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1 INTRODUCTION

Following a considerable literature demonstrating deviations from Nash equilibrium play (see,

for example, 16), behavioral research has sought to model the processes determining individual

play and aggregate behavior in experimental games. One widely-used approach for modeling

behavioral deviations from Nash equilibrium in one-shot games involves the use of hetero-

geneous types, based on varying levels of strategic sophistication [53, 62, 24, 18].1 In this

framework—often referred to asLevel-k or Cognitive Hierarchy—players’ strategic sophisti-

cation is represented by the number of iterations of best response they perform in selecting an

action.

In the simplest version of these models, Level-0 types randomize uniformly over all actions

and, for allk > 0, the Level-k type plays a best response to the actions of Level-(k−1). Thus,

the model suggests that a subject’s level is a measure of her strategic sophistication—or, more

precisely, her belief about her opponents’ strategic sophistication. The application of such

models to data from one-shot play in experiments has yieldedseveral instances in which the

model accurately describes the aggregate distributions ofaction choices. We provide a review

of this literature in the next section.

The value of the Level-k framework as apost hoc descriptive model of the aggregate dis-

tribution of actions in laboratory games has been widely documented. There is also evidence

that the overall distribution of levels may posses some stability across games (e.g., 18), mean-

ing that one might be able to predict the distribution of actions in a novel game based on the

distributions in other games.

However, an open question remains regarding whether Level-k types correspond to some

meaningful individual characteristic that one might labelas “strategic sophistication.” That is,

does a particular individual’s estimated level correspondto a persistent trait that can be used to

predict play across games? If levels are indicative of strategic sophistication, and if strategic

sophistication is an invariant characteristic of a person,then there should exist reliable cross-

game patterns in players’ observed levels. Estimated levels in one game could then be used

to predict players’ behavior in novel games. Moreover, estimates of a player’s level could be

improved by using direct psychometric measures that correlate with strategic sophistication.

On the other hand, if players’ levels appear to be randomly determined from game to game,

then one of two negative conclusions must be reached: Eitheriterative best response is not an

accurate description of players’ reasoning, or the model isaccurate but players’ levels vary

1An alternative approach involves modeling deviations fromNash equilibrium as noise (or unobservable utility
shocks) in players’ best response. For an example, see the Quantal Response Equilibrium model proposed by
[50]. [57] bridges the Quantal Response approach with the Level-k approach studied here. Other directions in
behavioral game theory include the study of dynamics following initial play [see 25, 32, 17, for example].
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from game to game in a manner that is difficult to predict. In either case, knowledge of a

player’s level in one game provides neither information about their play in another game, nor

a useful measure of that person’s strategic sophisticationin general.2

In this paper we test for persistence of individuals’ strategic sophistication across games.

We begin by identifying several plausible, testable restrictions on cross-game behavior in the

Level-k framework. For example, the most stringent testable restriction is that players’ levels

are constant across all games. A weaker restriction requires only that players’ relative levels

be invariant, so that a ranking of players based on their levels remains constant across games,

even if their absolute levels do not.

We then conduct a laboratory experiment in which subjects play several games drawn from

two distinct families of games. The first family of games consists of four novel matrix games

developed for this study, which we refer to as “undercuttinggames.” The second family is a

set of two-person guessing games studied by [23] (henceforth CGC06).3

Within each family of games, we identify an individual’s level in a Level-k framework,

following a standard approach for classifying individual behavior based on the observation of

play in several games. We then test whether these observed levels satisfy any of the cross-

game restrictions we have identified. To complement this analysis, we also attempt to identify

individual levels separately for each game, and use these classifications to conduct cross-game

comparisons within each family of games.

We also consider two additional ways in which strategic sophistication might be detectable.

First, we elicit several direct measures of strategic intelligence using brief quizzes that have

been found to identify strategic reasoning ability or general intelligence. We explore the rela-

tionship between such measures and subjects’ levels identified from their behavior. Second, we

have subjects play each game against three different opponents: a subject randomly selected

from the population in the session, the opponent who scored highest on the strategic intelli-

gence measures discussed above, and the opponent who scoredlowest. Thus, we are able to

detect whether sophisticated types vary their behavior based on the expected sophistication of

their opponent.

The degree of persistence in strategic sophistication thatemerges from our data is mixed.

The key results are summarized as follows:

2We do not suggest that levels must be constant across games for the model to have predictive power. [18] and
[20], for example, suggest that levelswill change in certain situations. Predictive power simply requires that
situational changes be predictable.
3A two-person guessing game is different from the two-personbeauty contest studied by [38]; the latter has a
(weakly) dominant strategy while the former does not.
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(1) Theaggregate distribution of levels is similar to that found in previous studies for both

families of games.

(2) Individual levels show little persistence between the two families of games. Moreover,

the relative ordering of players is also unstable between the two game families.

(3) Looking within families of games, the aggregate distribution of levels is remarkably

stable across undercutting games, but quite unstable across two-person guessing games.

Individual levels and relative ordering are moderately persistent within the family of

undercutting games, but have no persistence within the family of guessing games.

(4) The quizzes generally fail to predict players’ levels ineither family of games, though

Level-1 play is correlated with a test for autism in undercutting games.

(5) Some players adjust strategies against stronger opponents, but neither quiz scores nor

levels predict which subjects make this adjustment.

Our interpretation of these results is that the congruence between Level-k models and sub-

jects’ actual decision processes depends on the context. Players confronted with a novel game

may have many alternative processes for determining what strategy to select, and different en-

vironments trigger the use of different decision processes.4 Level-k reasoning might be one

process that is triggered in some contexts (undercutting games), but not in others (guessing

games). Of course, if Level-k reasoning is employed in some games, it is critical for the

theory’s predictive ability to be able to identify what factors trigger its use.

Additional insight into robustness comes from comparing our guessing game data with that

of CGC06.5 In their data the Level-k model receives stronger support—especially when con-

sidering subjects’ “lookup” behavior—though we also find substantial cross-game instability

in their data as well. We believe this difference in model accuracy stems from two differences

in protocols. First, their instructions are far more detailed (spanning 31 computer screens) and

include four practice rounds with feedback on aggregate choices. Ours consist of a 5-page

handout with no practice rounds. Second, they require that subjects pass an understanding test

in which they must calculate their best response to an opponent’s choice, and their opponent’s

best response to their own choice. Subjects who fail this test are dismissed. We have no such

understanding test, and include all subjects. It is possible that the more extensive instructions,

the practice rounds with feedback, and the best-response understanding test all trigger the use

of Level-k reasoning in a greater fraction of the subjects. Alternatively, it is possible that our

4This interpretation is similar to the idea of a “toolbox” of various decision making approaches or heuristics,
which are employed varyingly depending on the context [36].
5Our data are comparable to the CGC06 “Baseline” and “Open-Box” treatments. See the online appendix for this
and other comparisons with CGC06.
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design fails to eliminate confusion sufficiently, leading to noisier data. Regardless, the sensi-

tivity of results to the protocol suggests that the Level-k model’s applicability may be limited

in this regard.

2 REVIEW OF RELEVANT L ITERATURE

The notion of heterogeneous strategic sophistication operating through limited iterations of

best response dates back at least to the “beauty contest” discussion of [47]. Motivated by this,

Nagel [53, 54], Ho et al. [42], and others study behavior in laboratoryp-beauty contest games,

in which all players submit a number in[0, 100] and the closest guess top times the average

wins a prize. The observed distributions of guesses show clear spikes consistent with Level-1

and Level-2 play. This finding is robust to the structure of the game [31] and varied populations

[10].6

Stahl & Wilson [62] study Level-k behavior in ten 3×3 matrix games.7 They find that

roughly 25 percent of players are Level-1, 50 percent are Level-2, and 25 percent are Nash

equilibrium players. Level-0 play is virtually non-existent. Stahl and Wilson [63] examine

play in twelve normal-form games played without feedback, adding Worldly and Rational

Expectations types. In both studies, many subjects fit strongly into one type, with posterior

probabilities of their maximum likelihood type exceeding 0.90. Stahl & Wilson Stahl and Wil-

son [63] also provide a test of individual cross-game stability: They select a subset of nine

games, estimate individuals’ types from these games, calculate the predicted choice probabil-

ities for the remaining three games for each type, and then estimate the posterior probability

that a subject has a particular type. They classify as “stable” those subjects for whom the

posterior probability of having the same type is at least 15 percent. Using this relatively low

threshold, they find that 35 of 48 subjects are stable. In contrast, we estimate a player’s type

independently in two sets of games, and directly compare whether the two estimated types are

identical.8

Costa-Gomes, Crawford & Broseta Costa-Gomes et al. [24] fit aLevel-k model, with 9

possible types, to behavior in 18 matrix games. In their experiment, payoffs in the games

are initially hidden to subjects, so that estimation of a player’s level based on strategy choice

6When the game is made into a global game in which players are also rewarded for guessing an unknown state
[52], however, the Level-k model fits poorly when the state-guessing incentive is emphasized [60].
7In their model Level-0 players are assumed to randomly choose strategies, Level-1 players best respond to
Level-0, and Level-2 players best respond to a Level-1 strategy with noise added. This works similarly to best
responding to a mixture of Level-0 and Level-1.
8Burchardi & Penczynski [14] and Penczynski [56] find that players’ estimated levels are altered after commu-
nicating with others. Although this represents one notion of type instability, it is unlikely that it stems from true
randomness in players’ types.
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can be augmented by analyzing which pieces of information subjects choose to view before

making a decision. The model fits well, and they generally findhigher levels in simpler games.

Camerer, Ho & Chong [18] introduce theCognitive Hierarchy variation of the Level-k

model, in which players best respond to the distribution of levels truncated below their own

level. Thus, a Level-k player believes all other players are Level-0 through Level-(k − 1) and

his belief about the relative frequencies of those levels isaccurate. Using a Poisson distribution

of levels reduces the model to a single parameterτ (after defining the Level-0 distribution) that

describes the mean level in the population. They estimate this distribution for a wide range of

games. Inp-beauty contests, for example, they estimate higher mean levels in more educated

populations, in simpler games, and when subjects are asked their beliefs about opponents’ play.

They also show that the model suffers relatively little lossin likelihood scores when restricting

τ to be constant across games, indicating a fair amount of cross-game stability in the aggregate

distribution of levels; however, they do not explore individual-level cross game stability.

In Costa-Gomes & Crawford Costa-Gomes and Crawford [23] (CGC06), players participate

in 16 two-person guessing games in which a player and her opponent are each assigned an

interval[ai, bi] and a ‘target,’pi ∈ {0.5, 0.7, 1.3, 1.5}. Players’ payoffs decrease in the distance

between their own guess andpi times their opponent’s guess. As in the earlier paper Costa-

Gomes et al. [24], lookup behavior is used to strengthen typeestimation. Again the results

support the Level-k model: A reasonably large percentage of players play exactly the strategy

predicted by one of the Level-k types. Six of the ten games we study in this paper are two-

person guessing games; we compare our findings to CGC06 in ouranalysis. Chen, Huang &

Wang [19] study similar two-person games on a two-dimensional grid. They use eye-tracking

technology to augment the type estimation based on behavioralone. They find distributions of

types that are somewhat more uniform than in past studies. When subjects’ data are randomly

re-sampled to generate new bootstrapped samples, however,only 8 of 17 subjects receive the

same classification in at least 95% of the bootstrapped samples as they did in the original

sample. This suggests that roughly half of the subjects are not strongly consistent with any one

level across these games.

