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[The strategies in a mechanism] are the “natural” alternatives to which

participants might resort if it were to their advantage. Are there then any

limits to how broad these domains of alternative strategies might be?

—Leonid Hurwicz (1972, p. 321)

1 Introduction

In the design of mechanisms it is common to apply an individual rationality constraint

guaranteeing that the selected outcome be weakly preferred to the endowment for ev-

ery agent. In economies with private goods, Hurwicz (1972, p. 327) assumes that the

mechanism designer must allow the agents a ‘no-trade option’, forcing any incentive

compatible mechanism to select allocations that are preferred to the endowment by

all agents.1 In the subsequent mechanism design literature explicit reference to a ‘no-

trade option’ is infrequent, with most authors directly requiring the mechanism to

select outcomes that (weakly) Pareto dominate the endowment point—a requirement

frequently called ‘individual rationality’.

With externalities, however, a ‘no-trade option’ is quite different from individual

rationality because an agent who does not trade may still be affected by the trades

of others. This leads Green and Laffont (1979, p. 121) to argue instead that the

individual rationality constraint in the public goods model is founded on the ethical

belief that each agent has a natural right to her endowment and the welfare its

consumption would generate.

The current paper reconsiders the mechanism design problem with public goods

when the mechanism designer must explicitly allow a no-trade option after the mech-

anism is run and does not have a credible punishment strategy, such as a budget

breaker, to punish non-contributors. The resulting constraint, called equilibrium par-

ticipation, requires the mechanism to select an outcome such that every agent prefers

to contribute their requested transfer payment rather than withhold it. We assume

that if an agent withholds her transfer payment then the level of the public good is

reduced to that which can be feasibly produced with the remaining transfers, and the

withholding agent is not excluded from its consumption.

In order to induce all agents to choose participation over non-participation, a

1Hurwicz (1972) also allows for an arbitrary but pre-specified and publicly-known redistribution
of the endowment, much in the spirit of the second welfare theorem.
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mechanism can satisfy equilibrium participation by making those agents with the

strongest free-riding incentive responsible for the largest share of the production in-

puts. Such an agent would prefer to contribute since withholding will cause a sig-

nificant reduction in output. This is demonstrated in example 1 of section 2.3. If

several agents have strong free-riding incentives, however, they cannot all be made

responsible for the lion’s share of production. This problem is exacerbated in larger

economies. This is the intuition behind the two main results of this paper: (1) there

are many finite economies in which only the endowment satisfies equilibrium partic-

ipation, and (2) as a classical public goods economy is replicated, if agents become

‘small’ then the set of outcomes satisfying equilibrium participation converges to the

endowment.

The negative results of this paper imply that coercion is absolutely necessary

for mechanisms to successfully implement desirable outcomes. If an agent opts out

of the mechanism outcome by withholding her transfer, some punishment system

must be in place so that the dissenting agent cannot free ride on the production of

others. This can be obtained explicitly through fines and sanctions, or implicitly by

threatening to produce nothing if any agent defects. If explicit coercion is unavailable

and implicit threats incredible, then mechanism design cannot avoid the standard

free-rider problem.

The notation and key definition of the paper are provided in the following section.

General properties of the set of allocations satisfying equilibrium participation are ex-

plored in section 3, followed by an analysis of the constraint in classical, quasi-concave

economies with convex technology in section 4. The main result on convergence to

the endowment in large economies is proven in section 5. A brief review of relevant

literature appears in section 6, followed by open questions and concluding thoughts

in section 7.

2 Notation & Definitions

For simplicity, we consider an economy with one private and one public good. Let

I = {1, . . . , I} be the set of consumers, with I ≥ 2. An allocation of the private

good is denoted by x = (x1, . . . , xI) ∈ R
I
+ and a level of the public good is denoted

by y ∈ R+. We let z = (x, y) represent a complete allocation and the set Z ⊆ R
I+1
+

represents the set of allocations. The initial endowment is given by (ω, 0) ∈ Z, where
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ωi > 0 for each i ∈ I.2 Thus, we assume no public good exists initially. For any

allocation z, let ti = ωi−zi represent the net transfer of private good paid by agent i.

The vector of transfers is given by t = (t1, . . . , tI), their sum by T , and T−i := T − ti.

Each agent i has a complete, transitive and reflexive preference relation �i on Z×Z.

Let ≻i and ∼i represent the asymmetric and symmetric parts of �i, respectively.

Where convenient, we further assume that there exists a utility representation of �i

given by ui : Z → R.

Given an allocation (x, y), the allocation consumed by i is simply (xi, y). Since

preferences are assumed to be ‘selfish’ (meaning that xi = x′
i implies (x, y) ∼i (x′, y)

for every y), we occasionally abuse notation and let �i represent the projection of i’s

preference relation onto R
2
+ ×R

2
+; this allows for statements such as (xi, y) �i (x′

i, y
′)

to be well-defined. Similar abuses will be applied to ≻i and ∼i.

The production technology is represented by the set Y ⊆ R−×R, which is assumed

to be non-empty, closed, comprehensive (Y − R
2
+ ⊆ Y), and satisfies Y ∩ R

2
+ = {0}.3

The production set Y can be described by a production function F (T ) such that

Y = {(−T, y) : y ≤ F (T )}, or, equivalently, by a cost function c(y) such that

Y = {(−T, y) : T ≥ c(y)}.4

An economy is a collection of agents, possible allocations, endowments, prefer-

ences, and production possibilities. The set of all admissible economies with I agents

is given by EI , with typical element e = ({�i}I
i=1,Z, ω,Y). An allocation z = (x, y)

is feasible if (−T, y) ∈ Y and t ≤ ω.5 The set of all feasible allocations for an economy

e is denoted by Z(e) ⊆ Z. An allocation is balanced if it is feasible and y = F (T ).

The set of balanced outcomes is denoted Z̄(e).

The following additional assumptions are used at various points in the paper.

A1 (Monotonicity) If (x′
i, y

′) ≥ (xi, y) then (x′, y′) �i (x, y).

A1’ (Strict Monotonicity) If (x′
i, y

′) > (xi, y) then (x′, y′) ≻i (x, y).

A2 (Convexity) If z′ �i z, then αz′ + (1 − α)z �i z for all α ∈ (0, 1).

2The term ‘initial endowment’ will be used interchangeably to mean either ω or (ω, 0).
3
0 represents the origin in Euclidean space.

4Note that this is not the standard notion of a cost function, which would also incorporate the
market input prices; this function only identifies the needed input for a given level of output.

