1

cr

( r
t1,t2,...,tq

)
I − q

⎛
⎝∑

i1 �=i

∑
i2 /∈{i,ik}k<2

· · ·
∑

iq /∈{i,ik}k<q

q∏
k=1

ψik (θik )
tk

⎞
⎠
⎤
⎦ − d

c

∑
j �=i

ψ j(θ j), (2.4)

where

Tq,r =
{

(t1, . . . , tq) ∈N
q :

q∑
k=1

tk = r and (∀k > 1)tk−1 > tk

}
(2.5)

is the set of all strictly decreasing length-q sequences of positive integers that sum to r, and

(
r

t1, t2, . . . , tq

)
= r!

t1!t2! · · · tq! (2.6)

is the multinomial coefficient.

A detailed derivation appears in the appendix. We have also verified that the original Groves–Ledyard mechanism is 
obtained in the special case where Tian’s preferences reduce to the quadratic preferences (r = 2, f (y) = y, ψi(θi) = γ θi for 
any γ > 0, c = γ /I , and d = 0).
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3.4. Example mechanisms

In this section we adapt the parametric restrictions that imply the Groves–Ledyard mechanism, but consider higher-order 
preferences represented by r > 2.12 For any r ∈ {2, 3, . . . , I − 1}, define

M∗
i =

{
vi(·|θi) : vi(y|θi) = αiκ y + γ θi f (y) − γ (r − 1)

r I
f (y)

r
r−1 , θi ∈R

}
.

The resulting public good function is characterized by

f (y∗(θ)) = (
∑

i

θi)
r−1,

and the tax function is given by

t∗
i (θ) = αiκ y∗(θ) −

∑
j �=i

[
γ θ j(

∑
k

θk)
r−1 − γ (r − 1)

r I
(
∑

k

θk)
r

]
+ hi(θ−i). (4)

Algebraic manipulation of equation (4) yields a version of the tax function somewhat similar to the original Groves–Ledyard 
mechanism. Specifically, we find

t∗
i (θ) = αiκ(

I∑
i=1

θi)
r−1 + γ (r − 1)

r

⎛
⎝ I − 1

I

(
θi − θ̄−i

)r +
r−1∑
j=1

θ
r− j
i b j(I − 1) j θ̄

j
−i

⎞
⎠

+ γ
I − 1

I

(r − 1)

r
br(I − 1)r θ̄ r

−i + hi(θ−i),

where

bi = −
( (−1)i

(r
i

)
(I − 1)i

+
r

r−1 I
(r−1

i−1

)− (I − 1)
(r

i

)
I − 1

)
.

For the case of r = 2 and f (y) = y, we have y∗(θ) =∑
i θi , as in Groves–Ledyard, and

hi(θ−i) = γ

2
(I − 1)

⎡
⎣ 1

I − 1

∑
j �=i

θ2
j + 2

I − 2

∑
j �=i

∑
k �=i, j

θ jθk

⎤
⎦ .

Further manipulation gives the exact form for tL
i above.

Finally, if r = 3, and f (y) = y, we have

y∗(θ) = (
∑

i

θi)
2

and

t∗
i (θ) = αiκ

( I∑
i=1

θi

)2 + γ (r − 1)

r

( I − 1

I

(
θi − θ̄i−1

)3 +
2∑

j=1

θ
3− j
i b j(I − 1) j θ̄

j
−i

)
+ 2

3
γ

I − 1

I
b3(I − 1)3θ̄3

−i + hi(θ−i),

where

hi(θ−i) = 2γ

3
(I − 1)[ 1

I − 1

∑
j �=i

θ3
j + 3

I − 2

∑
j �=i

∑
k �=i, j

θ2
j θk + 1

I − 3

∑
j �=i

∑
k �=i, j

∑
l �=i, j,k

θ jθkθl].