Arad & Rubinstein [2] introduce the 11-20 money request game, which is similar to our

undercutting game in that it is a simple game designed to trigger Level-k behavior while al-

lowing a clean separation of levels. Although they are not explicitly testing for cross-game

stability, they do find that subjects behave differently across variations of the game that do

not change the equilibrium or Level-k predictions. DeSousa, Hollard & Terracol [29] identify

non-strategic players by observing play in 10 beauty contest games, and find that these subjects

are more likely to play non-strategically in the 11-20 moneyrequest game as well. Arad &
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Rubinstein [3] develop a model of multi-dimensional iterative reasoning, focused on ‘features’

of strategies, and apply it to behavior in Colonel Blotto games. They find that subjects who

apply more iterative reasoning in an 11-20 money request game also seem to exhibit more

multi-dimensional iteartive reasoning in the Colonel Blotto game.

Batziliset al. [8] fit a Level-k model to a very large number of rock-paper-scissors (‘Rosham-

bull’) games among Facebook users. They find that aggregate play frequencies vary slightly

from the equilibrium prediction, and that most players’ strategies are not consistently aligned

with any single level.

The Level-k model has also been applied to extensive-form games. Kawagoe & Takizawa

[46] study centipede games and compare 12 different specifications of the Level-k / Cogni-

tive Hierarchy model against two specifications of the AgentQuantal Response Equilibrium

(AQRE) model [51]. They find that an AQRE specification fits best for their constant-sum

centipede game, while a Cognitive Hierarchy model with a uniform Level-0 strategy fits best

their increasing-sum centipede game. Ho & Su [41] develop a dynamic version of the Level-k

model for centipede games and show that it fits both first-round play and the pattern of earlier

taking as the game is repeated. The model also matches patterns of behavior in a dynamic

bargaining experiment.

Relatively few authors test whether estimated levels correlate with personal traits such as in-

telligence. Camerer, Ho & Chong [18] find higher average levels in subject pools with greater

academic training, such as Caltech undergraduates and gametheorists. Burnhamet al. [15]

show that individuals’ choices in ap-beauty contest game correlate with scores on a 20-minute

test of cognitive ability. Gill & Prowse [37] also find a correlation between cognitive abil-

ity and levels in ap-beauty contest, and show that higher-ability players are more likely to

converge toward equilibrium over time and earn higher payments. Chong, Camerer & Ho [20]

find that cognitive effort matters along with intelligence.They let their subjects play 22 mixed-

equilibrium matrix games in a fixed order and report a positive correlation between thinking

time and levels. Furthermore, average levels are higher in games 12-22 than in games 1–11,

indicating a learning-by-doing increase in sophistication over time.9 Rubinstein [58] finds cor-

relation in players’ reaction times across games, suggesting that some systematically engage

in more contemplation than others. But he reports that he could not find interesting cross-game

correlations in strategy choices, and that the level of contemplativeness is not very predictive

9In a personal communication, Camerer reported that a regression of individuals’ average second-half level on
their first-half level yields anR2 value of 0.37, indicating reasonable predictive power in these games despite the
learning-by-doing effect. Our experiment reduces the incidence of learning-by-doing effects by allowing subjects
to revise any of their past decisions after making choices inall ten games.
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of strategy choices. Similarly, DeSousaet al. [29] do not find a correlation between the Elo

ranking (a measure of a chess player’s quality) and the likelihood of playing strategically.

The Level-k model has also been applied successfully to a variety of other games, including

“hide-and-seek” games [27], incomplete-information betting games [11], betting games and

matrix games [57], coordinated attack games [48], sender-receiver games augmented with

eye-tracking data [65], and cheap-talk games [45]. In the field, Level-k has been shown to fit

behavior in Swedish lowest-unique-positive-integer lottery games [55] and to explain the fact

that movies that were not released to critics before their public opening earn higher revenues

[12]. A functional MRI study even suggests differences in brain activity between subjects

who exhibit varying degrees of “strategic sophistication”[9]. Finally, a few recent papers

apply the Level-k concept to study departures from Nash equilibrium play in auctions, finding

that the Level-k approach often, though not always, yields a significantly better fit than the

Nash equilibrium [26, 35]. However, Ivanovet al. [44] show that models with misguided

beliefs (such as Level-k) cannot explain the winner’s curse in common value auctions, because

subjects who play against their own past actions still exhibit substantial overbidding.

For a more comprehensive survey of studies on the Level-k model, see [28].

3 A FORMULATION OF LEVEL-k MODELS

The usual applications of the Level-k model generally treat it as anex post descriptive model.

As such, prior analyses typically omit cross-game or cross-individual testable restrictions, or

test only how the aggregate distribution of types varies across games or populations [18, e.g.].

In this section we introduce a formal framework in which suchtestable restrictions can be

defined clearly. Our experiment then examines several possible cross-game testable restrictions

to see which have empirical merit.

Specifically, we build a simple type-space model for two-player games where an agent’s type

describes hercapacity for iterated best-response reasoning and her realizedlevel of iterated

best-response reasoning. Under Harsanyi’s (1967) interpretation, types would also describe

beliefs about opponents’ types, second-order beliefs about opponents’ beliefs, and all higher-

order beliefs. Following the Level-k literature, however, we make the simplifying assumption

that a player’s level is a sufficient statistic for her entirehierarchy of beliefs, and that all players

believe all others to have strictly lower levels than themselves.10

10For example, [24], [23], [26], and [27] assume that all players with a level ofk > 0 believe all other players’
level to bek−1 with probability one. [18], on the other hand, assume that all players with a level ofk > 0 believe
the realized levels of opponents to follow a truncated Poisson distribution over{0, 1, . . . , k − 1}. Whatever the
assumption on first-order beliefs, all higher-order beliefs are then assumed to be consistent with this assumption
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In our experiment, subjects play several two-person games.Let γ = ({i, j}, S, u) represent

a typical two-person game with playersi andj, strategy setsS = Si × Sj, and payoffsui :

S → R anduj : S → R. The set of all such two-player games isΓ. When players use mixed

strategiesσi ∈ ∆(Si) we abuse notation slightly and letui(σi, σj) anduj(σi, σj) represent

their expected payoffs. In some cases players receive signals about the type of their opponent;

we denote the signali receives byτi ∈ T , and letτ 0 ∈ T represent the uninformative “null”

signal.

Playeri’s type is given byθi = (ci, ki) whereci : Γ → N0 := {0, 1, 2, . . .} identifiesi’s

capacity for each gameγ ∈ Γ, andki : Γ × T → N0 identifiesi’s level for each gameγ ∈ Γ

and signalτi ∈ T . The capacity bounds the level, soki(γ, τi) ≤ ci(γ) for all i, γ, andτi.11

Let Θ be the space of all possible types. Note thatci does not vary inτi since the capacity

represents a player’s underlying ability to “solve” a particular game, regardless of the type of

her opponent. The realized levelki may vary inτi, however, because the realized level stems

directly fromi’s belief about her opponent’s strategy.

Beliefs are fixed by the model. Each playeri’s pre-defined first-order beliefs are given by

a mappingν : N0 → ∆(N0) such thatν(ki)({0, 1, . . . , ki − 1}) = 1 for all ki ∈ N0.12 For

example, in [18],λ > 0 is a free parameter andν(k)(l) = (λl/l!)/
∑k−1

κ=0(λ
κ/κ!) if l < k and

ν(k)(l) = 0 otherwise. The functionν is common knowledge and therefore is not included

in the description ofθi. Thus, theki component of a player’s type completely identifies her

beliefs sinceν is a function only ofki; this is a common implicit assumption in the literature.

Behavior in a Level-k model is defined inductively. The Level-0 strategy for each player i

in γ is given exogenously asσ0
i ∈ ∆(Si). If ki(γ, τi) = 0 then playeri playsσ0

i . For each

levelk > 0 the Level-k strategyσk
i ∈ ∆(Si) for playeri with ki(γ, τi) = k is a best response

to beliefsν(k), given that each levelκ < k of playerj playsσκ
j .13 Formally, for eachk > 0,

(i believesj believes his opponent’s levels follow this distribution,et cetera). Strzalecki [64] builds a similar—
though more general—type-space model that encompasses allLevel-k models. It does not explicitly allow for
levels to vary by game or for agents to update their beliefs upon observing signals, though both features could
easily be incorporated.
11Technically, the inclusion of capacities is extraneous. A player’s type could simply be defined aski : Γ× T →
N0 and then a capacity would then be derived by settingci(γ) = supT ki(γ, τi) for eachγ. We include capacities
in the model to emphasize that agents’ upper bounds onki may vary inγ.
12The simple interpretation of this assumption is that each player believes they are more sophisticated than all
of their opponents. An alternative interpretation is that players are aware that they may be less sophisticated
than some of their opponents, but they have no model of how more sophisticated players choose strategies.
More sophisticated players are then treated as though they are Level-0 players. This second interpretation does
suggest thatν(ki)(0) should be positive for allki, which is inconsistent with the commonly-used assumption that
ν(ki)(ki − 1) = 1 for all ki.
13If there are multiple pure-strategy best responses thenσκ

i can be any distribution over those best responses, and
that distribution is assumed to be known by all higher levels.
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the strategyσk
i is such that for alls′i ∈ Si,

k−1
∑

κ=0

ui(σ
k
i , σ

κ
j ) ν(k)(κ) ≥

k−1
∑

κ=0

ui(s
′
i, σ

κ
j ) ν(k)(κ).

Finally, we define a Nash type, denoted byk = N , whose beliefs areν(N)(N) = 1. The

profileσN
i is then the best response to the other player’s Nash-type strategyσN

j .14

Whenσk
i is degenerate (the Level-k strategy is a unique pure strategy) we letski be the

strategy such thatσk
i (s

k
i ) = 1.

To see how this construction operates, fix a gameγ and signalτi. If player i’s type in this

situation is(ci, ki) = (0, 0) then she playsσ0
i . If i’s capacity is one then her type is either

(1, 0) or (1, 1). In the former case she playsσ0
i ; in the latter case her beliefs areν(1), which

hasν(1)(0) = 1, and so she playsσ1
i . If i’s type is(2, 2) then she has beliefsν(2), which puts

pre-defined probabilities on her opponent being Level-0 andLevel-1. In this case she plays

σ2
i . For any(ci, ki) player i’s beliefs areν(ki) and her best response to those beliefs isσki

i .

Note that beliefs depend only onki, so player types(4, 2), (3, 2), and(2, 2) all have the same

hierarchy of beliefs, for example.

Onceσ0
i andν are defined, the only testable prediction of this model is that in each game

and for each signal all players must select a strategy from the set{σ0
i , σ

1
i , σ

2
i , . . .}∪{σN

i }.15 In

many applications, the researcher assumes that each levelk playsσk
i with noise (usually with

a logistic distribution) and then assigns each subject to the level that maximizes the likelihood

of their data across all games played.

As specified, a player’s levelki(γ, τi) can be any arbitrary function ofγ andτi. If no struc-

ture is imposed on theki function then the model is incapable of cross-game or cross-signal

predictions; knowing that playeri plays Level-2 in one game doesn’t provide information

abouti’s level in another game. Our goal is to consider a set of reasonable cross-game or

cross-signal testable restrictions onki and explore which (if any) receive empirical support.

Understanding which restrictions onki apply will then lead to an understanding of the out-of-

sample predictions that can be made through this model. If norestrictions onki can be found

then no out-of-sample predictions can be made for an individual.

Examples of possible restrictions onki that one can test using experiments are:

(1) Constant: ki(γ, τi) = ki(γ
′, τ ′i) for all i, γ, γ′, τi, andτ ′i .