5If x and x′ are in R
n, then [x ≥ x′] ⇔ [xi ≥ x′

i
for all i], [x > x′] ⇔ [x ≥ x′ and xi > x′

i
for

some i], and [x ≫ x′] ⇔ [xi > x′
i

for all i].
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A3 (Continuity) For every z ∈ Z(e), {z′ ∈ Z(e) : z′ �i z} and {z′ ∈ Z(e) : z′ �i

z} are closed.

A4 (Nondecreasing marginal cost) Y is convex.

A5 (Differentiable utility) Preferences �i can be represented by a differentiable util-

ity function ui.

A6 (Differentiable production) The function F is differentiable.

Denote the set of ‘classical’ economies satisfying A1 through A4 by EC
I . Let ED

I

denote the set of differentiable economies satisfying A1 through A6. Note that under

A4 and A6, c′(y) = 1/F ′(T ).

2.1 Mechanisms

A mechanism in this environment is a mapping from a strategy space S = ×iSi into

the set of allocations Z. Given a strategy profile s ∈ S, the transfer function τ (s)

identifies a vector of net transfers, one for each agent, and the outcome function η(s)

identifies the level of the public good. The mechanism is denoted by Γ = (S, τ , η)

and its space of outcomes is given by

OΓ(e) = {(x, y) ∈ Z : ∃ s ∈ S s.t. x = ω − τ (s) & y = η(s)}.

A solution correspondence (or equilibrium correspondence) µΓ(e) is a mapping

from the environment e into a set of possible strategy profiles in S, which depends

on the mechanism Γ. For example, µΓ(e) may select all Nash equilibrium strategy

profiles of the game induced by Γ. Given µΓ, we can define the space of outcomes

under µΓ by

Oµ
Γ(e) = {(x, y) ∈ Z : ∃ s ∈ µΓ(e) s.t. x = ω − τ (s) & y = η(s)}.

We say that Γ is decisive under µ if Oµ
Γ(e) 6= ∅ for every e ∈ EI , feasible under µ

if Oµ
Γ(e) ⊆ Z(e) for every e, and balanced under µ if Oµ

Γ(e) ⊆ Z̄(e) for every e.

An allocation z′ Pareto dominates z if z′ �i z for all i and z′ ≻j z for some j.

The set of Pareto optimal allocations for e is given by

PO(e) = {z ∈ Z(e) :6 ∃z′ ∈ Z(e) s.t. z′ Pareto dominates z}.
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We say that Γ is Pareto efficient under µ if Oµ
Γ(e) ⊆ PO(e) for every e. Note that

if preferences are strictly monotonic (assumption A1’), then PO(e) ⊆ Z̄(e), so any

mechanism that is Pareto efficient (under µ) must be balanced.6

2.2 Implementation

In general, a social choice correspondence (SCC) G is a mapping from economies e

into a set of (feasible) allocations in Z(e). A mechanism Γ (fully) implements G

under µ if Oµ
Γ(e) = G(e) for every e ∈ EI and partially implements G under µ if

Oµ
Γ(e) ⊆ G(e) for every e ∈ EI .

The mapping PO(e) defined above is an example of a particular SCC that iden-

tifies all Pareto optimal allocations of any economy e. Thus, a mechanism partially

implements PO(e) under µ if and only if it is Pareto efficient under µ. Another

example of a SCC is the ‘individually rational’ SCC given by IR(e) =
⋂

i IRi(e),

where

IRi(e) = {z ∈ Z(e) : (x, y) �i (ω, 0)}.

This SCC selects all outcomes that are weakly preferred to the endowment by all

agents. If some Γ implements IR(e) under µ, then all agents are made (weakly)

better off—relative to the endowment—by participating in Γ and playing a strategy

profile in µΓ(e).

Under certain assumptions on the class of admissible preferences and on the con-

tinuity of the mechanism, Hurwicz (1979) shows that if a mechanism implements

PO(e) ∩ IR(e) in Nash equilibrium, then Oµ
Γ(e) is exactly the set of (interior) Wal-

rasian (or Lindahl) allocations.7

2.3 The Participation Game

The standard view in mechanism design is that agents in economy e participate in

a mechanism Γ by choosing strategy profile s, which generates the outcome (ω −

τ (s), η(s)). At this point, the game ends and the selected outcome is consumed by

the agents.

6In the sequel, we drop the qualifier ‘under µ’ where there is no confusion or where the particular
choice of µ is irrelevant.

7See also Hurwicz (1972) and Ledyard and Roberts (1975).
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Suppose instead that each agent i, upon learning the mechanism outcome, has the

freedom either to contribute τi(s) units of the private good or to exercise a ‘no-trade’

option by withholding his requested contribution (τi(s)), in which case he consumes

his initial endowment ωi of the private good. By withholding his contribution, i may

reduce size of the public good, but since it is a pure public good he cannot be excluded

from enjoying what is produced. After participation decisions are made, those who

opt to contribute form a contribution coalition. Once we specify the level of public

good that would result for each of the 2I possible contribution coalitions, we have a

well-defined participation game in which each agent simultaneously decides whether

to contribute τi(s) or not. If a mechanism selects an outcome whose resulting partic-

ipation game does not have every agent contributing in the participation game, then

a mechanism designer who lacks coercive power should not expect the mechanism’s

outcome to be realized.

The focus of this paper is on those allocations for which full participation is

a Nash equilibrium outcome. The following example shows how the participation

game is constructed and how some allocations may not have full participation as an

equilibrium outcome.

Example 1. Let I = 2 and define

u1(x, y) = x1 + 21y − 2y2

and

u2(x, y) = x2 + 77y − 9y2.

Fix ωi = 50 for each i and let F (T ) = T/10. Any balanced allocation in which

four units of the public good are provided is Pareto optimal. The unique Lindahl

allocation for this economy (where each agent pays a per-unit price for the public good

equal to their marginal valuation) corresponds to the equal-tax allocation (t1, t2, y) =

(20, 20, 5).

Suppose a social planner uses an incentive compatible mechanism to identify (cor-

rectly) the Lindahl allocation for this economy. The planner would then request that

each agent pay 20 units of the private good. If both agents contribute as requested

then the planner can build 4 units of the public good and the Lindahl allocation is

realized. If only one agent contributes while the other does not, the realized public
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good level is reduced to y = 2. If neither contribute, no public good is produced.

