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1 INTRODUCTION

Following a considerable literature demonstrating démest from Nash equilibrium play (see,
for example, 16), behavioral research has sought to modelrticesses determining individual
play and aggregate behavior in experimental games. Ondyauded approach for modeling
behavioral deviations from Nash equilibrium in one-shainga involves the use of hetero-
geneous types, based on varying levels of strategic sigidtisn [53, 62, 24, 18}. In this
framework—often referred to dsevel-k or Cognitive Hierarchy—players’ strategic sophisti-
cation is represented by the number of iterations of beporese they perform in selecting an
action.

In the simplest version of these models, Level-0 types ramze uniformly over all actions
and, for allk > 0, the Levelk type plays a best response to the actions of Lékel-1). Thus,
the model suggests that a subject’s level is a measure ofragegc sophistication—or, more
precisely, her belief about her opponents’ strategic stiaition. The application of such
models to data from one-shot play in experiments has yietg®dral instances in which the
model accurately describes the aggregate distributioastain choices. We provide a review
of this literature in the next section.

The value of the Levek framework as gost hoc descriptive model of the aggregate dis-
tribution of actions in laboratory games has been widelyudoented. There is also evidence
that the overall distribution of levels may posses someilgtaacross games (e.g., 18), mean-
ing that one might be able to predict the distribution of @tsi in a novel game based on the
distributions in other games.

However, an open question remains regarding whether Lewgbes correspond to some
meaningful individual characteristic that one might lakel'strategic sophistication.” That is,
does a particular individual’s estimated level correspinal persistent trait that can be used to
predict play across games? If levels are indicative of efjiatsophistication, and if strategic
sophistication is an invariant characteristic of a persoen there should exist reliable cross-
game patterns in players’ observed levels. Estimateddemabne game could then be used
to predict players’ behavior in novel games. Moreovernestes of a player’s level could be
improved by using direct psychometric measures that aigelith strategic sophistication.

On the other hand, if players’ levels appear to be randomigrdened from game to game,
then one of two negative conclusions must be reached: Hitfrative best response is not an
accurate description of players’ reasoning, or the modat@urate but players’ levels vary
An alternative approach involves modeling deviations fidash equilibrium as noise (or unobservable utility
shocks) in players’ best response. For an example, see thst&@urResponse Equilibrium model proposed by

[50]. [57] bridges the Quantal Response approach with thelkie approach studied here. Other directions in
behavioral game theory include the study of dynamics fatgwinitial play [see 25, 32, 17, for example].
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from game to game in a manner that is difficult to predict. Ilithes case, knowledge of a
player’s level in one game provides neither informationwlibeir play in another game, nor
a useful measure of that person’s strategic sophisticatigeneraf

In this paper we test for persistence of individuals’ sgatesophistication across games.
We begin by identifying several plausible, testable restns on cross-game behavior in the
Level-k£ framework. For example, the most stringent testable od&tn is that players’ levels
are constant across all games. A weaker restriction rexjoimey that players’ relative levels
be invariant, so that a ranking of players based on theildaeenains constant across games,
even if their absolute levels do not.

We then conduct a laboratory experiment in which subjeetg péveral games drawn from
two distinct families of games. The first family of games dstssof four novel matrix games
developed for this study, which we refer to as “undercuttgagnes.” The second family is a
set of two-person guessing games studied by [23] (henbe@EBC06)?

Within each family of games, we identify an individual’s &\Jn a Level4 framework,
following a standard approach for classifying individuahlavior based on the observation of
play in several games. We then test whether these obseneld Eatisfy any of the cross-
game restrictions we have identified. To complement thisyaiga we also attempt to identify
individual levels separately for each game, and use thassitications to conduct cross-game
comparisons within each family of games.

We also consider two additional ways in which strategic sstpfation might be detectable.
First, we elicit several direct measures of strategic ligehce using brief quizzes that have
been found to identify strategic reasoning ability or gahertelligence. We explore the rela-
tionship between such measures and subjects’ levelsfigerfiom their behavior. Second, we
have subjects play each game against three different oppore subject randomly selected
from the population in the session, the opponent who scoigdtekt on the strategic intelli-
gence measures discussed above, and the opponent who lkeveestt Thus, we are able to
detect whether sophisticated types vary their behaviaedas the expected sophistication of
their opponent.

The degree of persistence in strategic sophisticationetimatrges from our data is mixed.
The key results are summarized as follows:

2We do not suggest that levels must be constant across gamébe fimodel to have predictive power. [18] and
[20], for example, suggest that levedsll change in certain situations. Predictive power simply meguthat
situational changes be predictable.

3A two-person guessing game is different from the two-pefseauty contest studied by [38]; the latter has a
(weakly) dominant strategy while the former does not.
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(1) Theaggregate distribution of levels is similar to that found in previousidies for both
families of games.

(2) Individual levels show little persistence between tlie families of games. Moreover,
the relative ordering of players is also unstable betweerwo game families.

(3) Looking within families of games, the aggregate disttibn of levels is remarkably
stable across undercutting games, but quite unstablest@vogperson guessing games.
Individual levels and relative ordering are moderatelysggent within the family of
undercutting games, but have no persistence within thdyarhguessing games.