(2) Constant Across Games: ki(γ, τi) = ki(γ
′, τi) for all i, γ, γ′, andτi.

14As is standard, we assumeν(k)(N) = 0 for all k 6= N . If multiple Nash equilibria exist then multiple Nash
types could be defined, but all of our games have a unique Nash equilibrium.
15If σ0 is not restricted then there are no testable predictions; letting σ0 equal the empirical distribution of strate-
gies provides a perfect fit.
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(3) Constant Ordering: If ki(γ, τ) ≥ kj(γ, τ) for someγ andτ thenki(γ′, τ ′) ≥ kj(γ
′, τ ′)

for all γ′ andτ ′.

(4) Responsiveness to Signals: For everyγ andi there is someτ andτ ′ such thatki(γ, τ) >

ki(γ, τ
′).

(5) Consistent Ordering of Games: For anyτ , if ki(γ, τ) ≥ ki(γ
′, τ) for somei, γ and

γ′, thenkj(γ, τ) ≥ kj(γ
′, τ) for all j.

The first restriction represents a very strict interpretation of the Level-k model in which each

person’s level never varies, regardless of the difficulty ofthe game or the information received.

The second restriction weakens the first by allowing players’ beliefs to respond to information,

but to otherwise keep levels constant across games.

Instead of forcing absolute levels to be constant, the thirdrestriction requires only that play-

ers’ relative levels be fixed. Thus, if Anne plays a (weakly) higher level than Bob in one game

when they have identical information, then Anne should playa (weakly) higher level than Bob

in all games where they have identical information. Certainly this would be violated with dif-

fering degrees of game-specific experience; recall, however, that the Level-k model applies

only to the first-time play of novel games.16

The fourth restriction requires that there exist a pair of signals in each game over which a

player’s level will differ. Thus, a minimal amount of responsiveness to information, for at least

some players, is assumed.

The last restriction listed implies that the observed levels can be used to order the games in

Γ. If, at some fixed signal, all players play a lower level inγ′ than inγ then it can be inferred

that γ′ is a more difficult or complex game. This enables future out-of-sample predictions,

since a player who subsequently plays a given level inγ can be expected to play a lower level

in γ′.

It is certainly easy to imagine plausible functionski that violate each of these restrictions, or

that violate any other restriction we may consider. But eachrestriction that is violated means

the loss of a testable implication for the model. If the most empirically accurate version of the

Level-k model requireski functions that satisfy no cross-game or cross-signal restrictions, then

the model cannot be used to make out-of-sample predictions about individual behavior. Thus,

the predictive power of the model hinges on the presence of some identifiable restrictions.

16Cross-game learning may still generate violations of this restriction; a chess master may play to a higher level
than a professional soccer player in checkers, but to a lowerlevel in an asymmetric matching pennies game. For
this reason the boundaries of applicability of the Level-k model are sometimes ambiguous.
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FIGURE 1. Undercutting game 1 (UG1).
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FIGURE 2. Undercutting game 2 (UG2).

4 THE GAMES

We study two families of games: a novel family of games that are useful for identifying player

types—which we call undercutting games (UG)—and the two-person guessing games (2PGG)

studied by Costa-Gomes and Crawford [23].

4.1 Undercutting Games

An undercutting game is a symmetric, two-player game parameterized by two positive integers

m andnwithm < n. Each playeri ∈ {1, 2} picks a positive integer,si ∈ {1, 2, . . . , m, . . . , n}.

Playeri wins $10 from playerj if either si = m < sj or si + 1 = sj ≤ m. Thus, if player

i expects her opponent to choosesj > m, then her best response is to choosesi = m; other-

wise her best response is to “undercut” her opponent by choosing si = sj − 1. If no player

undercuts the other then one of the following situations apply: If both choosesi = 1 (the
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FIGURE 3. Undercutting game 3 (UG3).
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FIGURE 4. Undercutting game 4 (UG4).

unique Nash equilibrium choice) then both earn a payoff of one. If both choosen then both

lose$11. If i chooses one andj choosesn theni loses$11 andj earns nothing. In all other

cases both players earn zero. The cases where a player loses$11 are designed to to rule out

any mixed-strategy Nash equilibria.

The payoff matrices of the undercutting games used in this experiment are shown in Figures

1–4. Consider UG1, shown in Figure 1. A levels-of-reasoningmodel that assumes uniformly

random play by Level-0 types will predict that Level-1 typesplay s1 = 4 as it maximizes the

sum of row payoffs, Level-2 types plays2 = 3, Level-3 types plays3 = 2, and all higher levels

play the equilibrium strategy ofsN = 1. This enables a unique identification of a player’s level

(up to Level-4) from a single observation of their strategy.

The game in Figure IV, UG4, departs from UG2 only in that threedominated actions have

been ’compressed’ into one (which is now itself also dominated by another dominated action).

Since dominated actions are never predicted for types aboveLevel-0, this modification should

have little impact on the distribution of types.
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This family of games was designed explicitly for testing theLevel-k model. Its undercutting

structure is intended to focus players’ attention on the strategies of their opponents, encour-

aging Level-k-type thinking. The strategy space is relatively small, unlike p-beauty contest

games, but the only strategy that confounds multiple levels(other than the Level-0 type, which

may randomize over many strategies) is the Nash equilibriumstrategy since all levels greater

thanm are predicted to play this action. There are no other Nash equilibria in pure or mixed

strategies. Moreover, variations in the assumed Level-0 strategy have no impact on the or-

dering of players’ inferred levels. For example, ifi plays3 andj plays2 then we infer that

kj = ki + 1, regardless of the Level-0 specification.

4.2 Two-Person Guessing Games

Two-person guessing games are asymmetric, two-player games parameterized by a lower

boundai ≥ 0, upper boundbi > ai, and targetpi > 0 for each player. Strategies are given by

si ∈ [ai, bi] and playeri is paid according to how far her choice is frompi timessj, denoted by

ei = |si − pisj|.

Each playeri’s payment is a quasiconcave function ofei that is maximized at zero. Specif-

ically, players receive15 − (11/200)ei dollars if ei ≤ 200, 5 − (1/200)ei dollars if ei ∈

(200, 1000], and zero ifei ≥ 1000. The unique best response is to setei = 0 by choosing

si = pisj. If pisj lands outside ofi’s strategy space then the nearest endpoint of the strategy

space is the best response. In a levels-of-reasoning model,Level-0 may be assumed to ran-

domize uniformly over[ai, bi] or to play the midpoint of[ai, bi] with certainty. In either case

Level-1 types will plays1i = pi(aj + bj)/2; if this is not attainable then the Level-1 player will

select the nearest endpoint of her interval. A Level-2 type will play s2i = pis
1
j (or the nearest

endpoint), and so on. This iterative reasoning converges toa Nash equilibrium with one player

playing on the boundary of her interval and the other best-responding to that boundary strategy

[see 23].

5 EXPERIMENTAL DESIGN

In total, 116 undergraduate students from Ohio State University participated as subjects in

these experiments. After reading through the experiment instructions, each subject completed

five tasks, intended to measure general cognitive ability and strategic reasoning:

(1) an IQ test,

(2) the Eye Gaze test for adult autism,

(3) the Wechsler digit span working memory test,
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� jealous � panicked � arrogant � hateful

� aghast � fantasizing � impatient � alarmed

FIGURE 5. Sample questions from the Eye Gaze test.

(4) the Cognitive Reflection Test (CRT), and

(5) the one-player Takeover game.

Each of these quizzes represents a previously-used measureof general intelligence or strate-

gic sophistication. The IQ test consists of ten questions taken from the Mensa society’s “work-

out” exam.17 Similar tests of cognitive ability have been shown to correlate with higher levels

of reasoning inp-beauty contest games [15].

The Eye Gaze test [7] asks subjects to identify the emotions being expressed by a pair of

eyes in a photograph. See Figure 5 for sample problems. Poor performance on this task is di-

agnostic of high-functioning adult autism or Asperger’s Syndrome [7] and strong performance

is correlated with the ability to determine whether or not price movements in a market are

affected by a trader with inside information [13].

The Wechsler Digit Span memory test tests subjects’ abilities to recall strings of digits of

increasing length. It is one component of the Wechsler AdultIntelligence Scale [66] to assess

overall intelligence. [30] had 67 subjects take this short-term memory test and then play three

games against a computerized opponent that always selectedthe equilibrium strategy. The

three games all required iterated reasoning to solve the equilibrium best response. They found

17See http://www.mensa.org/workout2.php
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a positive and significant correlation between subjects’ memory test score and the frequency

with which they selected the best response.18

The CRT contains three questions for which the ininitial intuitive response is often wrong.

Performance on the test is correlated with measured time preferences, risk taking in gains, risk

aversion in losses, and other IQ measures [34]. This measurealso correlates with a tendency

to play default strategies in public goods games [1].

Finally, the one-player Takeover game is a single-player adverse selection problem in which

the subject is asked to make an offer to buy a company knowing that the seller will only sell

if the company’s value is less than the offer. Given the parameters of the problem, all positive

offers are unprofitable in expectation, yet many subjects fall victim to the “winner’s curse” by

submitting positive offers [59], even after receiving feedback and gaining experience [4].

We normalized each of the quiz scores to a scale of ten possible points. For scoring purposes

during the experiment, we combined the CRT and Takeover gameinto one four-question, ten-

point quiz, with answers coded using a binary (correct or incorrect) classification. For the

Takeover game, subjects received a positive score if and only if their bid was exactly zero—

the unique profit-maximizing bid.19 The sum of the four quiz scores was calculated for each

player. Players were given no feedback about any player’s absolute or relative performance on

the quizzes until the end of the experiment, at which point they learned only their own total

quiz score.

After completing the quizzes, the subjects played ten gamesagainst varying opponents. The

first four games are undercutting games and the last six are guessing games.20 The parameters

of each game are given in Table 1 and Figures 1–4. The final three guessing games are identical

to the first three, with the players’ roles reversed. As in [23], this allows players to play both

roles and also allows subjects’ decisions in GG5, for example, to be matched with another

subject’s player-1 decision in GG8 to determine payoffs.

In each game subjects were asked to choose a strategy againsta random opponent, against

the opponent (other than themselves) with the highest totalscore on all of the quizzes, and

18[18] use this observation as a plausible justification for their assumption that the the relative frequencies of two
consecutive levelsk andk−1 (f(k)/f(k−1)) is declining ink, which then motivates their restriction to Poisson
distributions of levels.
19In the data analysis below we disaggregate the CRT and Takeover game quizzes and treat them separately.
The rationale for combining them in the experiment was to prevent a single question (the Takeover quiz) from
having an excessively disproportionate weight. Also, in our analysis we use a score for the Takeover game that
is linearly decreasing in a subject’s bid. Specifically, a subject who submitted a bid ofbi was scored as earning
10(1− bi/maxj bj) points in our analysis.
20As we discuss later, in Result 4, we conducted a second iteration of the experiment in which we reversed the
order of the two families of games. The results are very similar, indicating that the order of games did not affect
the results.
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Game Player’s Opponent’s
ID Game Type Limits & Target Limits & Target

UG1 Undercutting Game See Figure 1
UG2 Undercutting Game See Figure 2
UG3 Undercutting Game See Figure 3
UG4 Undercutting Game See Figure 4
GG5 Guessing Game ([215, 815], 1.4) ([0, 650], 0.9)
GG6 Guessing Game ([100, 500], 0.7) ([300, 900], 1.3)
GG7 Guessing Game ([100, 500], 0.5) ([100, 900], 1.3)
GG8 Guessing Game ([0, 650], 0.9) ([215, 815], 1.4)
GG9 Guessing Game ([300, 900], 1.3) ([100, 500], 0.7)
GG10 Guessing Game ([100, 900], 1.3) ([100, 500], 0.5)

TABLE 1. The ten games used in the experiment.

against the opponent (other than themselves) with the lowest score on the quizzes. All choices

were made without feedback. After making these three choices in all ten games, players

learned that they could “loop back” through the games to revise their choices if desired. This

could be done up to four times, for a total of five iterations through the ten games, all without

feedback.21

Once subjects finished all five iterations—or declined the opportunity to loop back—their

play was recorded, four of their choices were randomly selected (two from the undercutting

games and two from the guessing games), and they were matchedwith another player and paid

for their decisions. Subjects earning less than$6 (the standard show-up fee) were paid$6 for

their time. Subjects earned an average of$24.85 overall.