This simultaneous decision by the agents to contribute or not constitutes a two-player,

two-strategy game whose payoff matrix is given in panel (a) of Figure I. Here it is a

dominant strategy for agent 2 to contribute, but then agent 1 prefers to withhold her

contribution, resulting in a suboptimal outcome of y = 2 in equilibrium.

t1

t2
20 0

20 82, 194 64, 168
0 84, 148 50, 50

(a)

t1

t2
10 0

30 72, 204 65, 200
0 69, 108 50, 50

(b)

Figure I: The induced participation game for Example 1 from (a) the equal-price
Lindahl allocation, and (b) an unequal-price Pareto optimal allocation.

Now consider another efficient mechanism that selects y = 4 but splits the cost

asymmetrically, so that t = (30, 10). If only agent 1 contributes then y = 3, and if

only agent 2 participates then y = 1. In the resulting participation game, shown in

panel (b) of Figure I, it is a dominant strategy for both agents to participate. By

giving agent 1 a larger share of the production responsibility, this second mechanism

has increased her benefit of non-contribution (30 units of private good) but has also

increased her cost of non-contribution (3 units of public good). The concavity of

preferences in the public good (and linearity of preferences for the private good)

ensures that the larger public-good cost outweighs the larger private-good benefit.

Although this redistribution of production responsibility is an effective trick to

offset free-riding incentives when preferences are convex, feasibility constraints limit

how many agents can have their tax burden sufficiently increased in this way. Fur-

thermore, some agents may prefer always to defect, regardless of how much of the

burden they must bear. These difficulties are key to the negative results of the paper.

Consider now any economy with two players and a constant marginal cost. If an

allocation z is proposed such that ti > 0 for each i and F (T ) > 0, then the allocation

that obtains when agent 1 opts out is given by

z(−1) = (ω1, x2, y
(−1)),
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where

y(−1) = F (t2).

The opt-out point z(−2) is similarly defined. Panel (a) of Figure II provides a graphi-

cal example of these points in the Kolm triangle diagram (Kolm (1970); see Thomson

(1999) for a detailed exposition.) For the proposal z to satisfy equilibrium partici-

pation, both agents must prefer z to their ‘opt-out’ points z(−i), as in the figure. In

panel (b) of the figure, agent 1 prefers to opt out, resulting in the allocation z(−1).

O
1

O
2ω

Z 

Z(−1) 

Z(−2) 

u
1
 u

2
 

O
1

O
2

ω

Z 

Z(−1) 

Z(−2) 

u
1
 u

2
 

(a) (b)

Figure II: Opt-out allocations z(−1) and z(−2) where the original point z is preferred
by both agents (panel (a)), and where one agent prefers to opt out (panel (b)).

In the case where t1 < 0 while t2 > 0, then y(−2) = 0 since negative quantities

of the public good are not admissible and y(−1) = y since agent 1 is not asked to

contribute any private good. In this case, it is assumed that the negative transfer

rejected by agent 1 is either redistributed among the other agents or destroyed, rather

than affecting the level of the public good.8 Under A1, agent 1 will always prefer

participation when t1 < 0 and agent 2 will prefer participation only if (x, y) ∈ IR2(e).

Generalizing this concept to allow for more players and arbitrary production tech-

nologies provides the key definition of this paper.

Definition 1. For any I = 1, 2, . . . and any economy e ∈ EI , a feasible allocation

(x, y) ∈ Z(e) (with t = ω −x) satisfies equilibrium participation for agent i (EPi) if

8Whether the transfer is redistributed or destroyed will not affect the i’s participation decision
since �i depends only on xi and y.
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and only if

(x, y) �i (x(−i), y(−i)),

where

x
(−i)
i = ωi,

y(−i) =











F (T−i) if ti ≥ 0, T−i ≥ 0, and y ≥ F (T−i)

0 if T−i < 0

y otherwise

, (1)

and

(x(−i), y(−i)) ∈ Z(e).

The allocation (x, y) ∈ Z(e) satisfies equilibrium participation (EP) if and only if it

satisfies EPi for all i ∈ I.

There are three cases considered in this definition. When ti ≥ 0, T−i ≥ 0, and

y ≥ F (T−i), removing agent i’s transfer necessarily reduces production, but not to

zero. If T−i < 0, then ti > 0 and removing i’s transfer results in y(−i) = 0. If ti < 0

or y < F (T−i), then y can be produced in the absence of i’s transfer, so y(−i) = y.

For any economy e ∈ EI , let

EP i(e) = {z ∈ Z(e) : z satisfies EPi},

and define

EP(e) =
⋂

i∈I

EPi(e).

Thus, EP(e) is a well-defined SCC. Referring back to the example of Figure II,

z ∈ EP(e) in panel (a), but in panel (b), z 6∈ EP1(e), so z 6∈ EP(e).

The SCC EP(e) represents the set of allocations that are stable (in the sense of

Nash equilibrium) when agents are free to exercise a ‘no-trade’ alternative. If a social

planner wishes to implement some other SCC G(e) but must also allow agents this

no-trade alternative, then the social planner must choose a mechanism that (at least

partially) implements G(e) ∩ EP(e). (This can be compared to the more standard

requirement that the planner implement G(e) ∩ IR(e).) Obviously, a mechanism

(partially) implements G(e) ∩ EP(e) only if it partially implements EP(e), but the

following results indicate that EP(e) has some undesirable properties; specifically, for
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many interesting SCC’s G the correspondence G(e)∩EP(e) is either empty for many

values of e or converges to {ω} (the endowment allocation) as the economy becomes

large.

It is natural to consider more complex participation games where agents have

more options than simply “contribute or not”. For example, agents may be free to

choose any level of contribution after observing the mechanism’s recommended al-

location (as in Bergstrom, Blume, and Varian, 1986, e.g.). In general, if the actual

participation game includes additional strategies, then allocations that were support-

able as equilibrium outcomes of the participation game with two strategies may no

longer be supportable when more strategies are added. It must be the case, however,

that if an allocation z does not satisfy EP when there are only two strategies, then it

also cannot be supported as an equilibrium outcome of a participation game with a

larger strategy space. Thus, the set of supportable allocations when more strategies

are available is a subset of EP(e). Since most of the results regarding EP(e) are

negative, further restricting this correspondence will only lead to stronger negative

results.

3 Properties of EP(e)

The shaded region of Figure III demonstrates a typical equilibrium participation set

for agent 1 in a two-agent classical economy. Note that with continuous preferences

(A3) each set EP(e) is closed and has a continuous boundary, but need not be convex.

Clearly, EP(e) is non-empty for every e ∈ EI and every I since (ω, 0) ∈ EP(e).