(4) The quizzes generally fail to predict players’ leveleither family of games, though
Level-1 play is correlated with a test for autism in undetiogtgames.

(5) Some players adjust strategies against stronger opprimit neither quiz scores nor
levels predict which subjects make this adjustment.

Our interpretation of these results is that the congrueeteden Levelk models and sub-
jects’ actual decision processes depends on the conteyteBlconfronted with a novel game
may have many alternative processes for determining wreategly to select, and different en-
vironments trigger the use of different decision proceésksvel- reasoning might be one
process that is triggered in some contexts (undercuttimgega but not in others (guessing
games). Of course, if Levdl-reasoning is employed in some games, it is critical for the
theory’s predictive ability to be able to identify what facs trigger its use.

Additional insight into robustness comes from comparingguessing game data with that
of CGCO06° In their data the Levek model receives stronger support—especially when con-
sidering subjects’ “lookup” behavior—though we also findbstantial cross-game instability
in their data as well. We believe this difference in modelusacy stems from two differences
in protocols. First, their instructions are far more det@i{spanning 31 computer screens) and
include four practice rounds with feedback on aggregateceso Ours consist of a 5-page
handout with no practice rounds. Second, they require thigésts pass an understanding test
in which they must calculate their best response to an opgnehoice, and their opponent’s
best response to their own choice. Subjects who fail thisatresdismissed. We have no such
understanding test, and include all subjects. It is possidt the more extensive instructions,
the practice rounds with feedback, and the best-resporderstanding test all trigger the use
of Level-k reasoning in a greater fraction of the subjects. Altermdyivt is possible that our

“This interpretation is similar to the idea of a “toolbox” oénous decision making approaches or heuristics,
which are employed varyingly depending on the context [36].

S0ur data are comparable to the CGC06 “Baseline” and “Opexi-Beatments. See the online appendix for this
and other comparisons with CGCO06.
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design fails to eliminate confusion sufficiently, leadimgioisier data. Regardless, the sensi-
tivity of results to the protocol suggests that the Levehodel’s applicability may be limited
in this regard.

2 REVIEW OF RELEVANT LITERATURE

The notion of heterogeneous strategic sophisticationatiogy through limited iterations of
best response dates back at least to the “beauty contestisgisn of [47]. Motivated by this,
Nagel [53, 54], Ho et al. [42], and others study behavior bolatoryp-beauty contest games,
in which all players submit a number |, 100] and the closest guess fidimes the average
wins a prize. The observed distributions of guesses shaay sfgkes consistent with Level-1
and Level-2 play. This finding is robust to the structure efglame [31] and varied populations
[10].5

Stahl & Wilson [62] study Levek behavior in ten %3 matrix gameg. They find that
roughly 25 percent of players are Level-1, 50 percent arek2yvand 25 percent are Nash
equilibrium players. Level-0 play is virtually non-existe Stahl and Wilson [63] examine
play in twelve normal-form games played without feedbadadgiag Worldly and Rational
Expectations types. In both studies, many subjects fit gtyonto one type, with posterior
probabilities of their maximum likelihood type exceedin§@ Stahl & Wilson Stahl and Wil-
son [63] also provide a test of individual cross-game sitgbilThey select a subset of nine
games, estimate individuals’ types from these games, leddcthe predicted choice probabil-
ities for the remaining three games for each type, and thema&te the posterior probability
that a subject has a particular type. They classify as “stablose subjects for whom the
posterior probability of having the same type is at least @g@nt. Using this relatively low
threshold, they find that 35 of 48 subjects are stable. Inrashtwe estimate a player’s type
independently in two sets of games, and directly compardiveinéhe two estimated types are
identical®

Costa-Gomes, Crawford & Broseta Costa-Gomes et al. [24] [fieveel-£ model, with 9
possible types, to behavior in 18 matrix games. In their grpent, payoffs in the games
are initially hidden to subjects, so that estimation of aypt& level based on strategy choice
Swhen the game is made into a global game in which players aceralvarded for guessing an unknown state
[52], however, the Levek model fits poorly when the state-guessing incentive is ersipbd [60].
’In their model Level-0 players are assumed to randomly ahebsitegies, Level-1 players best respond to

Level-0, and Level-2 players best respond to a Level-1legjsatvith noise added. This works similarly to best
responding to a mixture of Level-0 and Level-1.

8Burchardi & Penczynski [14] and Penczynski [56] find thatyels’ estimated levels are altered after commu-
nicating with others. Although this represents one notibtype instability, it is unlikely that it stems from true
randomness in players’ types.
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can be augmented by analyzing which pieces of informatidnjests choose to view before
making a decision. The model fits well, and they generally ffilggher levels in simpler games.