6 DATA ANALYSIS PROCEDURES

Each subject played ten games, each against three differentopponents, for a total of thirty

game-play observations per subject. We employed three signals (T = {τLO, τ 0, τHI}) indi-

cating, respectively, whether the opponent had the lowest quiz score, was randomly selected,

or had the highest quiz score. Following CGC06 (and others),we focus on the case where

ν(k)(k−1) = 1 for all k > 0 andσ0
i is uniform overSi. We chose games so that the estimated

levels (or, at least, players’ relative rankings of levels)are fairly robust to these assumptions.

Furthermore, the guessing-game parameters were chosen from among the CGC06 parameters

to maximize the distance between any two levels’ predicted strategy choices; this helps to

minimize the error in subjects’ level estimates.

21Most subjects do not use the “loop back” option. In the undercutting games 15.5% submit a final choice
different from their initial choice. In the guessing games this drops to 7.2%.
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For each subjecti, signalτ , and set of gamesG ⊆ Γ we can estimate a level,ki(G, τ), using

a simple maximum-likelihood approach that follows closelyCGC06. Specifically, for each

playeri and levelk we define a likelihood functionL(siγτ |k, λi, εi) for each levelk based on

the assumption that playeri plays the Level-k strategyskiγ with probabilityεi, and otherwise

maximizes a random expected utility with beliefsν(k), extreme-value-distributed noise, and

sensitivity parameterλi. We allow both parameters (εi andλi) to differ across players.

Formally, lets̄iγτ be the value of the observedsiγτ rounded to the nearest integer, and let

Ii(siγτ , k) be an indicator function that equals one ifs̄iγτ = skiγ , whereski denotes the Level-k

strategy for playeri in gameγ.22 Ii(siγτ , k) equals zero otherwise. Thus,Ii(siγ,τ , k) = 1

indicates thati played exactly the Level-k strategy, allowing for rounding. The likelihood

function fork 6= 0 is then given by

L(siγτ |k, λi, εi) = εi Ii(siγτ , k)+(1−εi)(1−Ii(siγτ , k))

(

exp
(

λi

∑

κ ui(siγτ , σ
κ
j ) ν(k)(κ)

)

∫

Si

exp
(

λi

∑

κ ui(zi, σ
κ
j ) ν(k)(κ)

)

dzi

)

.

Fork = 0 we setL(siγτ |0, λi, εi) equal toσ0
iγ , which is assumed to be the uniform distribution

overSi.

For any set of gamesG ⊆ Γ, denotei’s strategies given signalτ by siGτ = (siγ,τ )γ∈G. For

each levelk ∈ N0 ∪ {N}, the maximum likelihood of observingsiGτ is given by

L∗(siGτ |k) = max
λi>0,εi∈[0,1]

∏

γ∈G

L(siγτ |k, λi, εi).

In practice, we search over a non-uniform grid of 122 possible values forλi and a uniform grid

of 19 possible values forεi for each playeri. The maximum-likelihood level for playeri is

then given by

ki(G, τ) = arg max
k∈N0∪{N}

L∗(siGτ |k).

Our games and our model of noisy play are such that the maximum-likelihood level is generi-

cally unique. Given that levels greater than three are very rarely observed in past data, we only

calculate likelihood values fork ∈ {0, 1, 2, 3, N}.

We consider two types of analyses. First, we estimate for each subject one level for all under-

cutting games (G = {1, . . . , 4}) and another level for all guessing games (G = {5, . . . , 10}).

This enables us to compare stability of levels across families of games. This pooling of several

22All strategies are integers in the undercutting games, in which casēsiγτ = siγτ .
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Game L0 L1 L2 L3 Nash
UG1 7.76% 32.76% 19.83% 10.34% 29.31%
UG2 7.76% 32.76% 22.41% 7.76% 29.31%
UG3 5.17% 27.59% 18.10% 5.17% 43.97%
UG4 6.03% 31.03% 29.31% 5.17% 28.45%

UGs Pooled 4.31% 28.45% 26.72% 5.17% 35.34%
GG5 6.03% 70.69% 9.48% 12.07% 1.72%
GG6 0.86% 65.52% 17.24% 11.21% 5.17%
GG7 43.10% 37.07% 13.79% 1.72% 4.31%
GG8 6.90% 39.66% 24.14% 21.55% 7.76%
GG9 5.17% 42.24% 23.28% 4.31% 25.00%

GG10 9.48% 38.79% 24.14% 19.83% 7.76%
GGs Pooled 1.72% 50.00% 10.34% 10.34% 27.59%

TABLE 2. Frequency of levels in each game, and when pooling each family of games.

games per estimate also matches the standard procedure for estimating levels in the litera-

ture.23 Second, we estimate for each subject a level inevery game (G = {γ}). This enables us

to compare stability of levels within each family of games.24 In the appendix, we also explore

intermediate cases where two or three games per estimate areused.

7 RESULTS

Result 1: Aggregate Distributions of Levels

The distributions of levels, both for each game family and for each individual game, are shown

in Table 2. The aggregate game family distributions represent fairly typical distributions of

estimated levels: Level-0 is observed fairly infrequently, Level-1 is the modal type, and Level-

2 and Level-3 are observed less frequently. The distribution for guessing games is similar to

the distribution found by CGC06. We do find that Nash play in our undercutting games is

noticeably higher than what is found in many other games.

23As a robustness check, we apply our procedure to CGC06’s data, pooling all games to generate a single esti-
mated level per subject (as in their paper), and find exact subject-by-subject agreement between our estimated
levels and theirs.
24In this caseki(G, τ) represents an assignment rule rather than an econometric estimate since only one ob-
servation is used for each “estimate” and no standard errorscan be calculated. For the case of|G| = 1, we
alternatively estimated levels in the guessing games by eliminatingε andIi(siγτ , k) and settingλ = 1.33 (the
average estimated value ofλ in CGC06 using only subjects’ guesses). We then assigned ak to each observation
using maximum likelihood as described above. Under this newprocedure, 85.5% of observations receive the
same level assignment as in our original procedure. Roughlyhalf of the observations whose level changes be-
came Level-0 observations, implying their likelihood value simply falls below the uniform distribution likelihood.
None of the key results of the paper change under these alternative estimates.
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Within the family of undercutting games, the distribution of types is generally stable across

games. In all four games, there is a high proportion of L1, L2 and Nash behavior, and relatively

little behavior corresponding to L0 and L3.25

Within the guessing games, however, distributions of levels vary substantially from one

game to the next. For example, the fraction of Level-0 play jumps from 0.86% in guessing

game 6 (GG6) to 43.10% in GG7. The fraction of Level-1 play nearly doubles from GG7

to GG5. Nash play ranges from 1.72% in GG5 to 25% in GG9. This suggests that either the

Level-k model lacks descriptive power in these games, or else players’ levels shift substantially

between games.

We also find that 14.22% of all observations in the guessing games correspond exactly to

one of the four (non-zero) levels’ predictions, after rounding. This is clearly greater than the

0.7% frequency which would occur if actions were random witha uniform distribution. The

most frequently-observed exact hit is the Level-1 action, in which players best respond to the

midpoint of their opponent’s interval, which accounts for roughly one-half of all the exact

hits.26

In an online appendix, we compare a graphical illustration of the likelihood functions for

each level with a histogram of actions. This analysis shows that there does not appear to be

a substantial and regular concordance between actions and the predicted behavior of different

types across games. That is, the spikes in the likelihood functions do not consistently coincide

with spikes in the data for any type across the different games.27

25Level-0 is necessarily under-counted here, since a proportion of all observed actions should be coming from
Level-0 players. Although this cannot be corrected at an individual level, the aggregate frequency can be adjusted.
The result simply shifts mass uniformly from the higher levels down to L0.
26By contrast, 48.9% of the observations in CGC06’s data exactly correspond to one of the four levels’ predic-
tions. Cross-game variation in the distribution of levels remains high, however. See the online appendix for
details. Again, we conjecture that these differences are due to differences in experimental instructions and their
use of a best-response understanding test.
27This exercise also reveals purely mechanical reasons why subjects are classified more frequently as the Level-1
and Nash types. First, Level-1 beliefs are disperse, which means its likelihood function is quite flat. At the
sameλi, all higher levels have ‘spike-shaped’ likelihoods that exceed the Level-1 likelihood only in a small
neighborhood around the predicted action. With uniformly-distributed random data, for example, Level-1 would
be estimated to be the modal type for this reason. Second, theNash type’s predicted play is often at a boundary,
so that logistic-response trembles can only occur in one direction. This truncation doubles the likelihood function
on the interior of the strategy space, giving it a relative advantage over types with an interior prediction. We do
find that estimated values ofλi differ significantly across levels, but this appears to happen because those with
noisier decisions are more likely to be classified as Level-1due to its flatter likelihood function. In fact, the same
correlation betweenλi andk is found when estimated on randomly-generated strategy data. This suggests that
these two parameters do not capture independent traits—a Level-2 subject who becomes noisier is likely to be
re-classified as Level-1—and that the correlation between them should not be interpreted as an insightful result.
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From↓ To → L0 L1 L2 L3 Nash
L0 0.0% 60.0% 0.0% 20.0% 20.0%
L1 6.1% 42.4% 6.1% 9.1% 36.4%
L2 0.0% 51.6% 16.1% 9.7% 22.6%
L3 0.0% 33.3% 33.3% 0.0% 33.3%

Nash 0.0% 56.1% 7.3% 12.2% 24.4%
Overall 1.7% 50.0% 10.3% 10.3% 27.6%

TABLE 3. Markov transitions from the pooled undercutting games tothe
pooled guessing games.

Result 2: Persistence of Absolute Levels

To examine the hypothesis that levels are constant across games (ki(γ, τ 0) = ki(γ
′, τ 0) for

all γ andγ′), we generate a Markov transition matrix of levels between the two families of

games. Table 3 reports the frequency with which a subject moves from each level in the pooled

undercutting games to each level in the pooled guessing games. From the table, it is apparent

that most of the transitions are into Level-1 and Nash types in the guessing game, and that

these transitions do not show great correlation with a subject’s type in the undercutting games.

The distributions in separate rows of Table 3 are generally similar to the overall distribution in

the final row, which would occur if types were independent across families of games.

As a measure of the stability of levels across games, consider the prediction accuracy of the

Level-k model assumingki is constant. This is simply the probability that a player plays the

same level in two different games. We refer to this probability as theconstant-level prediction

accuracy, or CLPA. Mathematically, the CLPA equals the main diagonal of the Markov matrix

weighted by the overall probability of each level. If types are constant then the main diagonal

entries are all one, as is the CLPA. If types are randomly drawn then each row of the Markov

matrix equals the overall distribution, and so the CLPA is simply the sum of squared overall

probabilities in any row. In Table 3 the overall frequenciesof the levels would imply a 29.4%

CLPA under the null hypothesis of independent, randomly-drawn levels. The actual CLPA is

27.3%, suggesting a slightnegative correlation in types across games.