12 Technically, these preferences deviate from MTr defined above by adding a scalar multiple to the f (y)r/(r−1) term, but it can be shown easily that this 
does not impact budget balance.
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4. Equilibrium existence and two-dimensional mechanisms

Groves and Ledyard (1980) prove that a competitive equilibrium exists for their mechanism in a wide range of economies. 
Here we find conditions on the strategy space under which equilibrium existence is assured for Groves mechanisms, and 
then ask whether or not those conditions can translate to the Generalized Groves–Ledyard mechanisms with their more 
restrictive strategy spaces.

Proposition 3. Suppose �G is a Groves mechanism such that, for every i, mi ∈ MG
i , and scalar ai , the function mi(·) + ai is also in MG

i . 
If an economy e has an allocation ((xo

i )i, yo) satisfying the Samuelson condition (eq. (1)) and there is a message m̂ ∈ MG for which 
m̂′

i(yo) = MRSi(xo
i , y

o) for all i, then there exists a Nash equilibrium of �G in e whose allocation is ((xo
i )i, yo).

Unfortunately, this existence result does not apply to the Generalized Groves–Ledyard mechanisms proposed above be-
cause their message spaces do not contain functions that differ only by a scalar. But if we add a scalar to each function 
as a second parameter—which the agent must also announce—then the message space becomes rich enough to permit 
equilibrium existence via Proposition 3. We now briefly formalize the development of the resulting mechanism.

Fix any Generalized Groves–Ledyard mechanism, which is a Groves mechanism �G = ((MTr
i )i, yG , (tG

i )i) with Tian pref-
erences MTr for some r ∈ {2, . . . , I − 1}. Now, construct a new ‘shifting’ mechanism �S = ((M S

i )i, yS , (t S
i )i) as follows. First, 

set

M S
i =

{
vi(·|θi, βi) = vi(·|θi) + βi : vi(·|θi) ∈ MTr

i , βi ∈R

}
.

We can equivalently view agents as submitting (θi, βi) instead of mi . Next, set yS(θ, β) = yG(θ). Now, if we simply apply 
the Groves tax function with these new preferences, we would have that t S

i (θ, β) = tG
i (θ) − ∑

j �=i β j for each i. This is 
undesirable; if the original mechanism were balanced, this new mechanism would be unbalanced by a factor of 

∑
i

∑
j �=i β j . 

To compensate, we need to add this amount into 
∑

i hi(θ−i, β−i). This can be done by adding (I −1)βi+1 to each hi(θ−i, β−i), 
where i + 1 is taken modulo I . In total, we now have

t S
i (θ,β) = tG

i (θ) −
∑
j �=i

β j + (I − 1)βi+1.

The added terms clearly balance out in aggregate, preserving the balance properties of the original mechanism.
Since βi does not affect consumer i’s allocation, this added dimension does not alter the strategic properties of the 

mechanism. It does, however, give us enough flexibility to use the above existence result. Thus, we have the following 
proposition.

Proposition 4. For any Generalized Groves–Ledyard mechanism �∗, the two-dimensional ‘shifting’ mechanism �S defined above

(4.1) satisfies the Samuelson condition (Lemma 2) at any equilibrium,
(4.2) is budget balanced (

∑
i t S

i (θ, β) = κ yS(θ, β)) for every θ and β , and
(4.3) has an equilibrium in every economy e ∈ E .

Consequently, �S is a Nash efficient mechanism.

A simple interpretation of this mechanism is that it is identical to �∗ , except each agent i also gets to take any amount 
of private good from their neighbor and redistribute it equally among j �= i. This makes any vector of private goods con-
sumption obtainable at any public goods level, subject to the aggregate resource constraint. Any Generalized Groves–Ledyard 
mechanism can be augmented in this way to guarantee existence, including the original Groves–Ledyard mechanism.