Camerer, Ho & Chong [18] introduce th@ognitive Hierarchy variation of the Levelk
model, in which players best respond to the distributioneptls truncated below their own
level. Thus, a Levek player believes all other players are Level-0 through L€¥el 1) and
his belief about the relative frequencies of those levedstuirate. Using a Poisson distribution
of levels reduces the model to a single paramet@fter defining the Level-0 distribution) that
describes the mean level in the population. They estimaéealistribution for a wide range of
games. Ip-beauty contests, for example, they estimate higher meafslen more educated
populations, in simpler games, and when subjects are askgdeliefs about opponents’ play.
They also show that the model suffers relatively little loskkelihood scores when restricting
7 to be constant across games, indicating a fair amount o$-@ame stability in the aggregate
distribution of levels; however, they do not explore indival-level cross game stability.

In Costa-Gomes & Crawford Costa-Gomes and Crawford [23]@C6&), players participate
in 16 two-person guessing games in which a player and herrgopare each assigned an
interval[a;, b;] and a ‘target,p; € {0.5,0.7,1.3,1.5}. Players’ payoffs decrease in the distance
between their own guess apgdtimes their opponent’s guess. As in the earlier paper Costa-
Gomes et al. [24], lookup behavior is used to strengthen ggtienation. Again the results
support the Levek model: A reasonably large percentage of players play extwdl strategy
predicted by one of the Levéltypes. Six of the ten games we study in this paper are two-
person guessing games; we compare our findings to CGCO06 ianalysis. Chen, Huang &
Wang [19] study similar two-person games on a two-dimeradigrid. They use eye-tracking
technology to augment the type estimation based on behalaioe. They find distributions of
types that are somewhat more uniform than in past studieenWhbjects’ data are randomly
re-sampled to generate new bootstrapped samples, howeleB of 17 subjects receive the
same classification in at least 95% of the bootstrapped smngd they did in the original
sample. This suggests that roughly half of the subjectsarstrongly consistent with any one
level across these games.

Arad & Rubinstein [2] introduce the 11-20 money request gawtdch is similar to our
undercutting game in that it is a simple game designed tgerig.evelx behavior while al-
lowing a clean separation of levels. Although they are n@lieitly testing for cross-game
stability, they do find that subjects behave differentlyoasrvariations of the game that do
not change the equilibrium or Levélpredictions. DeSousa, Hollard & Terracol [29] identify
non-strategic players by observing play in 10 beauty cogtases, and find that these subjects
are more likely to play non-strategically in the 11-20 momneguest game as well. Arad &
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Rubinstein [3] develop a model of multi-dimensional iteratreasoning, focused on ‘features’
of strategies, and apply it to behavior in Colonel Blotto g@amThey find that subjects who
apply more iterative reasoning in an 11-20 money requestegalso seem to exhibit more
multi-dimensional iteartive reasoning in the Colonel Bdagame.

Batziliset al. [8] fit a Level-k model to a very large number of rock-paper-scissors (‘Rosha
bull’) games among Facebook users. They find that aggredmiefnrequencies vary slightly
from the equilibrium prediction, and that most playersagtgies are not consistently aligned
with any single level.

The Level¥ model has also been applied to extensive-form games. Kan&giakizawa
[46] study centipede games and compare 12 different spaitiifics of the Levek / Cogni-
tive Hierarchy model against two specifications of the Agenantal Response Equilibrium
(AQRE) model [51]. They find that an AQRE specification fits thies their constant-sum
centipede game, while a Cognitive Hierarchy model with darm Level-0 strategy fits best
their increasing-sum centipede game. Ho & Su [41] develognanhic version of the Level-
model for centipede games and show that it fits both first-dqalay and the pattern of earlier
taking as the game is repeated. The model also matchesngattebehavior in a dynamic
bargaining experiment.

Relatively few authors test whether estimated levels tateavith personal traits such as in-
telligence. Camerer, Ho & Chong [18] find higher averagelkeiwesubject pools with greater
academic training, such as Caltech undergraduates and thaorsts. Burnhanet al. [15]
show that individuals’ choices injabeauty contest game correlate with scores on a 20-minute
test of cognitive ability. Gill & Prowse [37] also find a colaéon between cognitive abil-
ity and levels in gp-beauty contest, and show that higher-ability players apeenlikely to
converge toward equilibrium over time and earn higher paymeChong, Camerer & Ho [20]
find that cognitive effort matters along with intelligendéey let their subjects play 22 mixed-
equilibrium matrix games in a fixed order and report a positerrelation between thinking
time and levels. Furthermore, average levels are higheameg 12-22 than in games 1-11,
indicating a learning-by-doing increase in sophisticativer time? Rubinstein [58] finds cor-
relation in players’ reaction times across games, sugggstiat some systematically engage
in more contemplation than others. But he reports that hielauat find interesting cross-game
correlations in strategy choices, and that the level of @mipiativeness is not very predictive

%Ina personal communication, Camerer reported that a reigresf individuals’ average second-half level on
their first-half level yields arR? value of 0.37, indicating reasonable predictive power @sthgames despite the

learning-by-doing effect. Our experiment reduces thedieace of learning-by-doing effects by allowing subjects
to revise any of their past decisions after making choicedliten games.
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of strategy choices. Similarly, DeSoudaal. [29] do not find a correlation between the Elo
ranking (a measure of a chess player’s quality) and thahi&et of playing strategically.