To test whether levels are uncorrelated, we generate 10,000samples of 116 randomly-drawn

levels, with each sample drawn independently using the overall distribution from Table 3. For

each sample we calculate the CLPA, generating an approximate distribution of CLPA values

under the null hypothesis. A comparison of the actual CLPA with this distribution fails to

reject the null that levels are randomly drawn across game families (p-value 0.68).28

28The cross-game (or cross-family) correlations can be also be tested statistically for any pair of games by cal-
culating the Cramér correlation coefficient for categorical data [see 61, p.225] and comparing it against the null
hypothesis of independently-drawn levels, which would give an expected Cramér correlation of zero. When
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From↓ To→ L0 L1 L2 L3 Nash
L0 43.0% 22.6% 7.5% 9.7% 17.2%
L1 4.9% 59.7% 14.6% 4.4% 16.4%
L2 2.2% 20.2% 57.1% 9.0% 11.5%
L3 9.1% 19.2% 28.3% 18.2% 25.3%

Nash 3.5% 15.6% 7.9% 5.5%67.5%
Overall 6.7% 31.0% 22.4% 7.1% 32.8%

TABLE 4. Markov transition between single-game levels within thefour un-
dercutting games.

From↓ To→ L0 L1 L2 L3 Nash
L0 8.7% 48.2% 18.1% 12.3% 12.8%
L1 11.7% 53.1% 16.8% 11.2% 7.1%
L2 11.5% 44.2% 27.4% 10.0% 6.9%
L3 12.4% 46.6% 15.9% 13.2% 12.0%

Nash 17.7% 40.3% 15.0% 16.3% 10.7%
Overall 11.9% 49.0% 18.7% 11.8% 8.6%

TABLE 5. Markov transition between single-game levels within thesix guess-
ing games.

Tables 4 and 5 also show these transition matrices for the single-game levels in the un-

dercutting and guessing games, respectively. Clearly, players’ levels are more stable in the

undercutting games than in the guessing games. In the undercutting games, over half of all

Level-1, Level-2 and Nash types keep the same type across games. In the undercutting games,

the overall frequencies of the levels (given in the last row of Table 4) would imply a CLPA

of 26.3% if types were randomly drawn. In fact we observe a CLPA of 57.6%, indicating

substantially stronger predictive power than if types werepurely random, though still far from

perfectly accurate. In a Monte Carlo simulation of 10,000 samples of independently-drawn

levels, none have a CLPA this large. Thus, we reject the null hypothesis of random levels with

ap-value of less than0.0001.

The results are quite different in the guessing games, whereLevel-1 acts as an absorb-

ing state. Little difference is seen between the rows of Table 5, suggesting no correlation

across games. The realized prediction accuracy (CLPA) is 34.7%. The expected CLPA under

randomly-drawn levels is 31.1%. Our Monte Carlo simulationof randomly-generated levels

does reject the null hypothesis with ap-value of 0.0030, though the absolute magnitude of

comparing between the two families of games using pooled-game estimates (Table 3), the null hypothesis of
independently-drawn types again cannot be rejected, with aCramér correlation of only 0.177 and ap-value of
0.562.
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the difference (34.7% versus 31.1%) implies little real gain in predictive accuracy over the

assumption of random levels.29

We conclude that estimated levels can reasonably be modeledas constant within certain fam-

ilies of similar games, but not within other families. This suggests that Level-k thinking may

be applied robustly in some settings, but not in others. Little guidance is currently available as

to which families of games will trigger Level-k reasoning and which will not. In short, using

a player’s level in one game to predict her action in another may be a futile exercise without

further information about the factors that determine whether Level-k reasoning is triggered.

Result 3: Persistence of Relative Levels

To examine the frequency with which the ordinal ranking of players’ levels changes between

the two families of games, we consider each possible pair of two players and measure the

frequency with which the strictly higher-level player in one game becomes the strictly lower-

level player in another (ki(γ, τ) > kj(γ, τ) but ki(γ′, τ) < kj(γ
′, τ)). We refer to this as the

“switch frequency.” This is compared against the “non-switch frequency,” or the frequency

with which the same player has a strictly higher level in bothgames (ki(γ, τ) > kj(γ, τ) and

ki(γ
′, τ) > kj(γ

′, τ)). Pairs whose levels are the same in at least one game are excluded, so the

switch and non-switch frequencies often do not sum to one. The “switch ratio” is the switch

frequency divided by the non-switch frequency; this has an expected value of one under the

null hypothesis of independently-drawn levels. Under the Level-k model with stable relative

levels, the ratio will equal zero.30

The switch frequency, non-switch frequency, and switch ratio when comparing the pooled

undercutting games to the pooled guessing games are reported in Table 6. The table also

reports these statistics for the four undercutting games, and the six guessing games. The last

column shows the predicted values under the null hypothesisof independently-drawn levels.

For the comparison between game families, switching actually occurs more frequently than

non-switching. In other words, if Anne exhibits a higher level than Bob in the undercutting

games, then Bob is more likely to have a higher level in the guessing games. Our 10,000-

sample Monte Carlo simulation actually rejects the null hypothesis in favor ofnegatively cor-

related levels, with ap-value of 0.0230. This is consistent with our earlier observation that

absolute levels are negatively correlated across familiesof games.

29Our analysis of the CGC06 data (in the online appendix) reveals a CLPA of 41.9%, which is between that of
our guessing games and our undercutting games.
30In practice, the switch ratio would not exactly equal zero since some Level-0 players would be incorrectly
identified as higher-level players. Our simulations suggest the actual switch ratio would be around 0.09 using our
overall level distributions.
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Data Null Hyp.
Pooled UGs vs. Pooled GGs

Switch Frequency: 25.0% 24.9%
Non-Switch Frequency: 22.7% 24.9%

Switch Ratio: 1.10 1.00
Undercutting Games

Switch Frequency: 13.2% 27.1%
Non-Switch Frequency: 45.3% 27.1%

Switch Ratio: 0.29 1.00
Guessing Games

Switch Frequency: 19.9% 23.8%
Non-Switch Frequency: 22.2% 23.8%

Switch Ratio: 0.89 1.00
TABLE 6. Observed frequency with which two players’ levels strictly switch
their ordering, compared to the expected frequency under independent,
randomly-drawn levels.

Since absolute levels within the undercutting games are fairly stable, we expect similar

persistence in subjects’ relative levels. This is the case:Non-switching pairs are observed

more than three times more frequently than switching pairs,giving a switch ratio of 0.29.

None of the 10,000 simulated samples have a switch ratio thislow, indicating a clear rejection

of the null hypothesis at the 0.0001 level.

In the guessing games, however, switching occurs nearly as frequently as non-switching,

with a switch ratio of 0.89. The Monte Carlo simulation yields a marginalp-value of exactly

0.05. Thus, while there is some stability of relative levelswithin the guessing games, it is much

weaker than the stability we observe in undercutting games,both in magnitude and statistical

significance.

Overall, we conclude that little to no extra predictive power is gained by considering relative

levels instead of absolute levels. Assumingki is constant for each subject performs roughly as

well as assuming the ordering ofki across subjects is constant.

Result 4: Robustness to Order of Play

In our experiment, every subject played the games in the sameorder, with the undercutting

games (UG1–UG4) first and the guessing games (GG5–GG10) second. We find conformance

with the Level-k model in the first set of games, but not in the second. One explanation for this

result is that subjects become fatigued or lose attention through the course of the experiment,

leading to more random play in later games. To test this hypothesis, we ran two new sessions
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in which the order of the games was completely reversed. Twenty-eight Ohio State subjects

participated in two sessions of fourteen subjects each, using slightly modified versions of our

original software and instrucitons.31 Participants took the quizzes, played GG10 through GG5,

and then played UG4 through UG1.

Recall that in our original data, the CLPA within the family of undercutting games is 57.6%,

which is significantly greater than the 26.3% expected underrandomly-drawn levels. In our

new experiment, where the undercutting games are played second, the CLPA rises to 62.5%,

indicating a slightly stronger conformance with the Level-k model. Again we reject the null

hypothesis (p < 0.0001). The switch ratio, however, rises from 0.29 in the originaldata to 0.37

in the new data, indicating slightly weaker conformance with the Level-k model. But again we

reject the null hypothesis of random levels withp < 0.0001. So the overall conclusion remains

the same: across-game behavior in the undercutting games isfairly consistent with the Level-

k model, and certainly far from behavior expected under the hypothesis of randomly-drawn

levels, even when these games are played second.

For the guessing games, the CLPA shifts from 34.7% in our original data to 38.3% when

these games appear first. This suggests slightly stronger conformance with the Level-k model.

Again we reject the null (p = 0.0070), but note that the predictive accuracy is only 6.4 per-

centage points higher than under randomly-generated levels. The switch ratio, however, rises

from 0.89 in the original data to 0.93 in the reversed treatment, indicating less conformance

with the Level-k model. Again we cannot reject the null hypothesis (p = 0.281).

In summary, we do not find that overall conformance with the Level-k model is signifi-

cantly improved in the guessing games when they appear first,or worsened in the undercutting

games when they appear second.32 Thus, we reject the hypothesis that order effects explain

our results.

31To determine how many subjects were needed, we ran a bootstrapped power calculation for the Monte Carlo
test of switch ratios. Specifically, for various values ofn̂ < 116, we created 10,000 simulated data sets by
drawingn̂ subjects (with replacement) from our original data. Then wegenerated 10,000 samples ofn̂ simulated
subjects with randomly-chosen levels. The power of the Monte Carlo test at̂n is the fraction of “real” data sets
whose switch ratio is less than 95% of the “random” data sets.The usual minimum power requirement of 80% is
achieved at̂n = 9. To be conservative, we aimed to recruit at least 20 subjects, and actually had 28 participate.
Our test power is over 99%.
32Game-by-game level distributions look similar to the original data, though the reversed data exhibit slightly
more Level-1 and Level-2 play and less Level-3 and Nash play.The distributions are fairly stable in the undercut-
ting games and highly variable across guessing games. The between-family CLPA rises to 41.0% in the reversed
treatment, but we still cannot reject the null of random levels (p = 0.112). The between-family switch ratio drops
noticeably from 1.10 to 0.76, but again we cannot reject the hypothesis of random levels (p = 0.308).



The Persistence of Strategic Sophistication 25

Const. IQ EyeGaze Memory CRT Takeover
Coefficient 39.179 0.620 0.250 -0.275 0.679 -0.229

p-value (<0.001) (0.204) (0.318) (0.215)(0.002) (0.261)
TABLE 7. Regression of expected earnings on the five quiz scores.

Result 5: Using Quizzes to Predict Levels

We next consider whether the five quizzes we administered as potential independent measures

of strategic sophistication—the IQ quiz, the Eye Gaze quiz,a memory quiz, the Cognitive

Reflection Test (CRT), and a one-player Takeover Game—predict behavior in the games. Be-

cause levels in the guessing games are very unstable, we do not expect them to be predictable

by quiz scores. But levels in the undercutting game are stable, so we are particularly interested

in whether these levels can be predicted using the quizzes.

First we examine correlations between scores on the variousquizzes. These are surprisingly

weak. IQ, memory, and CRT scores all appear to be positively correlated, though their es-

timated Spearman rank correlation coefficients achieve only marginal significance. No other

correlations are statistically significant. One might conjecture that our subjects did not exert

sufficient effort on the quizzes, leading to noisier scores,but absolute performance seems in

line with previous studies for all quizzes except the Takeover Game.33 Thus, we do not believe

the lack of correlation is caused by unusually poor performance or lack of effort. Instead, we

believe these quizzes measure relatively orthogonal traits.