5. Issues with stability

The original Groves–Ledyard mechanism has nice stability properties. With quasi-linear preferences and a suitable choice 
of γ , the mechanism always induces a game with contractive best response functions.13 Formally, if βi(m−i) is player i’s 
best response function, then for any j �= i,

∂βi(m−i)

∂m j
= γ + I v ′′

i (y(m))

γ (I − 1) − I v ′′
i (y(m))

. (5)

13 See Healy and Mathevet (2012) for a discussion of contraction as a notion of stability.
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Assuming v ′′
i is bounded and letting γ grow large, this slope converges to 1/(I − 1) from below. And this is true at every 

message profile m ∈R
I , since messages only affect the slope through v ′′

i . Thus, 
∑

j ∂βi/∂m j ∈ (0, 1) for large γ , establishing 
that the mechanism is both contractive and supermodular (hence, stable).14

A natural question is whether the Generalized Groves–Ledyard mechanisms inherit the same stability properties. We 
conjecture that, generically, the answer is negative. Consider the example mechanism with r = 3 and f (y) = y from the end 
of Section 3. If βi(θ−i) is player i’s best response function, then for any j �= i,

∂βi(θ−i)

∂θ j
= Ai(θ) − 2 (I−1)2

I−1 b2θ̄−i + 1
I−1 [4 I−1

I γ (θi − θ̄−i) − 2(I − 1)b1θi]
4 I−1

I γ (θi − θ̄−i) + 2(I − 1)b1θ̄−i − Ai(θ)
, (6)

where θ̄−i =∑
j �=i θ j/(I − 1) and

Ai(θ) = 2v ′
i(y(θ)) + 4v ′′

i (y(θ))(
∑

j

θ j)
2 − 2αiκ.

The difficulty with establishing stability is that the slope of the best response function depends directly on the message 
profile θ ∈ R

I . In the original mechanism the slope depended on θ only through v ′′
i . Messages can be arbitrarily large or 

small, which means it may be difficult to bound the slope when messages affect the slope directly. For example, the slope 
given in (6) converges to −1 as θi grows large (holding θ−i fixed). Since 

∑
j �=i ∂βi/∂θ j converges to −(I −1), the mechanism 

is not stable for extreme messages.
It is clear from inspection that the best response slopes will depend on messages directly (rather than through v ′′

i ) for 
any r > 2. Even with r = 2 this appears to be a problem unless f and each ψi are all linear. Thus, we conjecture that 
the only Generalized Groves–Ledyard mechanisms that achieve stability are those for which r = 2 and f and each ψi are 
linear. In our view, this represents a trivial generalization, so we conjecture that the original Groves–Ledyard mechanism is 
essentially the only one for which stability can be assured.

6. Discussion

We do not claim that the Generalized Groves–Ledyard mechanisms are in any way more practical or useful than the 
original mechanism. Instead, our goal here is to highlight how the method of creating mechanisms used by Groves and 
Ledyard (1977) could be extended to find other mechanisms. In some sense, we view our results as negative; the Tian 
preferences are the broadest class of preferences for which it is known that the Groves mechanism can be balanced, and we 
fully characterize the mechanisms that can be created using these preferences. For all but the simplest quadratic preferences, 
the resulting mechanisms are quite unruly. They are both mathematically complex and possibly cannot be made stable. But, 
if there are no other preferences that balance the Groves mechanism, then there are no other mechanisms that can be 
constructed in this way.

Of course, this is also not the only way to construct Nash efficient mechanisms. Brock (1980) used a differential approach 
to show how such mechanisms might be constructed.15 Healy and Mathevet (2012) used this approach to characterize Nash–
Lindahl mechanisms. In their setting it is easy to see that conditional Nash efficiency (ignoring the Lindahl requirement) is 
characterized by 

∑
i(∂ti/∂mi)/(∂ y/∂mi) = κ for all m. And budget balance is given by 

∑
i ti(m) = κ y(m) for all m. These 

are fairly easy to satisfy. Thus, it is the equilibrium existence requirement that is the real challenge, not conditional Nash 
efficiency.