The Level# model has also been applied successfully to a variety of gdmmes, including
“hide-and-seek” games [27], incomplete-information ingttgames [11], betting games and
matrix games [57], coordinated attack games [48], serg®iver games augmented with
eye-tracking data [65], and cheap-talk games [45]. In tHd,fleevel-k has been shown to fit
behavior in Swedish lowest-unique-positive-integemdnttgames [55] and to explain the fact
that movies that were not released to critics before theipwpening earn higher revenues
[12]. A functional MRI study even suggests differences iaibractivity between subjects
who exhibit varying degrees of “strategic sophisticati¢@]. Finally, a few recent papers
apply the Levelk concept to study departures from Nash equilibrium play tiaas, finding
that the Levelt approach often, though not always, yields a significantlyeodit than the
Nash equilibrium [26, 35]. However, Ivanat al. [44] show that models with misguided
beliefs (such as Level) cannot explain the winner’s curse in common value auctibesause
subjects who play against their own past actions still exBildstantial overbidding.

For a more comprehensive survey of studies on the Levebdel, see [28].

3 A FORMULATION OF LEVEL-£ MODELS

The usual applications of the Levelmodel generally treat it as @ post descriptive model.
As such, prior analyses typically omit cross-game or cindgAddual testable restrictions, or
test only how the aggregate distribution of types variesgggames or populations [18, e.g.].
In this section we introduce a formal framework in which stebtable restrictions can be
defined clearly. Our experiment then examines severallplessioss-game testable restrictions
to see which have empirical merit.

Specifically, we build a simple type-space model for twoyplagames where an agent’s type
describes hecapacity for iterated best-response reasoning and her realexet of iterated
best-response reasoning. Under Harsanyi’'s (1967) irgejpon, types would also describe
beliefs about opponents’ types, second-order beliefstadqmuonents’ beliefs, and all higher-
order beliefs. Following the Levéiiterature, however, we make the simplifying assumption
that a player’s level is a sufficient statistic for her entirerarchy of beliefs, and that all players
believe all others to have strictly lower levels than thelvese!®

OFor example, [24], [23], [26], and [27] assume that all piayeith a level ofk > 0 believe all other players’
level to bek — 1 with probability one. [18], on the other hand, assume tHatlayers with a level ok > 0 believe

the realized levels of opponents to follow a truncated Rwisfistribution oveK0, 1,..., k — 1}. Whatever the
assumption on first-order beliefs, all higher-order bslife then assumed to be consistent with this assumption
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In our experiment, subjects play several two-person gatredsy = ({1, j}, S, u) represent
a typical two-person game with playersindj, strategy set$ = S; x S;, and payoffsu; :

S — R andu; : S — R. The set of all such two-player gamedisWhen players use mixed
strategiesr; € A(S;) we abuse notation slightly and let(o;,0;) andu;(o;, 0;) represent
their expected payoffs. In some cases players receivelsighaut the type of their opponent;
we denote the signalreceives byr; € T, and letr® € T represent the uninformative “null”
signal.

Playeri’s type is given by, = (c¢;, k;) wherec; : T' — Ny := {0,1,2,...} identifies:’s
capacity for each game € I, andk; : I' x T" — Ny identifiesi’s level for each game € I'
and signal; € T. The capacity bounds the level, g, 7;) < c;(v) for all 4, v, and7,.*

Let © be the space of all possible types. Note thaloes not vary inr; since the capacity
represents a player’s underlying ability to “solve” a pautar game, regardless of the type of
her opponent. The realized levelmay vary in7;, however, because the realized level stems
directly fromi’s belief about her opponent’s strategy.

Beliefs are fixed by the model. Each play&r pre-defined first-order beliefs are given by
a mapping : Ny — A(Np) such that(k;)({0,1,...,k — 1}) = 1 for all k; € Ny.** For
example, in [18])\ > 0 is a free parameter andk)(l) = (\'/1!)/ Zﬁ;(l)(/\“/m!) if | <kand
v(k)(l) = 0 otherwise. The functiow is common knowledge and therefore is not included
in the description of);. Thus, thek; component of a player’s type completely identifies her
beliefs since is a function only oft;; this is a common implicit assumption in the literature.

Behavior in a Levek model is defined inductively. The Level-0 strategy for ealgyeri
in ~y is given exogenously a8’ € A(S;). If k;(v,7:) = 0 then playeri playsc?. For each
level k > 0 the Levelk strategyo* € A(S;) for playeri with k;(+, 7;) = k is a best response
to beliefsv(k), given that each level < k of player; playsU;'?.13 Formally, for eacht > 0,

(7 believes; believes his opponent’s levels follow this distributi@hcetera). Strzalecki [64] builds a similar—
though more general—type-space model that encompasdesvaltk models. It does not explicitly allow for
levels to vary by game or for agents to update their beliefsnugbserving signals, though both features could
easily be incorporated.

11Technically, the inclusion of capacities is extraneouslayer’s type could simply be defined &s: T' x T" —

Ny and then a capacity would then be derived by settitg) = sup ki (v, ;) for eachy. We include capacities

in the model to emphasize that agents’ upper bounds omay vary invy.