Next we ask whether quiz scores predict overall earnings. Toreduce randomness in the

earnings measure, we calculate what each subject’s expected earnings would be in each game

if they played against the empirical distribution of actions of all other subjects. The correlation

between subjects’ total expected earnings and the sum of their five quiz scores is positive, but

not statistically significant (Spearman correlation of 0.172 with p-value 0.064). Regressing

total expected earnings on each quiz (Table 7) reveals that only the Cognitive Reflection Test

(CRT) score is significantly correlated with expected earnings.

Intuitively, players using higher levels should be more sophisticated. But they do not earn

more money. Indeed, Level-2 is the most profitable type, since most subjects are estimated to

33In the Eye Gaze test, [7] report that the average score in the general population is 81%. Our subjects scored
80% on average. In the Wechsler digit span quiz, the average number of digits correctly recalled before the first
failure is 5.63. In clinical applications the test stops after two failures; the average score among normal adults is
between 5 and 7 [21, p.416], consistent with our results. In the CRT, the percentage of players scoring(0, 1, 2, 3)
(respectively) is(36%, 28%, 22%, 14%), which is very close to the overall average of(33%, 28%, 23%, 17%)
reported in Frederick’s (2005) meta-study. In the TakeoverGame, our subjects performed worse than in past
studies: the mean bid was 94.3 for our subjects, while most studies report mean bids around 50 [39, e.g.]. We do
not have comparable data for our Mensa IQ test scores.
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Eye Gaze Score vs L-0 vs L-1 vs L-2 vs L-3 vs N
Level-0 −− -0.311 -0.821 -0.865 -0.643

(n=5) (0.223) (0.006) (0.048) (0.020)
Level-1 0.311 −− -0.510 -0.553 -0.332
(n=33) (0.223) (0.011) (0.143) (0.048)

Level-2 0.821 0.510 −− -0.044 0.178
(n=31) (0.006) (0.011) (0.909) (0.361)

Level-3 0.865 0.553 0.044 −− 0.222
(n=6) (0.048) (0.143) (0.909) (0.554)
Nash 0.643 0.332 -0.178 -0.222 −−

(n=41) (0.020) (0.048) (0.361) (0.554)
TABLE 8. Multinomial logit regression coefficient estimates of Eye Gaze quiz
scores on pooled undercutting game levels. Each column represents a regres-
sion with a different omitted category.

be Level-1 types. When looking at correlations between quizscores and estimated levels, we

therefore do not restrict ourselves to a linear relationship, as Level-2 types may actually score

the highest on the quizzes.

We focus on predicting levels estimated from the pooled families of games. For each type

of quiz, we first perform a Kruskal-Wallis test of the null hypothesis that all five levels’ quiz

scores are drawn from the same distribution. If this null hypothesis is rejected for some type

of quiz, then that quiz is diagnostic of at least one of the fiveestimated levels. In that case, we

perform a mutlinomial logistic regression of levels on thatparticular quiz score to see which

levels have significantly different quiz scores. Since multinomial logistic regressions require

an omitted level against which all others are compared, one single regression is not useful in

analyzing all possible comparisons. We therefore report the coefficient estimates from all five

possible regressions, where each regression omits a different level.34

Figure 6 shows a box plot of the distribution of each quiz score for each of the five estimated

levels in the pooled undercutting games. Thep-values of the Kruskal-Wallis tests for each quiz

type appear in parentheses at the top of the graph. We find significant differences across levels

only for the Eye Gaze quiz, where Levels 0 and 1 appear to perform worse. The multinomial

logistic regression results (Table 8) confirm that Level-0 Eye Gaze scores are significantly

lower than those of Levels 2, 3, and Nash, and that Level-1 scores are significantly lower than

Level-2 or Nash scores.

34These five regressions are not meant to be treated as independent tests; rather, reporting them all provides a
better view of what is essentially one regression. Using multinomial regression does control for the multiple
comparisons within the regression (i.e., within each column).
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FIGURE 6. Box plots of quiz scores for each estimated level in the pooled
undercutting games.p-values in parentheses are for Kruskal-Walis tests that all
levels generate the same distribution of quiz scores.

The Eye Gaze correlation with Level-0 and Level-1 play has intuitive appeal: Poor perfor-

mance on the Eye Gaze quiz is diagnostic of adult autism [6]. And autism is often characterized

the absence of “theory of mind” [5], or an inability to recognize that others behave in response

to conscious thought. This suggests that some of the Level-0and Level-1 types are less able to

consider others’ beliefs and strategies in games, leading them to play more low-level actions.35

Figure 7 reports the score distributions for levels estimated from the six pooled guessing

games. The Kruskal-Wallis tests indicate that the CRT has some power in predicting subjects’

levels. Specifically, the multinomial logistic regressions (Table 9) indicate that Level-2 can be

distinguished from the two higher levels, but not from the two lower levels.

35In p-beauty contest games, [22] find that higher-level players exhibit greater neural activation in the medial
prefrontal cortex (mPFC). Theory-of-mind experiments also find activation in this region (among others). These
results are roughly consistent with our Eye Gaze finding, andalso suggest more predictable heterogeneity in
p-beauty contest games.
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FIGURE 7. Box plots of quiz scores for each estimated level in the pooled
guessing games.p-values in parentheses are for Kruskal-Walis tests that all
levels generate the same distribution of quiz scores.

If levels in the guessing games are unstable, how can the CRT quiz be predictive of Level-

2? Because Level-2 is also a proxy for higher earnings. We already know that the CRT quiz

predicts earnings (Table 7), and those who earn more are morelikely to be classified as Level-2,

so the correlation between CRT quizzes and Level-2 appears spurious.

We perform similar analyses for game-by-game levels, and the results are consistent with

the pooled-game results. In the undercutting games, players that play the Level-1 action in at

least three of four games have lower Eye Gaze scores than Levels 0, 2, and Nash. They also

have higher Takeover Game scores than Levels 0 and Nash. In the guessing games none of the

quizzes are diagnostic of levels; the Kruskal-Wallisp-value for the CRT is 0.082 (with subjects

estimated to be Level-2 in a majority of games scoring the highest), and is greater than 0.15

for all other quizzes.
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CRT Score vs L-0 vs L-1 vs L-2 vs L-3 vs N
Level-0 −− -2.730 -2.883 -2.574 -2.607

(n=2) (0.824) (0.815) (0.834) (0.832)
Level-1 2.730 −− -0.153 0.156 0.123
(n=58) (0.824) (0.098) (0.133) (0.072)

Level-2 2.883 0.153 −− 0.310 0.277
(n=12) (0.815) (0.098) (0.018) (0.008)

Level-3 2.574 -0.156 -0.310 −− -0.033
(n=12) (0.834) (0.133) (0.018) (0.766)

Nash 2.607 -0.123 -0.277 0.033 −−
(n=32) (0.832) (0.072) (0.008) (0.766)

TABLE 9. Multinomial logit regression coefficient estimates of CRT quiz
scores on pooled guessing game levels. Each column represents a regression
with a different omitted category.
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FIGURE 8. Level distributions by opponent in the pooled undercutting games.

Result 6: Responsiveness to Signals About Opponents

In each game each subject is asked to choose a strategy against a randomly-selected opponent,

against the opponent with the highest total quiz score, and against the opponent with the low-

est total quiz score. Although quiz scores are not strongly related to levels of play—and the

relationship certainly is not linear—they are correlated with total earnings, so we hypothesize



30 GEORGANAS, HEALY AND WEBER

L0 L1 L2 L3 N
0%

20%

40%

60%

80%

100%

FIGURE 9. For eachk, the percentage of Level-k subjects in pooled undercut-
ting games who do not change levels in response to opponent types.

that subjects might treat quiz scores as proxies for strategic sophistication.36 Thus, how sub-

jects respond to their opponents’ characteristics may provide another testable prediction for

the Level-k model.

Figure 8 shows the histogram of estimated levels in the pooled undercutting games for each

of the three types of opponent. Subjects appear to increase their level of reasoning against

stronger opponents. In particular, Level-1 and Level-2 types become less frequent—and Nash

types more frequent—when playing against opponents with higher quiz scores.χ2 tests con-

firm that the distribution of levels is significantly different between the low-score and high-

score opponent (p-value of0.018), though not significantly different between the low-score

and random opponents (p-value of0.767) or between the random and high-score opponents

(p-value of0.185).

While the above differences in behavior by opponent are interesting, we are concerned with

whether any information can predict this adjustment. That is, can we predict which subjects

have a high enough “capacity” to be able to adjust their behavior in response to information

about opponents? We therefore ask whether quiz scores predict the magnitude of adjustment.

Using the pooled undercutting games, we measure for each subject the difference between their

estimated level against a high-scoring opponent and their estimated level against a low-scoring

opponent. This difference is then regressed on the five quiz scores. No regression coefficients

are found to be significantly different from zero. Thus, quizzes fail to measure the propensity

to adjust play against stronger opponents.

36Many subjects’ responses to a debriefing questionnaire confirm this hypothesis.
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FIGURE 10. Level distributions by opponent in the pooled guessing games.

Looking at which subjects donot shift strategies yields more informative results. For eachk,

we calculate the fraction of Level-k players in the pooled undercutting games against random

opponents whose levels do not shift in response to high- or low-scoring opponents. We refer

to these asstable players. The percentage of stable players for eachk are shown in Figure 9. If

players’ levels are constrained by their capacities, we should expect that low-level players are

more likely to have low capacities, and therefore are more likely to appear as stable players.

The data is consistent with this hypothesis for Level-1 through Level-3. Nash types, however,

are the most stable. For the capacity-constrained Level-k model to hold, it must be that these

players all have high enough capacities so that their chosenlevel is always greater than four.

Such high levels are rarely observed in the literature, suggesting that these players are more

likely “stubborn Nash” types who play Nash equilibrium strategies regardless of the opponent.

Thus, there may exist heterogeneity amongst players beyondthe number of best responses they

perform.

Similar analyses in the pooled guessing games (Figure 10) yields no significance differences

in the low-vs-random and low-vs-high comparisons (χ2 p-values of 0.185 and 0.769, respec-

tively). We do find a significant difference in level distributions between random opponents and

high-scoring opponents (p-value of 0.035), but the mean level against high-scoring opponents
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Frequency i.i.d. Prob.
Pooled UGs vs. Pooled GGs

Both change in same direction: 27.0% 24.9%
Both change in opposite directions: 29.1% 24.9%

Opposite/same ratio: 1.078 1.00
Undercutting Games

Both change in same direction: 9.6% 27.1%
Both change in opposite directions: 8.5% 27.1%

Opposite/same ratio: 0.884 1.00
Guessing Games

Both change in same direction: 26.6% 23.8%
Both change in opposite directions: 16.5% 23.8%

Opposite/same ratio: 0.618 1.00
TABLE 10. Observed frequency of game-rank switching among randompairs
of subjects between randomly-drawn games, compared to the expected fre-
quency under independently-drawn (i.i.d.) types.

is actually lower than against random opponents (1.957 versus 2.121), and a Wilcoxon-Mann-

Whitney test reveals no stochastic dominance of these leveldistributions (p-value 0.541), so

we cannot claim that players’ levels unambiguously shift up(or down) against stronger oppo-

nents.37

In summary, we do see some subjects adjusting their realizedlevels against different oppo-

nents, particularly in the undercutting games. This indicates some responsiveness to signals

about opponents, but neither the observed levels nor the quiz scores are useful in predicting

which subjects will make this adjustment.