As an alternative to equilibrium participation, consider the environment of Bergstrom,

Blume, and Varian (1986) in which agents can freely (and simultaneously) choose

ti ∈ [0, ωi], resulting in y = F (T ). The set of Nash equilibrium allocations of this

larger participation game is given by

NE(e) = {(x∗, y∗) ∈ Z(e) : x∗ ≤ ω and

[∀i ∈ I][∀t′ ≥ 0] (x∗, y∗) �i (ω − t′, F (T ∗
−i + t′i))}.

The notion of equilibrium participation is now shown to be more stringent than the

standard notion of individual rationality, but less restrictive than the Nash equilib-

rium requirement.
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O
2

ω

u
1
 

Figure III: An example of the set EP1(e) for a two-agent economy with convex pref-
erences.

Proposition 1. Under monotone increasing preferences (A3), all allocations satisfy-

ing equilibrium participation also satisfy individual rationality (EP(e) ⊆ IR(e) for

all e.)

Proof. Consider a point (x, y) such that (x, y) �i (ω, y(−i)) for all i ∈ I. Note that

y(−i) ≥ 0 for each i, so A3 implies that (ω, y(−i)) �i (ω, 0). The result follows by

transitivity.

Proposition 2. All Nash equilibria of the voluntary contributions game satisfy equi-

librium participation (NE(e) ⊆ EP(e) for all e.)

Proof. From any Nash equilibrium point, the allocation consumed by i in the partic-

ipation game should i choose unilaterally to drop out is simply (ωi, F (T ∗
−i)). Since

the definition of Nash equilibrium requires that (x∗
i , y

∗) �i (ωi, F (T ∗
−i)) for all i (by

letting t′i = 0), the point (x∗, y∗) must satisfy equilibrium participation.

The most common assumption in the mechanism design literature with public

goods is that the social planner aims to implement PO(e). There exist several

mechanisms that implement this SCC under Nash equilibrium, including Groves

and Ledyard (1977) and Walker (1981); however, if the outcomes of these mecha-

nism fail to satisfy equilibrium participation (i.e., if they don’t partially implement
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PO(e)∩EP(e)) then their desirable properties are of little use in environments where

agents cannot be coerced to submit their transfers. The following example shows the

potential difficulty of finding points in PO(e) ∩ EP(e).

Example 2. Let I ≥ 2. Define ui(x, y) = vi(y) + xi, where each vi is concave and

differentiable with v′
i(y) ∈ (0, κ) for all i ∈ I and y ≥ 0 and let the unique maximizer

of
∑

i vi(y) be some yo > 0 satisfying
∑

j 6=i ωj < κyo for each i. Assume a constant

marginal cost of production κ, so that F (T ) = T/κ.

In this setting no agent is willing to unilaterally fund any amount of the public

good at any level (since v′(y) < κ for all y) and therefore any agent asked to contribute

a positive amount will refuse to contribute in any participation game unless the

proposed allocation is the endowment. To see this, pick any allocation (x, y) 6= (ω, 0),

so t 6= 0 and
∑

i ti ≥ 0. Let i be any agent such that ti > 0 (there must be at least

one). If i participates he receives

ui(x, y) = vi(y) + ωi − ti.

If i withholds his transfer he receives

ui(x
(−i), y(−i)) = vi(y

(−i)) + ωi.

If T−i < 0 then y(−i) = 0 by Definition 1. Thus,

ui(x, y)− ui(x
(−i), y(−i)) =

∫ y

0

v′
i(ỹ) dỹ − ti,

which is strictly less than κy−ti since v′
i < κ everywhere. But feasibility requires that

ti > κy − T−i, so the difference in utilities is strictly negative. Therefore, i strictly

prefers not to participate.

If ti ≥ 0, T−i ≥ 0, and y ≥ F (T−i) then y(−i) = F (T−i). Here,

ui(x, y) − ui(x
(−i), y(−i)) =

∫ y

F (T−i)

v′
i(ỹ) dỹ − ti,

which is strictly less than κ(y − F (T−i)) − ti because v′
i < κ everywhere. Since

κF (T−i) = T−i, this expression becomes κy − T , which must be weakly negative by

feasibility. Thus, i strictly prefers not to participate.
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Finally, if neither of the two above conditions holds then y(−i) = y and i strictly

prefers not to participate since his participation has no effect on the public good but

participation means surrendering some positive quantity of the private good.

In any economy with these specifications no allocation other than the endowment

can satisfy EPi for every i, so EP(e) = {(ω, 0)}.

The above example proves the following proposition.

Proposition 3. For every I ≥ 2, there exists an open set of economies in EC
I such

that no allocation except the endowment satisfies equilibrium participation (EP(e) =

{(ω, 0)}).

Given this negative result about EP(e), a social planner interested in implement-

ing G(e) might instead look to pick an allocation z such that a Nash equilibrium of

the participation games leads to a new allocation z′ with z′ ∈ G(e). In other words,

the planner might foresee agents’ non-participation and try to pick an allocation such

that non-participation will lead to a desirable result. Unfortunately, the following

proposition verifies that this trick gains the planner no additional flexibility since

the allocation that will obtain after the participation game is played must satisfy

equilibrium participation.

Proposition 4. If an allocation z is a pure strategy equilibrium outcome of the

(two-strategy) participation game in economy e, then z satisfies EP(e).

Proof. For any allocation z and any subset of agents S ⊆ I, let zS be the allocation

that obtains if all i ∈ S contribute and all j ∈ I \ S do not. For any pure strategy

equilibrium of the game induced by z, the outcome is an allocation zS for some subset

S of agents who chose to contribute. Since S is a Nash equilibrium participation

coalition, we have zS �i zS\{i}, thus zS ∈ EP i(e) for each i ∈ S. Since zS = zS\{j}

for each j 6∈ S we also have zS ∈ EPj(e) for each j 6∈ S. Thus, zS ∈ EP(e).

Combining Propositions 3 and 4 and recalling that the endowment in Example 2

is not Pareto optimal gives the following negative result.

Proposition 5. For every I ≥ 2, there exists an open set of economies in EC
I in which

no allocation can be selected such that the equilibrium of the resulting participation

game is Pareto optimal.

14



Since Proposition 5 indicates that EP is often inconsistent with Pareto optimality,

it is natural to ask whether there can exist any non-trivial mechanisms that satisfy

this constraint.9 In other words, is there a mechanism and a µ that implements EP(e)

in µ? It is simple to show that EP(e) satisfies the definition of monotonicity from

Maskin (1999), giving the following result.10

Proposition 6. The set of allocations satisfying equilibrium participation (EP(e))

can be non-trivially implemented in Nash equilibrium when I ≥ 3.