PThe simple interpretation of this assumption is that eaelygr believes they are more sophisticated than all
of their opponents. An alternative interpretation is thiayprs are aware that they may be less sophisticated
than some of their opponents, but they have no model of howe rmophisticated players choose strategies.
More sophisticated players are then treated as though tedyexel-0 players. This second interpretation does
suggest that(k;)(0) should be positive for akt;, which is inconsistent with the commonly-used assumptiai t
i there are multiple pure-strategy best responsesdtiezan be any distribution over those best responses, and
that distribution is assumed to be known by all higher levels
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the strategy* is such that for al; € S;,

k-1

3 o) ) Xl ) ),

rk=0
Finally, we define a Nash type, denoted by= N, whose beliefs are(N)(N) = 1. The
profile ¥ is then the best response to the other player’s Nash-tyaxtx=.=gyra§v.14

When o is degenerate (the Levélstrategy is a unique pure strategy) we détbe the
strategy such that?(s¥) = 1.

To see how this construction operates, fix a ganaad signalr;. If playeri’s type in this
situation is(c;, k;) = (0,0) then she plays?. If i’s capacity is one then her type is either
(1,0) or (1,1). In the former case she play$; in the latter case her beliefs arél), which
hasrv(1)(0) = 1, and so she plays;. If i's type is(2, 2) then she has beliefg2), which puts
pre-defined probabilities on her opponent being Level-0 lamgel-1. In this case she plays
o2. For any(c;, k;) playeri’s beliefs arev(k;) and her best response to those beliefs’is
Note that beliefs depend only @n, so player types$4, 2), (3,2), and(2, 2) all have the same
hierarchy of beliefs, for example.

Onceo? andv are defined, the only testable prediction of this model i$ th@ach game
and for each signal all players must select a strategy frenset{ o, o}, 02,.. YU {eN}.2°In
many applications, the researcher assumes that eachilplaysc* with noise (usually with
a logistic distribution) and then assigns each subjectddebel that maximizes the likelihood
of their data across all games played.

As specified, a player’s levél (v, 7;) can be any arbitrary function efandr;. If no struc-
ture is imposed on thg; function then the model is incapable of cross-game or csagsal
predictions; knowing that player plays Level-2 in one game doesn't provide information
abouti’s level in another game. Our goal is to consider a set of re#se cross-game or
cross-signal testable restrictions bnand explore which (if any) receive empirical support.
Understanding which restrictions @napply will then lead to an understanding of the out-of-
sample predictions that can be made through this model. #éswictions ork; can be found
then no out-of-sample predictions can be made for an indalid

Examples of possible restrictions énthat one can test using experiments are:

(1) Constant: k;(vy, ;) = ki(+y/, /) forall 4, v, v/, 7;, andr;.
(2) Constant Across Games: k;(v, ;) = ki(v', ;) for all 7, v, v/, andr;.

Yps is standard, we assunék)(N) = 0 for all k # N. If multiple Nash equilibria exist then multiple Nash
types could be defined, but all of our games have a unique Npshbgium.

19 50 is not restricted then there are no testable predictiotts)der® equal the empirical distribution of strate-
gies provides a perfect fit.
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(3) Constant Ordering: If k;(, ) > k;(v, 7) for somey andr thenk; (v, 7') > k;(', 7')
for all v/ and7’'.

(4) Responsivenessto Signals: For everyy and: there is some and7’ such thak; (v, 7) >
ki(y, ).

(5) Consistent Ordering of Games: For anyr, if k;(v,7) > k;(+/,7) for somei, v and
v, thenk;(v, 1) > k;(+/,7) for all ;.

The first restriction represents a very strict interpretatf the Levelk model in which each
person’s level never varies, regardless of the difficultthefgame or the information received.
The second restriction weakens the first by allowing playstefs to respond to information,
but to otherwise keep levels constant across games.

Instead of forcing absolute levels to be constant, the tieistriction requires only that play-
ers’ relative levels be fixed. Thus, if Anne plays a (weakligher level than Bob in one game
when they have identical information, then Anne should pléyeakly) higher level than Bob
in all games where they have identical information. Celyatinis would be violated with dif-
fering degrees of game-specific experience; recall, howévat the Levelt model applies
only to the first-time play of novel gamés$.

The fourth restriction requires that there exist a pair ghals in each game over which a
player’s level will differ. Thus, a minimal amount of resgiveness to information, for at least
some players, is assumed.

The last restriction listed implies that the observed lewaln be used to order the games in
I". If, at some fixed signal, all players play a lower levehirthan in+ then it can be inferred
that~’ is a more difficult or complex game. This enables future dtgaomple predictions,
since a player who subsequently plays a given level@an be expected to play a lower level
in~.

It is certainly easy to imagine plausible functionghat violate each of these restrictions, or
that violate any other restriction we may consider. But easfriction that is violated means
the loss of a testable implication for the model. If the maspeically accurate version of the
Level-£ model requireg; functions that satisfy no cross-game or cross-signalicéisins, then
the model cannot be used to make out-of-sample predictiomstandividual behavior. Thus,
the predictive power of the model hinges on the presencemésdentifiable restrictions.