Result 7: The Persistence of Players’ Ordering of Games

An alternative identifying restriction one might impose onthe Level-k model is that the rank-

ing of games be consistent between players. Formally, this would require that ifki(γ, τ) ≥

ki(γ
′, τ) for somei andγ thenkj(γ, τ) ≥ kj(γ

′, τ) for all j. In this way the Level-k model

could be thought of as providing a measure of (relative) gamedifficulty or complexity.

Table 10 shows the frequency with which a randomly-drawn pair of players changes levels

in the same direction when moving between two randomly-chosen games, or in the opposite

direction. These frequencies do not sum to one since pairs where at least one player does not

switch levels between games are excluded. The reported frequencies are compared against

37[49] shows that this test can be viewed as a test of stochasticdominance, even with discrete distributions. [33]
provide an excellent survey of valid perspectives for this test.
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the expected frequencies if levels were drawn independently from the empirical distribution of

types.

Comparing the pooled undercutting games with the pooled guessing games, switches occur

more often in the opposite direction than in the same direction. The ratio of switch directions

is close to 1, which is what one would expect if levels were independently drawn in each game

family. A Monte Carlo simulation with 1,000 samples shows that the empirical ratio of switch

directions fails to reject the null hypothesis of independently-drawn levels, with ap-value of

0.380. Thus, the two families of games cannot be clearly ranked using estimated levels.

In the undercutting games we find some support for stability of game orderings. It is more

likely that players switch levels in the same direction between games, as opposed to in the

opposite direction. A Monte Carlo simulation shows that theratio of switch directions is not

consistent with the null hypothesis of independently-drawn levels, with ap-value of 0.026.

Although this result is statistically significant, its usefulness is tempered by the fact that the

vast majority of pairs have at least one player maintaining the same level between games. Thus,

a fairly large sample of behavior would be needed to rank games based on observed levels.

Analyzing the game-by-game directions of shifts indicatesthat UG3 is “easier” than the other

three undercutting games. This is also evident from the factthat UG3 has substantially more

Nash play than the others. The relative ranks of the other three games is ambiguous. Thus, the

ability to rank the undercutting games seems to stem entirely from UG3.

Although the ratio of switch directions is lower in the guessing games, we cannot reject

the null hypothesis that the ratio of switch directions was generated by independently-drawn

levels—the Monte Carlo simulation yields ap-value of 0.070. This occurs because the level

distributions vary more across guessing games, so the variance of switch directions under the

null hypothesis is much larger.

8 DISCUSSION

As a broad summary of our findings, the success of the Level-k model is mixed: We find very

little cross-game stability when comparing the family of undercutting games with the family

of two-person guessing games. We do find reasonably strong cross-game stability within the

family of undercutting games, but zero stability in the two-person guessing games. Even in the

undercutting games, however, observed levels are hard to predict with our five psychometric

measures, except that Level-1 players may have a less keen awareness of others’ emotions

and cognition. Finally, it appears that some players “step up” against stronger opponents

in undercutting games, but we are unable to predict who makesthis adjustment using either

psychometric measures or observed levels.
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Although ours is the first paper to thoroughly examine cross-game stability of individual

levels, our conclusions about the success of the Level-k model are broadly consistent with

the past literature. Many papers find strong support for Level-k play in certain games using

behavioral data alone [62, 63, 54, 31, 42, 10, 18] or behavioral data augmented with lookup

data [24, 23] or eye-tracking data [19, 65]. For some games, however, the Level-k model does

not appear to organize the data well [43, 44, 26].38 [60] even find that the model’s fit can vary

within a single game when different components of the payofffunction are emphasized, with

a better fit as the game becomes closer to a standardp-beauty contest and a worse fit as the

game approaches the incomplete-information global game of[52]. The broad conclusion that

emerges from this line of research is that the Level-k approach works well in some games, but

not in others.

Camerer et al. [18, p. 873] argue that “fitting a wide range of games turns up clues about

where models fail and how to improve them.” Our research represents one such contribu-

tion, by demonstrating the varying individual-level robustness of Level-k models across two

families of games. This suggests that the Level-k model may be one of many possible deci-

sion processes players employ to select strategies in novelgames. Different processes may be

triggered unconsciously in different settings, dependingon features such as the characteris-

tics of the game and the way in which the game is described. Beauty contests, simple matrix

games, and our undercutting games all seem to trigger the Level-k heuristic in a large fraction

of subjects, while its use appears infrequent in common-value auctions, global games, and

endogenous-timing investment games. In two-person guessing games, Level-k reasoning may

not be triggered unless subjects are given sufficient instruction and experience calculating best

responses prior to play (see the online appendix).

Understanding the boundaries of the domain of applicability of the Level-k model means

understanding when it is used, when it is not, and what factors trigger its use; this, in turn,

increases the overall predictive power. At this point, we conjecture that Level-k play is trig-

gered by simple, normal-form games of complete information, as well as in situations where

the game’s instructions directly focus attention on calculating best responses, either directly

through understanding tests or indirectly through framingeffects. In other settings we ex-

pect less frequency of Level-k reasoning. These hypotheses give rise to a wide range of open

questions that can be addressed in future work.

Given our conclusions, we suggest focusing behavioral research both on identifying distinct

decision “heuristics” employed by people playing gamesand exploring their triggers. For ex-

ample, [43] identify plausible “rules of thumb” to explain their data when Level-k and quantal

38[26] point out that the Level-k model fails to account for overbidding in second-price auctions.
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response equilibrium cannot; to what extent do these heuristics extend beyond the dynamic

investment game they study? In our two-person guessing games, we do not identify an alter-

native heuristic that organizes the data since our analysisfocuses on players’ estimated levels

and not their actual strategies.

Finally, a multiple-heuristics model of strategic thinking implies that researchers should

take care in extrapolating the success of any one model to out-of-sample strategic settings.

Instead, future work should focus on understanding which heuristics are widely used and which

features of a strategic environment trigger the use of different heuristics. We speculate that

experimental protocols, training, and experience all havean impact on the choice of heuristic,

and that the presentation of a game in matrix form (as in our undercutting games) is more

likely to trigger best-response-based heuristics like theLevel-k model.
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APPENDICESFOR ONLINE PUBLICATION

APPENDIX A (ONLINE): COMPARISON WITH CGC06

The two-person guessing games used in our experiment were taken from [23]. In this appendix

we compare our results to data from their procedurally similar ‘Baseline’ and ‘Open Boxes’

treatments to identify any significant differences. We firstuse our maximum-likelihood proce-

dure on their raw data to generate levels for each subject in each game, and then repeat all of

the above analyses on those levels. Unlike CGC06, we allow for Level-0 types (which account

for 9.06% of our data and 9.16% of theirs) but exclude dominance and sophisticated types

(which occur in 9.09% of their data).39

To our knowledge, there are two notable differences betweenour experimental design and

theirs.First, CGC06 ran their experiments using students from University of California, San

Diego and University of York who were enrolled in quantitative courses but did not have ex-

tensive training in game theory. Our subjects were taken from a pool of Ohio State University

undergraduate students, many of whom are economics majors.We did not select or filter sub-

jects based on their major or courses. Both subject pools appear to be standard within the

experimental economics literature.

Second, and perhaps more importantly, the instructions andpre-experiment procedures were

substantially different between the experiments. CGC06’ssubjects read through 19 screens of

instructions that included a four-question test in which subjects were required to calculate

best-response strategies to hypothetical choices of theiropponent, as well as their opponent’s

best-response strategies to their own hypothetical choices.40 Our instructions consisted of

five printed pages and only informed subjects of how their payoffs are calculated. We did

not explicitly ask subjects to calculate best responses (nor opponents’ best responses), and

we required no test of understanding before proceeding.Given the relatively similar subject

pools, we expect any differences in behavior between these studies to stem mainly from the

instructions and the best-response understanding test.

Table 11 shows that the aggregate distribution of levels among CGC06’s guessing games

(estimated game-by-game) looks similar to that found in ourdata, though with more Level-2

subjects. But, as in our data, the game-by-game frequenciesof levels feature a large degree

39As a robustness check, we use our program to estimate a singlelevel for each subject across all 16 games, as in
CGC06, and verify that our level estimates match theirs for every subject, excluding those levels and types that
are not common between the two studies.
40For example, subjects were asked: “If s/he guesses 500, which of your guesses earns you the most points?”, and
“If you guess 400, which of her/his guesses earns her/him themost points?”. Any subject who failed to answer
the four questions correctly was not allowed to participatein the experiment.
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FIGURE 11. Aggregate level distributions across all standard guessing games
in our data and in CGC06.

Game L0 L1 L2 L3 Nash
1 7.95% 47.73% 12.50% 19.32% 12.50%
2 14.77% 21.59% 45.45% 18.18% 0.00%
3 14.77% 55.68% 18.18% 11.36% 0.00%
4 14.77% 35.23% 50.00% 0.00% 0.00%
5 14.77% 73.86% 4.55% 6.82% 0.00%
6 7.95% 54.55% 37.50% 0.00% 0.00%
7 9.09% 62.50% 26.14% 2.27% 0.00%
8 5.68% 71.59% 20.45% 2.27% 0.00%
9 13.64% 38.64% 40.91% 2.27% 4.55%

10 0.00% 37.50% 32.95% 26.14% 3.41%
11 10.23% 36.36% 46.59% 2.27% 4.55%
12 1.14% 45.45% 34.09% 18.18% 1.14%
13 4.55% 23.86% 40.91% 10.23% 20.45%
14 10.23% 35.23% 28.41% 18.18% 7.95%
15 7.95% 36.36% 30.68% 13.64% 11.36%
16 9.09% 46.59% 36.36% 2.27% 5.68%

Total 9.16% 45.17% 31.61% 9.59% 4.47%
TABLE 11. Frequency of estimated levels in each game of CGC06.

of heterogeneity across games. In games 2–8, for example, wesee no Nash types, while in

game 13 over 20% of the observations are consistent with the Nash type. Level-1 play varies

from 21.59% (game 2) to 73.86% (game 5). Following CGC06, these 16 games are ordered

so that lower-numbered games require fewer rounds of dominance elimination to solve the
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Data L1 L2 L3 Nash Total
New Data 14.66% 9.23% 0% 61.67%14.22%

CGC06 25.36% 21.16% 13.71% 17.61%19.46%
TABLE 12. Frequency of exact conformity with the Level-k model in the new
data and in [23].

From To L0 L1 L2 L3 Nash
L0 20.9% 44.0% 23.6% 7.2% 4.4%
L1 8.9% 54.4% 24.9% 8.1% 3.6%
L2 6.8% 35.6% 43.1% 10.2% 4.2%
L3 6.9% 38.4% 33.6% 14.3% 6.9%

Nash 9.0% 36.5% 29.8% 14.7% 9.9%
Overall 9.2% 45.2% 31.6% 9.6% 4.5%

TABLE 13. Markov switching matrix of levels in the CGC06 data.

equilibrium. None of the five levels’ frequencies have a significant correlation with the game

number (at the 5% level), indicating that this underlying structure is not driving the variation

in level distributions across games.

One of the largest and most obvious differences between CGC06’s data and ours is the

frequency with which subjects choose strategies that exactly correspond to one of the levels’

predictions (excluding Level-0). Only 14.22% of observations correspond to an ‘exact hit’ in

our data, and nearly 20% of CGC06 observations are exact hits(Table 12). Over 25% of Level-

1 observations in the CGC06 data are exact hits, as are over 20% of the Level-2 observations.