We study a two-good economy for simplicity. Groves and Ledyard (1977) study economies with arbitrary finite numbers 
of goods. They demonstrate that the procedure of using the Groves mechanisms to construct Nash efficient mechanisms faces 
no difficulty with the larger number of goods. Messages simply become vectors instead of scalars. Thus, it is immediately 
clear that our more generalized construction will similarly apply to the larger setting.

Though our ‘shifting’ mechanism has the benefit of equilibrium existence, it has a few undesirable properties. It is not 
symmetric. Agents are forced to treat their neighbors (and to be treated by their neighbors) differently than everyone else. 
This creates obvious political difficulties in practice. But it appears there is no simple way to make the mechanism sym-
metric without sacrificing either budget balance or equilibrium existence. Behavior would also be distorted by the slightest 
degree of social preferences. Each agent essentially engages in a dictator game in which they unilaterally redistribute money 
among the other parties. The required vector of redistribution that guarantees equilibrium for some economy may be seen 
by some agents as undesirable, leading again to a non-existence result. Agents in a larger context may also fear reciprocity 
for their redistribution decisions. Finally, equilibrium existence may require a very specific vector of transfers, to be executed 
simultaneously by all parties, all of whom are indifferent over their own choices. It seems unlikely that equilibrium would 
obtain in practice.

14 Quasi-linearity appears important to establish this result. For example, Kim (1987)—building off of Jordan (1986)—shows that stability of any Nash-
efficient mechanism is impossible to achieve if a broad enough family of (non-quasilinear) preferences is considered.
15 Groves and Ledyard (1987) describe the procedure in detail. Like us, Brock (1980) finds that the Groves–Ledyard mechanism is the ‘simplest’ mechanism 

one might hope to construct that guarantees existence. Another notably simple mechanism was constructed by Walker (1981).
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Appendix A. Proofs

A.1. Proof of Lemma 2

In any quasi-direct mechanism, agent i chooses yi in response to m−i to maximize

ui (wi − ti (yi,m−i) , yi) .

At any best response y∗
i we have the first-order condition

∂ti
(

y∗
i ,m−i

)
∂ y

= ∂ui
(

wi − ti
(

y∗
i ,m−i

)
, y∗

i

)
/∂ y

∂ui
(

wi − ti
(

y∗
i ,m−i

)
, y∗

i

)
/∂xi

.

The best response message m∗
i is that which generates y(m∗

i , m−i) = y∗
i .

The Groves mechanism is quasi-direct. By the definition of tG
i , we have that

∂tG
i (yi,m−i)

∂ y
= q −

∑
j �=i

m′
j (yi) .

Recall yG (m) sets 
∑

i m′
i

(
yG (m)

)= κ . Thus, at any yi and m−i , the message mi that will lead to yi = yG (m) must satisfy

m′
i (yi) = ∂tG

i (yi,m−i)

∂ y
.

If the message is in equilibrium then it is a best response, and so m′
i

(
yG (m)

)
is agent i’s marginal rate of substitution at ((

ωi − tG
i (m)

)I
i= , yG (m)

)
. The Samuelson condition then follows from 

∑
i m′

i

(
yG (m)

)= κ .

A.2. Proof of Proposition 2

Consider an agent with Tian preferences that submits them truthfully to the Groves mechanism �G . Recall that, with 
Tian preferences there is only one free parameter θi , and the vi function is given by

vi(y|θi) = αiκ y + f (y)ψi(θi) − r − 1

rc
(cf (y) + d)r/(r−1) .

Thus,

v ′
i(y|θi) = αiκ + f ′(y)ψi(θi) − f ′(y)(cf (y) + d)1/r−1

Because yG (θ) equates 
∑

i v ′
i with κ , we have that yG (θ) solves

∑
i

ψi (θi) − I
(

cf
(

yG (θ)
)

+ d
) 1

r−1 = 0

at every θ . Or, equivalently,

(
cf
(

yG (θ)
)

+ d
) 1

r−1 = ψ̄ (θ) . (7)

The Generalized Groves–Ledyard mechanism uses the same public good function as the Groves mechanism, so we have

y∗ (θ) ≡ f −1
(

1

c
ψ̄ (θ)r−1 − d

c

)
.