16Cross-game learning may still generate violations of teggriction; a chess master may play to a higher level
than a professional soccer player in checkers, but to a l@velin an asymmetric matching pennies game. For
this reason the boundaries of applicability of the Levehodel are sometimes ambiguous.
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1 3 4 5 6 7
1 1 10 0 0 0 0 -11
1 -10 0 0 0 0 0
2 -10 0 10 0 0 0 0
10 0 -10 0 0 0 0
3 0 -10 0 10 0 0 0
0 10 0 -10 0 0 0
4 0 0 -10 0 10 10 10
0 0 10 0 -10 -10 -10
5 0 0 0 -10 0 0 0
0 0 0 10 0 0 0
6 0 0 0 -10 0 0 0
0 0 0 10 0 0 0
7 0 0 0 -10 0 0 -11
-11 0 0 10 0 0 -11

1 3 4 5 6 7 8 9
1 1 10 0 0 0 0 0 0 11
1 10 0 0 0 0 0 0 0
2 10 0 10 0 0 0 0 0 0
10 0 10 0 0 0 0 0 0
3 0 10 0 10 0 0 0 0 0
0 10 0 -10 0 0 0 0 0
4 10 0 10 0 10 10 10 10 10
0 0 10 0 -10 -10 10 10 10
5 0 0 0 -10 0 0 0 0 0
0 0 0 10 0 0 0 0 0
6 |0 0 0 -10 0 0 0 0 0
0 0 0 10 0 0 0 0 0
7 0 0 0 -10 0 0 0 0 0
0 0 0 10 0 0 0 0 0
8 0 0 0 -10 0 0 0 0 0
0 0 0 10 0 0 0 0 0
9 0 0 0 -10 0 0 0 0 11
11 0 0 10 0 0 0 0 11

FIGURE 2. Undercutting game 2 (UG2).

4 THE GAMES

We study two families of games: a novel family of games thatuseful for identifying player
types—which we call undercutting games (UG)—and the twes@eguessing games (2PGG)
studied by Costa-Gomes and Crawford [23].

4.1 Undercutting Games

An undercutting game is a symmetric, two-player game patenized by two positive integers
m andn with m < n. Each playef € {1, 2} picks a positive integes; € {1,2,...,m,...,n}.
Player: wins $10 from player; if eithers; = m < s; ors; +1 = s; < m. Thus, if player
i expects her opponent to choase> m, then her best response is to choese- m; other-
wise her best response is to “undercut” her opponent by ehges = s; — 1. If no player
undercuts the other then one of the following situationslyapl§ both chooses;, = 1 (the
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1 2 3 4 5 6 7 8 9

1 1 10 0 0 0 0 0 0 11

1 10 0 0 0 0 0 0 0
2 10 0 10 0 0 0 0 0 0

10 0 10 0 0 0 0 0 0
3 0 10 0 10 0 0 0 0 0

0 10 0 -10 0 0 0 0 0
4 10 0 10 0 10 0 0 0 0

0 0 10 0 -10 0 0 0 0
5 0 0 0 10 0 10 0 0 0

0 0 0 10 0 10 0 0 0
6 10 0 0 0 -10 0 10 10 10

0 0 0 0 10 0 10 10 10
7 10 0 0 0 0 -10 0 0 0

0 0 0 0 0 10 0 0 0
8 10 0 0 0 0 10 0 0 0

0 0 0 0 0 10 0 0 0
9 10 0 0 0 0 10 0 0 11

11 0 0 0 0 10 0 0 11

1 2 3 4 5 6 7
1 1 10 0 0 0 0 -11
1 -10 0 0 0 0 0
2 -10 0 10 0 0 0 0
10 0 -10 0 0 0 0
3 0 10 0 10 0 0 0
0 10 0 -10 0 0 0
4 0 0 10 0 30 10 10
0 0 10 0 -30 10 10
5 0 0 0 -30 0 0 0
0 0 0 30 0 0 0
6 0 0 0 -10 0 0 0
0 0 0 10 0 0 0
7 0 0 0 -10 0 0 11
-11 0 0 10 0 0 -11

FIGURE 4. Undercutting game 4 (UG4).

unique Nash equilibrium choice) then both earn a payoff &.aif both choose: then both
lose$11. If : chooses one anflchooses: theni loses$11 andj earns nothing. In all other
cases both players earn zero. The cases where a playefidsase designed to to rule out
any mixed-strategy Nash equilibria.

The payoff matrices of the undercutting games used in thpsment are shown in Figures
1-4. Consider UG1, shown in Figure 1. A levels-of-reasomraglel that assumes uniformly
random play by Level-0 types will predict that Level-1 tyg#ay s' = 4 as it maximizes the
sum of row payoffs, Level-2 types play = 3, Level-3 types play?® = 2, and all higher levels
play the equilibrium strategy of¥ = 1. This enables a unique identification of a player’s level
(up to Level4) from a single observation of their strategy.