Our Nash players conform exactly with the predicted strategy more frequently than in CGC06,

though the total number of Nash types is relatively low. We believe the differences in exact

hit frequencies—especially among Levels 1 and 2—is most likely driven by the difference

in instructions between studies and their use of a best-response understanding test, either of

which may trigger a Level-k heuristic in subjects.

The stability of levels appears slightly higher in the CGC06data, but not as stable as we

found in our guessing games. The Markov transition matrix between games is shown in Table

13. As in our data, Level-1 acts as an absorbing state, where all subjects have a high probability

of transitioning to Level-1, regardless of their current level. The CLPA (constant-level predic-

tion accuracy) of this Markov matrix is 41.9%. Monte Carlo simulations reveal that this is

significantly higher (at the 1% significance level) than the 32.3% CLPA expected if individual

levels were independently drawn from the population distribution of levels in each game. In

absolute terms, a 41.9% CLPA lies between the 34.7% CLPA observed in our guessing games

and the 57.6% CLPA in our undercutting games.
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Frequency i.i.d. Prob.
CGC06 Guessing Games

Switch Frequency: 14.8% 22.9%
Non-Switch Frequency: 26.7% 22.9%

Switch Ratio: 0.553 1.00
TABLE 14. Observed frequency of level-switching among pairs of subjects be-
tween randomly-drawn games in CGC06’s data, compared to theexpected fre-
quency under independently-drawn (i.i.d.) types.

The stability of relative levels in CGC06’s data also lies between that of our guessing games

and our undercutting games. Table 14 reveals a switching ratio of 0.553, which lies between

the ratio of 0.29 found in our undercutting games and 0.89 in our guessing games. Monte

Carlo simulations easily confirm that a switching ratio of 0.553 is not generated by random

data (p-value less than 0.001), though it implies that one out of every three pairs of subjects

with well-ordered levels will generate a strict switch in their levels between games.

Finally, using levels to order games also generates a resultbetween our guessing game and

undercutting game results: The ratio of strict game-order switches over strict non-switches for

randomly-drawn pairs of subjects is 0.683, in between the ratio of 0.618 in our guessing games

and 0.884 in our undercutting games.

The improvement in stability in the CGC06 data is likely due to the lengthier instructions

and the use of an understanding test. [28] argue that a best-response understanding test is

crucial for replicating field settings because “most peopleseem to understand very well how

their payoffs are determined” (p. 32). Although we did not require an understanding test,

our instructions provided adequate and simple descriptions of subject payoffs. For example,

subjects in our experiments were told “you will be paid for this game based on how small your

error is, and smaller errors mean larger payoffs”, mathematical formulas for calculating errors

and payoffs were given along with verbal descriptions, payoffs (as a function of errors) were

shown in graphical form, and two numerical examples were worked out. In a post-experiment

questionnaire, we received no feedback that subjects were confused about payoffs in any of

the games.

We view differences between these studies as evidence that the Level-k model’s predic-

tions are not robust to varying protocols, as varying the instructions and understanding tests

may trigger different behavioral heuristics within the same game. Applying any one behav-

ioral model to the field may require some attention to the level of instruction or amount of

experience that agents have received. Unfortunately, these factors may be difficult to quantify,
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heterogeneous across agents, or unobservable. Uncertainty about past experiences would then

lead to uncertainty about the predictive accuracy of the Level-k model.

APPENDIX B (ONLINE): V ISUALIZING MODEL FIT IN GUESSING GAMES

The fit of the Level-k model in a given guessing game can be visualized by plotting ahistogram

of actions along with likelihood functions for each of the five possible levels. This is done for

each game in Figure 12. For simplicity, the likelihood functions are all plotted assuming

λ = 1 andε = 0. The label for each level appears below its likelihood function’s peak, and the

Level-0 likelihood appears simply as a uniform distribution over the strategy space. The range

of dominated strategies for each game (if any) appears as a dashed line labeled DOM. For any

action on the horizontal axis, the assigned level is that whose likelihood function is greatest at

that point, given thatλ is chosen optimally for each level.

Before analyzing fit, we note two mathematical regularitiesthat arise with the logistic spec-

ification. First, the Level-1 likelihood function is much flatter than that of the higher levels.

This is because its beliefs are uniform, making deviations from perfect best response less costly

in terms of expected loss to the player. Higher levels, by contrast, have degenerate beliefs. De-

viations from best response are significantly more costly. If one estimates the Level-k model

with randomly-generated data, the Level-1 type will typically be the modal type because of

this discrepancy. In other words, the fact that many authorsidentify the Level-1 type is the

most frequently-observed could be an artifact of the logistic specification.

Second, levels whose actions are at the boundary of the strategy space receive nearly double

the likelihood for nearby strategies than do levels with interior actions. This is because the

trembles beyond the boundary are truncated, and the truncated probability mass is distributed

among strategies within the boundaries. For example, in GG8, players who choose actions

closer to the Level-3 prediction may still be categorized asNash types because the Nash like-

lihood function is amplified by truncation much more than theLevel-3 likelihood function.

Similar phenomena occur in GG7 and GG9. This is visible in Figure 12. Since Nash types

are the only types whose predictions lie at the boundaries, random data will generate relatively

larger frequencies of Nash types than Level-3 types. Again,this is consistent with our results.

If the Level-k model fits well, peaks in the histograms should align with peaks in the like-

lihood functions. Quality of fit clearly differs by game, as was shown in the game-by-game

estimated level distributions in Table 2. The high proportion of Level-0 types in GG7 is due to

players whose action lies in the upper half of the strategy space, while all levels’ predictions

lie in the lower half. The large frequency of Level-1 types inGG5 comes from that type having

a flat likelihood function that captures several peaks in thedata. The jump in Nash types in
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FIGURE 12. Histograms of actions in each guessing game, with likelihood
functions for each level (assumingλ = 1).

GG9 is due to a large number of players choosing the lower endpoint of the strategy space. If

these players are truly using equilibrium logic, then most are only doing so in this one game;

the frequency of Nash play is much lower in the other five games.

APPENDIX C (ONLINE): ROBUSTNESS TO THENUMBER OF GAMES PERESTIMATE

In this appendix we briefly explore the robustness of Level-k estimates to the number of games

used in each estimate.41 It may be that assigning a single level to each observation introduces

significant noise in the resulting levels, causing the results to appear artificially biased toward

41We thank Vince Crawford for suggesting this test.
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randomly-generated levels. Estimating levels based on multiple games may reduce this vari-

ability and lead to more reliable estimates of players’ types, leading to greater stability in the

Level-k model.

Formally, letΓ = {γ1, γ2, . . . , γm} denote the set ofm games played by the subjects. For

each divisorr of m one can construct partitions of the formPm,r = (p1, . . . , pr) of Γ consisting

of r sets ofm/r games each. For example, ifm = 6 andr = 3 then one possible partition

of the 6 games into 3 sets isP6,3 = {{1, 2}, {3, 4}, {5, 6}}. Lettings = m/r, the number of

partitions containingr equal-sized sets ofs elements each is given by

q(m, s) =

(

m

s

)(

m−s

s

)(

m−2s
s

)

· · ·
(

s

s

)

m
s
!

.

Note thatq(m,m) = q(m, 1) = 1. Let q index the various partitions from1 to q(m, s), soP q
m,r

is one of the partitions ofm games intor equal-sized subsets.

Take any set of data fromn players overm games, and any divisorr of m. We can pick

any q ∈ {1, . . . , q(m, r)}, take the partitionP q
m,r = {p1, p2, . . . , pr}, and for each partition

elementpj, estimate a level for each subjecti over the set of games inpj. This is done exactly

according to the maximum-likelihood procedure used in CGC06 and in this paper, where the

likelihood of observing data pointx under levelk is given by a logistic error structure around

the optimal strategy fork, with a ‘spike’ of weightε on the exact Level-k strategy. The result

is a level estimate for each playeri in each partition elementpj , which we denote simply by

ki(j). Thus, we generater levels for each subject, usingm/r games (or, data points) for each

level estimated.

In CGC06r always equals one; in our paperr either equalsm (for game-by-game analyses)

or one (for pooled analyses). In either caseq(m, s) = 1, so the choice of which partition to

choose is trivial. Here we explore intermediate cases where1 < r < m. Ideally, we would

fix r, generate all possible partitions of sizer, and for each partition, generater estimated

levels per subject. We could then perform analysis of the stability of those r levels (as in

the body of the paper). For example, the switch ratio can be calculated for each partition

q ∈ {1, . . . , q(m, s)} and the entire ‘distribution’ ofq(m, s) switch ratios reported.

Sinceq(m, s) can be quite large (q(16, 4) = 2, 627, 625, for example), we instead draw a

small random sample of possible partitions. We then estimate r levels per subject, calculate

the switching ratio for each randomly-drawn partition, andreport the sample distribution of

switch ratios. We perform this exercise for each divisorr of m to see how the distribution

of switch ratios would change as more games are used per levelestimate (or, equivalently, as

fewer level estimates per subject are performed). This is done for both our guessing game data

(wherem = 6) and the CGC06 guessing game data (wherem = 16).
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FIGURE 13. Switching ratios as the number of levels estimated per subject
varies, using many randomly-drawn partitions of the games.

The results of this analysis appear in Figure 13. The horizontal axis contains the various

values ofr. The case ofr = 1 is degenerate; each subject has only one level estimate and

so stability measures such as the switching ratio are not defined. The vertical axis reports the

switching ratio, as described in the body of the paper.

As benchmarks, we include a horizontal line at one to indicate the switching ratio if the

levels were independent random draws from a fixed distribution. We also simulate the switch-

ing ratio for the Level-k model with constantki functions; in theory these ratios should all

equal zero, but because a true Level-0 subject (who randomlyselects their strategy) would

occasionally be misclassified as a different level, some randomness is introduced into the level

estimates. This can result in a small but non-trivial switching ratio.

As the number of estimates per subject decreases, so too doesthe frequency with which

randomly-drawn subjects can be strictly ordered by their levels in two randomly-drawn games.

Thus, both the numerator and denominator of the switching ratio become smaller asr de-

creases; this generates higher variance in the switching ratio distributions for smallr.
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CGC06 order their games based on ‘structure’, roughly corresponding to how many steps of

elimination of dominated strategies are necessary to solvethe Nash equilibrium of the game.

We report the switching ratios for the partitions that respect this ordering. Specifically, if

{1, 2, . . . , 16} is the original ordering of the 16 games, we report the switching ratios for the

partitions{{1, . . . , 8}, {9, . . . , 16}}, {{1, . . . , 4}, . . . , {13, . . . , 16}}, {{1, 2}, {3, 4}, . . . , {15, 16}},

and{{1}, {2}, . . . , {16}}.

The graph reveals that stability in the CGC06 data improves with fewer estimates per subject

(or, more games per estimate), though its switching ratios never overlap with the constant-level

switching ratios. In the best case (r = 2) the switching ratios approach the 0.288 ratio achieved

in our undercutting games. The ordering of CGC06’s games based on structure, however,

does not generate obviously greater or smaller switching ratios. Switching ratios in our data

do not improve with more games per estimate. This suggests that CGC06’s subjects were

somewhere more persistent in their underlying type and in fact there was some noise added

to their estimated levels by using only one game per estimated (or, more correctly, assigned)

level.

Again, the most obvious difference in experimental design between CGC06 and our exper-

iment is in the length of instructions and use of an understanding test. We therefore speculate

that one or both of these design features triggered the use ofthe Level-k heuristic in more

subjects in the CGC06 experiment than in ours. This results in relatively more stable level

estimates across games for their data.