The Groves tax function is

ti (θ) = αiκ y (θ) −
∑
j �=i

[
v j
(

y (θ) |θ j
)− α jκ y (θ)

]+ hi (θ−i) ,

where hi is arbitrary. Substituting in the parameterized preferences and using the fact that (cf (y (θ)) + d) 1/(r−1) = ψ̄ (θ), 
this reduces to

t∗
i (θ) = αiκ y∗ (θ) − (I − 1)

[
ψ̄−i (θ−i) f

(
y∗ (θ)

)+ r − 1
ψ̄ (θ)r

]
+ hi (θ−i) .
rc
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Plugging in f (y (θ)) gives

t∗
i (θ) = αiκ y∗ (θ) − I − 1

c

[
ψ̄−i (θ−i)

(
ψ̄ (θ)r−1 − d

)
+ r − 1

r
ψ̄ (θ)r

]
+ hi (θ−i) .

To get balance we need

∑
i

hi (θ−i) =
∑

i

(I − 1)

[
ψ̄−i (θ−i) f

(
y∗ (θ)

)+ r − 1

rc
ψ̄ (θ)r

]
.

After manipulation, this yields

∑
i

hi (θ−i) = 1

c

⎡
⎣ I − 1

Ir−1

2r − 1

r

(∑
i

ψi (θi)

)r

− d
∑

i

∑
j �=i

ψ j
(
θ j
)⎤⎦ .

The goal is to express the right-hand side as sums over i of terms that do not depend on θi . To accomplish this, we need to 
break apart the 

(∑
i ψi (θi)

)r term. The following describes the procedure.
For this notational simplicity, assume temporarily that ψi (θi) = θi for all i. It is easy to see that(∑

i

θi

)r

=
∑

i1

∑
i2

· · ·
∑

ir

θi1θi2 . . . θir . (8)

Now we can break that sum into partial sums based on exponent groupings, to get(∑
i

θi

)r

=
∑

i1

θ r
i1

+
∑

i1

∑
i2 �=i1

θ r−1
i1

θi2 +
∑

i1

∑
i2 �=i1

θ r−2
i1

θ2
i2

+
∑

i1

∑
i2 �=i1

∑
i3 /∈{ik}k<3

θ r−2
i1

θi2θi3 + · · · .

Take any one grouping in this sum, written generically as∑
i1

∑
i2 �=i1

· · ·
∑

iq /∈{ik}k<q

θ
t1
i1

θ
t2
i2

· · · θ tq

iq
,

where 
∑q

k=1 tk = r and tk > tk+1 for all k < q. Now, suppose for each i, we remove all terms containing the ith index, but 
then sum the entire expression over i. That would be

∑
i

⎛
⎝∑

i1 �=i

∑
i2 /∈{i,ik}k<2

· · ·
∑

iq /∈{i,ik}k<q

θ
t1
i1

θ
t2
i2

· · · θ tq

iq

⎞
⎠ . (9)

There are (I − 1) (I − 2) · · · (I − q) terms inside the bracket. But we have I total brackets, so in total this expression counts 
I (I − 1) · · · (I − q) terms.

If we return to the original sum (8), how many of those terms can be written as θ t1
i1

θ
t2
i2

· · · θ tq

iq
? In total, there are

I

(
r

t1

)
(I − 1)

(
r − t1

t2

)
(I − 2)

(
r − t1 − t2

t3

)
· · · (I − q + 1)

(
r −∑q−2

k=1 tk

tq−1

)

such terms in the original sum. This reduces to(
r

t1, t2, . . . , tq

)
I (I − 1) · · · (I − q + 1) ,

where the bracketed term is the multinomial coefficient r!/ (t1!t2! · · · tq!
)
.