The game in Figure 1V, UG4, departs from UG2 only in that thdeeninated actions have
been 'compressed’ into one (which is now itself also donaddty another dominated action).
Since dominated actions are never predicted for types db®xa-0, this modification should
have little impact on the distribution of types.
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This family of games was designed explicitly for testingltleeel-x model. Its undercutting
structure is intended to focus players’ attention on thatstyies of their opponents, encour-
aging Levelk-type thinking. The strategy space is relatively small ikenp-beauty contest
games, but the only strategy that confounds multiple lelagteer than the Level-type, which
may randomize over many strategies) is the Nash equilibsuiategy since all levels greater
thanm are predicted to play this action. There are no other NasHiledga in pure or mixed
strategies. Moreover, variations in the assumed Lé&lategy have no impact on the or-
dering of players’ inferred levels. For examplej iplays3 andj plays2 then we infer that
k; = k; + 1, regardless of the Levélspecification.

4.2 Two-Person Guessing Games

Two-person guessing games are asymmetric, two-player g@aeameterized by a lower
bounda; > 0, upper bound; > a;, and targep; > 0 for each player. Strategies are given by
s; € |a;, b;] and playeri is paid according to how far her choice is frgptimess;, denoted by

e; = |s; — pis;l.

Each playeli’s payment is a quasiconcave functionegthat is maximized at zero. Specif-
ically, players receivd5 — (11/200)e; dollars if e; < 200, 5 — (1/200)e; dollars if e; €
(200, 1000], and zero ife; > 1000. The unique best response is to set= 0 by choosing
si = pis;. If p;s; lands outside of’s strategy space then the nearest endpoint of the strategy
space is the best response. In a levels-of-reasoning mogled]-0 may be assumed to ran-
domize uniformly ovefa;, b;] or to play the midpoint ofa;, b;] with certainty. In either case
Level-1 types will plays! = p;(a; + b;)/2; if this is not attainable then the Level-1 player will
select the nearest endpoint of her interval. A Level-2 tyjleplay s? = pisjl- (or the nearest
endpoint), and so on. This iterative reasoning convergas\tash equilibrium with one player
playing on the boundary of her interval and the other begpording to that boundary strategy
[see 23].

5 EXPERIMENTAL DESIGN

In total, 116 undergraduate students from Ohio State Usiiyeparticipated as subjects in
these experiments. After reading through the experimestituntions, each subject completed
five tasks, intended to measure general cognitive abilitystrategic reasoning:

(1) anIQ test,
(2) the Eye Gaze test for adult autism,
(3) the Wechsler digit span working memory test,



14 GEORGANAS, HEALY AND WEBER

(O jealous [ panicked [Jarrogant [ hateful

[0 aghast Dfantasiiing O impatient O élarmed

FIGURE 5. Sample questions from the Eye Gaze test.

(4) the Cognitive Reflection Test (CRT), and
(5) the one-player Takeover game.

Each of these quizzes represents a previously-used medgiereral intelligence or strate-
gic sophistication. The IQ test consists of ten questiokertdrom the Mensa society’s “work-
out” exam?’ Similar tests of cognitive ability have been shown to catelwith higher levels
of reasoning irp-beauty contest games [15].

The Eye Gaze test [7] asks subjects to identify the emoti@nsgbexpressed by a pair of
eyes in a photograph. See Figure 5 for sample problems. Rofmrmance on this task is di-
agnostic of high-functioning adult autism or Aspergersi@ypome [7] and strong performance
is correlated with the ability to determine whether or nat@movements in a market are
affected by a trader with inside information [13].

The Wechsler Digit Span memory test tests subjects’ adslito recall strings of digits of
increasing length. It is one component of the Wechsler Altigtiligence Scale [66] to assess
overall intelligence. [30] had 67 subjects take this shemntn memory test and then play three
games against a computerized opponent that always seliaezfjuilibrium strategy. The
three games all required iterated reasoning to solve théilagqum best response. They found

17see http://ww.mensa.org/workout2.php
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a positive and significant correlation between subjectsnory test score and the frequency
with which they selected the best respoifse.

The CRT contains three questions for which the ininitialiitive response is often wrong.
Performance on the test is correlated with measured tinferpreces, risk taking in gains, risk
aversion in losses, and other IQ measures [34]. This measoeorrelates with a tendency
to play default strategies in public goods games [1].

Finally, the one-player Takeover game is a single-playeeesi selection problem in which
the subject is asked to make an offer to buy a company knoviiagthe seller will only sell
if the company’s value is less than the offer. Given the patens of the problem, all positive
offers are unprofitable in expectation, yet many subjedtsifetim to the “winner’s curse” by
submitting positive offers [59], even after receiving fbadk and gaining experience [4].

We normalized each of the quiz scores to a scale of ten pegsilmts. For scoring purposes
during the experiment, we combined the CRT and Takeover gaimene four-question, ten-
point quiz, with answers coded using a binary (correct oolirect) classification. For the
Takeover game, subjects received a positive score if andibtileir bid was exactly zero—
the unique profit-maximizing bitf. The sum of the four quiz scores was calculated for each
player. Players were given no feedback about any playesslate or relative performance on
the quizzes until the end of the experiment, at which poiaytlearned only their own total
quiz score.