The proof of this proposition for full implementation relies on Maskin’s mech-

anism, which is not a particularly natural game form. Proposition 2 shows that

EP(e) can be partially implemented using the voluntary contribution mechanism

since NE(e) ⊆ EP(e) or by using the trivial mechanism since (ω, 0) ∈ EP(e) for ev-

ery e. Note that in the economies like those of Example 2, EP(e) = {(ω, 0)}, so any

mechanism that partially implements EP(e) must pick only the initial endowment in

those cases.

4 Quasi-Concave Economies

4.1 Necessary and Sufficient Conditions

The additional structure gained by adding assumptions A1 through A6 allows for the

derivation of separate necessary and sufficient conditions for an allocation to satisfy

equilibrium participation. Although these conditions are not tight, they require only

‘local’ information about marginal rates of substitution and the marginal cost of

production.

Proposition 7. For any economy in ED
I , if equilibrium participation is satisfied at a

point (x, y) = (ω + t, y), then for each i ∈ I such that ti, T−i ≥ 0 and y ≥ F (T−i),

∂ui(ω, F (T−i))/∂y

∂ui(ω, F (T−i))/∂xi

≥ c′(y(−i)). (2)

9A trivial mechanism selects the endowment in every economy; a non-trivial mechanism is not
trivial.

10The other sufficient condition, ‘no-veto power’ is trivially satisfied in economic environments
such as this.
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See the appendix for proofs of Propositions 7, 8, and 9.

A similar condition is now shown to be sufficient for a point to satisfy equilibrium

participation. Whereas the necessary condition compares the marginal rate of sub-

stitution to marginal costs at the drop-out point, the sufficient condition compares

these quantities at the proposed allocation.

Proposition 8. For any economy in ED
I , equilibrium participation is satisfied at

(x, y) if for all i with ti,T−i ≥ 0 and y ≥ F (T−i),

∂ui(x, y)/∂y

∂ui(x, y)/∂xi

≥ c′(y), (3)

and for all j such that T−j < 0,

uj(x, y) ≥ uj(ω, 0). (4)

Unlike the necessary condition, equation (4) implies that information about the

utilities of some agents at both the suggested allocation and the endowment is needed.

This may be undesirable from the standpoint of mechanism design since additional

information is necessary to determine that the condition is met.11 The following

condition shows how equation (4) could be replaced by a stronger version of equation

(3) to give a single condition sufficient for all agents that uses only information about

preferences and costs at the selected allocation.

Proposition 9. For any economy in ED
I , if a point (x, y) = (ω + t, y) satisfies

∂ui(x, y)/∂y

∂ui(x, y)/∂xi

≥
ti

F (T )
(5)

for all i, then equilibrium participation is satisfied at (x, y).

Figure IV demonstrates the interpretation of these conditions. The quantity

(∂ui/∂y)/(∂ui/∂xi) is the slope of the gradient of ui, while c′ is the slope of the

normal to the production possibilities frontier. In the figure, F is horizontally shifted

so that its graph represents the production possibilities set for agent i given her

endowment and T−i. If agent i withholds ti, then the allocation z(−i) results. In

11Of course, there could exist mechanisms whose outcomes satisfy equilibrium participation with-
out satisfying this sufficient condition.
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this case, i will prefer the Pareto optimal point z to z(−i), so z satisfied equilibrium

participation for agent i.

-
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Figure IV: An example with quasi-concave utilities and convex production sets. z is
Pareto optimal, z∗ is i’s most-preferred feasible allocation, and z(−i) is i’s drop-out
point. z(−i) satisfies the sufficient condition for EP. z∗ and z′ satisfy the sufficient
condition.

The necessary condition for equilibrium participation is satisfied at z in the figure

since the gradient of utility has a steeper slope than the normal to F at z(−i). The

sufficient condition is satisfied at z′ since the gradient of utility is steeper than the

normal to F at z′, but this condition fails at the optimal point z. In fact, the sufficient

condition is satisfied for any point along F between z(−i) and z∗, but nowhere left of

z∗. This is intuitive; z′ is closer to z∗ (i’s most preferred point) than z(−i), so i will

not opt out of z′.

The Samuelson (1954) condition for an interior optimum forces z to be to the left

of z∗, where the sufficient condition fails. Thus, equilibrium participation requires
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that z(−i) be sufficiently to the right of z∗, causing ti to be large. As in the opening

example, large transfers are needed to incentivize participation, but feasibility may

constrain how large the transfer can be or how many agents can have these inflated

transfers. Clearly, this constraint will be more restrictive in larger economies, as will

be demonstrated in Section 5.

4.2 Quasi-Linear Preferences

By assuming quasilinear preferences, one can focus on the size of transfer necessary

to satisfy a particular constraint, such as an incentive constraint, without concern

for how that transfer will affect preferences via wealth effects. In this way, quasilin-

ear environments are useful in identifying the transfer needed to exactly satisfy the

participation constraint implied by the equilibrium participation concept.

Assume agents have utility functions ui(x, y) = vi(y) + xi, where v′
i > 0 and

v′′ ≤ 0, and let the production function be strictly increasing and concave, so c(y) is

strictly increasing and convex. Let y∗
i be the unique solution to c′(y) = v′

i(y).

Equilibrium participation at a public good level of ŷ requires that vi(ŷ) − ti ≥

vi(ŷ
(−i)), or

ti ≤

∫ ŷ

ŷ(−i)

v′
i(y)dy.

Feasibility requires that if ti is non-negative then c(ŷ) ≤ c(ŷ(−i)) + ti, or

∫ ŷ

ŷ(−i)

c′(y)dy ≤ ti,

with equality if the allocation is non-wasteful. Putting these together, if ŷ > y∗
i and

ŷ satisfies equilibrium participation, then

∫ ŷ

ŷ(−i)

(v′
i(y) − c′(y)) dy ≥ 0,

or
∫ y∗

i

ŷ(−i)

(v′
i(y) − c′(y))dy ≥

∫ ŷ

y∗

i

(c′(y) − v′
i(y))dy, (6)

both of which are non-negative quantities.