Thus, in expression (9) we ‘overcounted’ terms by a factor of

I (I − 1) · · · (I − q)( r
t1,t2,...,tq

)
I (I − 1) · · · (I − q + 1)

= (I − q)( r
t1,t2,...,tq

) .
To adjust for this, we alter (9) to get

∑
i

( r
t1,t2,...,tq

)
I − q

⎛
⎝∑

i �=i

∑
i /∈{i,i }

· · ·
∑

iq /∈{i,i }
θ

t1
i1

θ
t2
i2

· · · θ tq

iq

⎞
⎠ . (10)
1 2 k k<2 k k<q
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Return now to the expression(∑
i

θi

)r

=
∑

i1

θ r
i1

+
∑

i1

∑
i2 �=i1

θ r−1
i1

θi2 +
∑

i1

∑
i2 �=i1

θ r−2
i1

θ2
i2

+
∑

i1

∑
i2 �=i1

∑
i3 /∈{ik}k<3

θ r−2
i1

θi2θi3 + · · · .

For any r and q, let the set of decreasing sequences of positive integers that sum to r be given by

Tq,r =
{(

t1, . . . , tq
) ∈ N

q :
q∑

k=1

tk = r & (∀k > 1) tk−1 > tk

}
.

Using (10), we now have(∑
i

θi

)r

=
∑

i

r∑
q=1

∑
Tq,r

⎡
⎣
( r

t1,t2,...,tq

)
I − q

⎛
⎝∑

i1 �=i

∑
i2 /∈{i,ik}k<2

· · ·
∑

iq /∈{i,ik}k<q

θ
t1
i1

θ
t2
i2

· · · θ tq

iq

⎞
⎠
⎤
⎦ .

Returning to the question of budget balance, we derive that

∑
i

hi (θ−i) =
∑

i

1

c

⎧⎨
⎩

r∑
q=1

∑
Tq,r

⎡
⎣ I − 1

Ir−1

2r − 1

r

( r
t1,t2,...,tq

)
I − q

⎛
⎝∑

i1 �=i

· · ·
∑

iq /∈{i,ik}k<q

q∏
k=1

ψik

(
θik

)tk

⎞
⎠
⎤
⎦− d

∑
j �=i

ψ j
(
θ j
)⎫⎬⎭ ,

giving the desired expression for each hi (θ−i).

A.3. Proof of Proposition 3

Fix any allocation ((xo
i )i, yo) in the range of �G satisfying the Samuelson condition∑

i

MRSi(xo
i , yo) = κ,

and some message profile m̂ such that m̂′
i(yo) = MRSi(xo

i , y
o) for all i. Because 

∑
i m̂′

i(yo) = κ , the mechanism selects 
yG(m̂) = yo . Note that if we add a scalar a j to each m̂ j then yG (·) is unaffected, but each tG

i (·) decreases by 
∑

j �=i a j . Define 
ma

i (·) = m̂i(·) + ai for each i and let (ai)
I
i=1 be the unique vector of scalars such that ωi − tG

i (ma) = xo
i for all i.16 Suppose 

all agents j �= i announce ma
j . By the arguments in Lemma 1, agent i’s best response will be a message m∗

i satisfying

MRSi(ωi − tG
i (m∗

i ,ma
−i), yG(m∗

i ,ma
−i)) = κ −

∑
j �=i

dma
j(yG(m∗

i ,ma
−i))

dy
.

The message ma
i satisfies this condition, because MRSi(ωi − tG

i (ma), yG(ma)) = MRSi(xo
i , y

o), dma
j(yG(ma))/dy = MRS j(xo

j , y
o)

for all j, and 
∑

i MRSi(xo
i , y

o) = κ . This is true for all i, so ma is a Nash equilibrium.
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