For an optimal allocation yo (for which we know that yo > y∗
i ), equation (6) pro-

vides an exact requirement on how ‘far’ y(−i) must be from y∗
i to guarantee equilibrium
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participation. This is demonstrated in Figure V, where y(−i) is the largest value sat-

isfying (6) for the optimal point yo. The necessary and sufficient conditions from

equations (2) and (3) are also intuitive in this figure; if y(−i) > y∗
i , then the necessary

condition fails because marginal costs are everywhere larger than the marginal benefit

between y(−i) and yo, and the sufficient condition is satisfied for any y ∈ [y(−i), y∗
i )

since marginal costs are everywhere less than the marginal benefit between y and

y(−i).

v
i
'(y)


i 
v

i
'(y)

c'(y)

y
i
* y

 

oy(-i)

Figure V: The largest y(−i) such that the Pareto optimal public good level yo satisfies
EPi.

5 Equilibrium Participation in Large Economies

The typical approach for analyzing large economies is to consider replications of some

finite economy that converges to an economy with a continuum of agents. With pub-

lic goods, however, allocations in the sequence of replica economies do not converge

to equivalent allocations in the continuum economy. For example, if individual con-

tributions in the sequence of replica economies is bounded away from zero for an

unbounded set of agents then public good levels must diverge to infinity as the se-

quence grows. If, on the other hand, the public good level stays bounded between

zero and infinity then individual contributions must be bounded away from zero for

only a finite set of agents. But in the limit economy the contributions of a finite set of
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agents has no impact on production and the public good level is zero. Only when no

public goods are produced in the limit does the allocation in the continuum economy

represent a sensible limit of the sequence of allocations in the replica economies.

Given these issues, we analyze continuum economies separately from replica economies.

The results on equilibrium participation for continuum economies are both trivial

and pessimistic. Following the definition of a continuum economy given by Muench

(1972), let the set of agents be given by I = [0, 1] and the endowments and private

good contributions by ω(i) and x(i), respectively. Feasibility requires that the public

good level y satisfy
∫

I
(ω(i)−x(i))di ≥ c(y). Since each agent i’s contribution has an

infinitesimal effect on y, no agent will contribute any positive amount to the public

good when preferences for the private good are strictly monotonic. This gives our

first result for large economies:

Proposition 10. In any limit economy with a continuum of agents and strictly

increasing preferences (A1’), the only allocation satisfying equilibrium participation

is the endowment (EP(e) = {(ω(i), 0)}).

To analyze finitely replicated economies, we start with some base economy e1 ∈ EI

with I agents, where e1 = ({�i}I
i=1,Y , ω). A replica economy eR is then defined by

replicating each agent R times. Let the rth replicate (for r = 1, . . . , R) of the ith

agent be denoted by (i, r). Agent (i, r) is endowed with ωi,r = ωi units of the private

good and has preferences �i,r such that (x, y) �i,r (x′, y) if and only if (x·r, y) �i

(x′
·r, y), where x·r = (x1,r, . . . , xI,r) when x ∈ R

I·R. Let ωR = (ω, . . . , ω) be the

R× I-dimensional vector of endowments for eR. The production technology remains

unchanged as the economy is replicated.

The following proposition gives a result quite the opposite from Proposition 10;

here, the size of the equilibrium participation can only grow as an economy is repli-

cated.

Proposition 11. For any base economy e1, public good level y ≥ 0, and number

of replications R ∈ {1, 2, . . .}, if there is some x ∈ R
I·R such that (x, y) ∈ EP

(

eR
)

,

then there is some x′ ∈ R
I·(R+1) such that (x′, y) ∈ EP

(

eR+1
)

.

The proof of the proposition is in fact trivial; if (x, y) satisfies equilibrium partic-

ipation in eR and new agents are added, simply do not change the contribution levels

20



for the old agents and do not ask for contributions from the new ones.

One objection to Proposition 11 is that it uses allocations that violate the equal-

treatment property; old agents consume allocations that are significantly different

from their offspring. The following example shows, however, that non-trivial lev-

els of the public good can be produced in any finite economy while satisfying both

equilibrium participation and the equal treatment property.

Example 3. Let e1 be an economy of I identical agents with ui(xi, y) = ln(y)+xi and

let c(y) = y. For each replication R of e1, consider the allocation where each agent

contributes t∗R = ln(RI/(RI − 1)) units of the private good. Since ln(RIt∗R) − t∗R =

ln(RIt∗R − t∗R), all agents are indifferent between contributing t∗R and not. Therefore,

full participation is an equilibrium of the induced participation game for every R. As

R grows, t∗R approaches zero but y = RIt∗R converges to one from above.

Thus, pure public goods may be achievable in arbitrarily large finite economies

without coercion.

Milleron (1972) suggests an alternative notion of replication in which a fixed en-

dowment is split into successively smaller shares as the economy is replicated.12 This

forces private good consumption to shrink rather than allowing public good levels

to diverge. It also captures the idea that each agent becomes “insignificant” as the

economy grows large.

As before, we begin with a base economy e1 and replicate it R times, with the rth

replica of the ith agent being denoted by (i, r). The difference here is that ωi,r = ωi/R,

so that the total endowment of the private good always sums to
∑

i ωi.

Milleron (1972) also adjusts the preferences of the replicates to compensate for

the fact that their feasible consumption set shrinks as R grows. Specifically, he

defines �i,r by (xr, y) �i,r (x′
r, y

′) if and only if (Rx, y) �i (Rx′, y′). With this

specification, agents value their private good consumption only as a fraction of their

total endowment rather than on an absolute scale. This is useful if, for example, i’s

marginal utility for the private good diverges to infinity as his consumption drops to

zero; without rescaling replicates’ preferences, all agents would eventually be driven

to demand nothing but private goods.

We show that when agents’ endowments shrink with replication, each truly be-

12This replication method is also used in Furusawa and Konishi (2007).
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comes insignificant in the production of the public good and will strictly prefer non-

participation in large enough economies.

Proposition 12. For any economy satisfying A1, A3, and A4 (continuous, monotone

preferences and increasing, continuous production technology) and with endowment-

splitting replication, the set of allocations satisfying equilibrium participation con-

verges to the initial endowment as the economy is infinitely replicated.

The proof of this theorem, available in the appendix, demonstrates how the shrink-

ing endowment restricts the amount any agent can be asked to pay in the limit. This,

in turn, limits the agent’s effect on production. Since agents in large economies care

about small changes in their private goods consumption but not in the level of the

public good, agents eventually prefer to opt-out as their individual effect on produc-

tion vanishes.

In many base economies the set of Pareto optimal allocations remains bounded

away from the endowment as the economy grows; thus, equilibrium participation not

only precludes efficient allocations in these settings, but often precludes any notion

of approximate efficiency. For these large economies, it is necessary that the social

planner have the power of coercion in order to overcome the free-rider problem.

6 Related Literature

The notion of equilibrium participation is similar in spirit to the core of a public

goods economy. Both define a stability property based on comparisons between the

proposed allocation and feasible defections. There are many possible definitions of

the core, however, because it is unclear what allocations might result (or, how non-

dissenting coalitions might behave) when a coalition blocks an allocation.

In the original definition of the core by Foley (1970), only the dissenting coali-

tion may produce the public good; non-dissenters withdraw their contributions to

production. This maximizes the threat to dissenters and many allocations remain in

the core.13 Richter (1974) assumes that non-dissenting agents select levels of produc-

tion that are ‘rational’ for themselves (under various meanings) and finds that the

subsequent definition of the core may be empty.

13Muench (1972) shows that Foley’s core does not converge to the set of Lindahl equilibria in large
economies.
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Champsaur, Roberts, and Rosenthal (1975) define the ϕ-core as the allocations

that remain unblocked when blocking coalitions are given the power to tax the remain-

ing agents an amount up to ϕ, which depends on the proposed blocking allocation. If

ϕ were a function of the original allocation, then this notion of blocking (for single-

agent coalitions) could encompass the definition of equilibrium participation. Though

the results for both definitions are similarly negative, they are logically independent.

Saijo (1991) analyzes the mechanism design problem if the utility of autarkic pro-

duction is used as a welfare lower bound instead of the utility of the endowment. His

notion of autarkic individual rationality requires each agent’s final utility level to be

weakly greater than that which the agent could achieve in isolation with his endow-

ment and access to the production technology. Whereas Ledyard and Roberts (1975)

demonstrate that the standard notion of individual rationality is incompatible with

incentive compatibility among the class of Pareto optimal mechanisms, Saijo (1991)

shows that autarkic individual rationality is incompatible with incentive compatibility

for all mechanisms, optimal or not.

There have been other papers examining explicit outside options of agents in

mechanism design. The most general of these is Jackson and Palfrey (2001), where

an unspecified function maps from any given outcome to another (possibly identical)

outcome. The necessary and sufficient conditions of Maskin (1999) are then extended

in a simple way to accommodate this ‘reversion function’. This approach unifies

several existing attempts to model renegotiation and participation in the outcomes

of mechanisms in private goods settings, such as Ma, Moore, and Turnbull (1988),

Maskin and Moore (1999), and Jackson and Palfrey (1998). It also encompasses pubic

goods models with an exogenous status quo outcome or mechanism, as in Perez-

Nievas (2002). A selection from the equilibrium correspondence of the participation

game defined in this paper would be another example of a reversion function, and,

for particular environments, the conditions of Jackson and Palfrey (2001) could be

analyzed to determine if the resulting allocations (after participation decisions are

made) are implementable.

Saijo and Yamato (1999) and Saijo and Yamato (2008) focus on the question of

whether forward-looking agents would want to participate in a mechanism if its de-

signer did have coercive power in enforcing the mechanism outcome. Here, if an agent

opts out of a mechanism that implements Lindahl allocations then her preferences

will not be used to determine the optimal public good level, but she also will not be
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required to pay any transfers. Saijo and Yamato (2008) show that any mechanism

that implements Lindahl allocations will suffer from participation problems when

the domain of preferences is sufficiently rich. Thus, the results on participation in

a mechanism are similar in spirit to our results on participation in a mechanism’s

outcome.

Finally, it is worth noting that concepts such as dominant strategy incentive com-

patibility and ex-post equilibrium do not encompass the definition of equilibrium

participation. Although these concepts do require that the mechanism outcome be

preferred by each individual to all other outcomes in the range of the mechanism,

there is no guarantee that the allocation obtaining after an agent opts out is in the

mechanism’s range. Indeed, most ‘standard’ public goods mechanisms (such as those

of Groves and Ledyard (1977) or Groves (1973)) do not include the opt-out points in

their range. Therefore, the fact that an allocation is selected as part of an equilibrium

decision does not preclude the possibility that agents will later prefer to free-ride on

the contributions of others.

7 Conclusion

If a mechanism is to implement a desired social choice correspondence with public

goods when agents have available a no-trade alternative, it must select an allocation

impervious to agents withdrawing their transfers. The incompatibility between equi-

librium participation and Pareto optimality is established through simple quasi-linear

examples, indicating that optimality is unobtainable under the standard assumptions

used in mechanism design. In many economies, only the initial endowment is in-

susceptible to agents withdrawing. Even in those economies for which non-trivial

allocations satisfy equilibrium participation, the set of equilibrium participation allo-

cations eventually shrinks to the endowment as the economy is replicated.

The above analysis leaves open important questions about participation in public

goods allocations. Perhaps it is possible to characterize those economies for which

optimality is not inconsistent with equilibrium participation. If this class of such

economies is reasonable to assume as the set of possible economies, then the negative

results may be avoided with small numbers of agents. Similarly, there may exist

a wide range of economies for which Pareto optimality may be well approximated

under equilibrium participation. If such ‘approximately desirable’ outcomes could be
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identified, perhaps there exists a more natural mechanism that can implement these

outcomes in Nash equilibrium. Given that the equilibrium participation constraint

can be thought of as a restriction on the size of transfers, it is conceivable that a total

transfer maximizing solution to this system of restrictions may be identified and used

to maximize the total size of the public good in a given economy.

Finally, empirical observation demonstrates that non-trivial quantities of public

goods are regularly provided in large economies. Governments and other voluntarily

established methods of coercion exist as enforcement devices to guarantee that welfare

improving allocations are attained. This suggests a natural next step; the study of

the endogenous selection of enforcement systems for the provision of public goods.

A Appendix

Proof of Proposition 7. Pick any agent i such that ti, T−i ≥ 0 and y ≥ F (T−i)Equilibrium

participation implies that

ui(ωi − ti, F (T−i + ti)) ≥ ui(ωi, F (T−i)).

By quasi-concavity of ui,

∇ui(ωi, F (T−i)) · (−ti, F (T−i + ti) − F (T−i)) ≥ 0,

or
F (T−i + ti) − F (T−i)

ti
≥

∂ui(ωi, F (T−i))/∂xi

∂ui(ωi, F (T−i))/∂y
.

Thus, by concavity of F ,

∂ui(ωi, F (T−i))/∂xi

∂ui(ωi, F (T−i))/∂y
≤ F ′(T−i).

Inverting this inequality gives the necessary condition.

Proof of Proposition 8. By monotonicity, equilibrium participation is trivially satis-

fied for all j such that tj < 0 or y < F (T−j). Equation (4) guarantees equilibrium

participation when T−j < 0. Now consider some i ∈ I such that ti, T−i ≥ 0 and
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y ≥ F (T−i), but for whom equilibrium participation fails. For this agent,

ui(ωi, F (T−i)) > ui(ωi − ti, F (T−i + ti)), (7)

so that

∇ui(x, y) · (ti, F (T−i) − F (T−i + ti)) > 0.

This is equivalent to

∂ui(x, y)/∂xi

∂ui(x, y)/∂y
>

F (T−i + ti) − F (T−i)

ti
, (8)

so applying the concavity of F at T−i + ti and inverting the resulting relationship

gives
∂ui(x, y)/∂y

∂ui(x, y)/∂xi

<
1

F ′(T−i + ti)
.

Equation (3) implies that (7) cannot hold, so by the contrapositive of this argument,

(x, y) must satisfy EPi.

Proof of Proposition 9. For agents with T−i < 0, y(−i) = 0, but F (T−i) < 0. By

replacing F (T−i) with zero in the proof of Proposition 8, the argument is identical

through equation (8). At this point, the subsequent relationship with F ′(T ) cannot

be derived from F (T )/ti when T−i < 0, so inverting (8) gives the alternative sufficient

condition
∂ui(x, y)/∂y

∂ui(x, y)/∂xi

≥
1

F (T )/ti
(9)

for all i such that T−i < 0. Since this is a stronger condition than (3), it is also

sufficient every agent.

Proof of Proposition 12. By way of contradiction, assume that there exists some econ-

omy e and some sequence {(xR, ŷR)}∞R=1 in EP(eR) for each R such that |ŷR| fails to

converge to zero. For each (i, r), let tRi,r = ωR
i,r − xR

i,r. For any (xR, ŷR) ∈ EP(eR), if

ŷR < F (
∑

i,r tRi,r), then by monotonicity, (xR, yR) ∈ EP(eR), where yR = F (
∑

i,r tRi,r).

In other words, if a wasteful allocation (x, ŷ) satisfies equilibrium participation, so

does the transfer-equivalent non-wasteful allocation (x, y). (This is trivially true if

ti ≤ 0; if ti > 0 and T−i < 0 then ŷ(−i) = y(−i) = 0 and it is true; if ti > 0,

T−i ≥ 0, and ŷ < F (T−i) then it is vacuously true since (x, ŷ) would not satisfy

equilibrium participation; and the case of ti ≥ 0, T−i ≥ 0, and ŷ ≥ F (T−i) is true
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since ŷ(−i) = y(−i) = F (T−i).) Thus, the sequence {(xR, yR)}∞R=1 satisfies equilibrium

participation for each R and {|yR|}∞R=1 also fails to converge to zero. This implies

that there exists some ε > 0 and an infinite subsequence {(xRk , yRk)}∞k=1 such that

for all k = 1, 2, . . . we have
∣

∣yRk

∣

∣ ≥ ε.

Let ȳ = limk→∞ yRk if it exists. If it does not, there must exist a convergent

subsequence since
{

yRk

}

k
resides in the compact set [ε, F (

∑

i ωi)], and so we can

redefine {(xRk , yRk)}∞k=1 to be this convergent subsequence and let ȳ = limk→∞ yRk .

Letting c(y) represent the minimal cost of producing y (which is the inverse of F ),

non-convergence guarantees that c(yRk) ≥ c(ε) > 0 for each k since c is an increasing

function and Y∩R
2
+ = {0}. For any k, if c (ε) > (maxi∈I ωi) /Rk, then no one agent

can unilaterally fund yR(k) using t
R(k)
i,r . Let

k∗ = max{k ∈ N : R(k) ≤
1

c (ε)
max
i∈I

ωi},

and consider any sequence of agents {(ik, rk)}
∞
k=1 such that, for each k, (ik, rk) ∈

arg max(i,r) tRk

i,r . Each (ik, rk) in this sequence contributes at least as much as the

average contribution, so

tRk

ik,rk
≥

c
(

yRk

)

Rk I

>
c (ε)

Rk I

> 0

for each k and T−(ik ,rk) > 0 for all k > k∗. Since each (xRk , yRk) satisfies equilibrium

participation for all (i, r), it must be the case that, for every k,

(ωi,r − tRk

ik,rk
, yRk) �ik ,rk

(ωi,r, (y
Rk)−(ik,rk)),

or
(

ωi − Rk tRk

ik ,rk
, yRk

)

�ik

(

ωi,
(

yRk

)−(ik,rk)
)

. (10)

Note that for k > k∗,

(yRk)−(ik,rk) = F





∑

(j,s)6=(ik,rk)

tRk

j,s



 .
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By continuity of the production function, (yR(k))−(ik,rk) becomes arbitrarily close to

yR(k) as k grows, so that limk→∞

(

yRk

)−(ik,rk)
= limk→∞ yRk = ȳ.

Since tRk

ik ,rk
> c(ε)/(Rk I) for each k, monotonicity of preferences and equation

(10) imply that
(

ωi −
c (ε)

I
, yRk

)

�ik

(

ωi,
(

yRk

)−(ik,rk)
)

. (11)

Strict monotonicity also implies that, for each k,

(

ωi −
c (ε)

I
, ȳ

)

≺ik (ωi, ȳ) ,

and so, by continuity of preferences, there exists a δik > 0 for each k such that

(

ωi −
c (ε)

I
, ȳ + δik

)

≺ik (ωi, ȳ − δik) .

Lett δ∗ = mink {δik}, which is well-defined and positive since there are only a finite

number of types ik, we have

(

ωi −
c (ε)

I
, ȳ + δ∗

)

≺ik (ωi, ȳ − δ∗) .

But since yRk → ȳ and
(

yRk

)−(ik ,rk)
→ ȳ, there is some k such that yRk ≤ ȳ + δ∗ and

(

yRk

)−(ik,rk)
≥ ȳ − δ∗, so that, by monotonicity,

(

ωi −
c (ε)

I
, yRk

)

�ik

(

ωi −
c (ε)

I
, ȳ + δ∗

)

≺ik (ωi, ȳ − δ∗) �ik

(

ωi,
(

yRk

)−(ik,rk)
)

.

But this contradicts equation (11).

Since there cannot be an infinite subsequence of allocations with |yRk | > ε for any

ε > 0, it must be the case that yR → 0 as R → ∞. Feasibility then requires that

‖xR − ωR‖∞ → 0, completing the proof.
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