After completing the quizzes, the subjects played ten gagamst varying opponents. The
first four games are undercutting games and the last six @ssig game¥. The parameters
of each game are given in Table 1 and Figures 1-4. The fina guessing games are identical
to the first three, with the players’ roles reversed. As in[R3s allows players to play both
roles and also allows subjects’ decisions in GG5, for examia be matched with another
subject’s player-1 decision in GG8 to determine payoffs.

In each game subjects were asked to choose a strategy agaamstom opponent, against
the opponent (other than themselves) with the highest satale on all of the quizzes, and

18[18] use this observation as a plausible justification feirthssumption that the the relative frequencies of two
consecutive levels andk — 1 (f(k)/ f(k — 1)) is declining ink, which then motivates their restriction to Poisson
distributions of levels.

9n the data analysis below we disaggregate the CRT and Tekgmme quizzes and treat them separately.
The rationale for combining them in the experiment was tow@néa single question (the Takeover quiz) from
having an excessively disproportionate weight. Also, inanalysis we use a score for the Takeover game that
is linearly decreasing in a subject’s bid. Specifically, bjeat who submitted a bid df; was scored as earning
10(1 — b;/ max; b;) points in our analysis.

20as we discuss later, in Result 4, we conducted a secondidaraf the experiment in which we reversed the
order of the two families of games. The results are very simihdicating that the order of games did not affect
the results.
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Game Player's Opponent’s
ID Game Type Limits & Target | Limits & Target

UG1 | Undercutting Game See Figure 1

UG2 | Undercutting Game See Figure 2

UG3 | Undercutting Game See Figure 3

UG4 | Undercutting Game See Figure 4

GG5 | Guessing Game | ([215,815],1.4) | ([0,650],0.9)

GG6 | Guessing Game | ([100, 500],0.7) | ([300,900], 1 3)

GG7 | Guessing Game | ([100,500],0.5) | ([100,900], 1.3)

GG8 | Guessing Game| ([0,650],0.9) | ([215,815],1.4)

GGY9 | Guessing Game | ([300,900],1.3) | ([100,500],0.7)

GG10| Guessing Game | ([100,900],1.3) | ([100,500],0.5)

TABLE 1. The ten games used in the experiment.

against the opponent (other than themselves) with the kseese on the quizzes. All choices
were made without feedback. After making these three cBaiceall ten games, players
learned that they could “loop back” through the games toseethieir choices if desired. This
could be done up to four times, for a total of five iteration®tlgh the ten games, all without
feedback?

Once subjects finished all five iterations—or declined theoofunity to loop back—their
play was recorded, four of their choices were randomly sete@two from the undercutting
games and two from the guessing games), and they were matithezhother player and paid
for their decisions. Subjects earning less thérfthe standard show-up fee) were péiifor
their time. Subjects earned an averag82i.85 overall.

6 DATA ANALYSIS PROCEDURES

Each subject played ten games, each against three diffeppainents, for a total of thirty
game-play observations per subject. We employed threalsigfi = {7©, 7° 711) indi-
cating, respectively, whether the opponent had the lowgigtsgore, was randomly selected,
or had the highest quiz score. Following CGCO06 (and oth&rs)focus on the case where
v(k)(k—1) = 1forall k > 0 ando? is uniform overs;. We chose games so that the estimated
levels (or, at least, players’ relative rankings of levels) fairly robust to these assumptions.
Furthermore, the guessing-game parameters were chosemmimong the CGCO06 parameters
to maximize the distance between any two levels’ predictemtegyy choices; this helps to
minimize the error in subjects’ level estimates.

2IMost subjects do not use the “loop back” option. In the undgimg games 15.5% submit a final choice
different from their initial choice. In the guessing gamieis drops to 7.2%.
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For each subjeat signalr, and set of games C I" we can estimate a levél;(G, 7), using
a simple maximume-likelihood approach that follows clos€i§gC06. Specifically, for each
player: and levelk we define a likelihood functiot (s, |k, \;, €;) for each levek based on
the assumption that playemplays the Levelk strategysf7 with probabilitye;, and otherwise
maximizes a random expected utility with belief§:), extreme-value-distributed noise, and
sensitivity parametek;. We allow both parameters;(and);) to differ across players.

Formally, lets;,, be the value of the observed, . rounded to the nearest integer, and let
I;(siyr, k) be an indicator function that equals oneiif, = wa wheres* denotes the Level-
strategy for playei in game~.? I;(s;,., k) equals zero otherwise. Thuk(s;,,,k) = 1
indicates that played exactly the Level- strategy, allowing for rounding. The likelihood
function fork # 0 is then given by

exp ()\i > Uil Siyrs af) V(]{Z)(FL))
fSi exp (A >, wi(z, af) v(k)(r)) dz;
Fork = 0 we setL(s;,,|0, \;, £;) equal tOUZ-OA/, which is assumed to be the uniform distribution
over.s;.
For any set of gameS C I', denotei’s strategies given signalby s;q; = (Siy.7)yeq. FOr
each levek € Ny U { N}, the maximum likelihood of observing. is given by
L*(sigr|k) = max [ L(sie Ik, \i,e2).

Ai>0,e;€[0,1
[ ]WGG

L(Sifw—w{i, )\Z‘, 5@) =&; Ii(si'yn ]{?)—F(l—éz)(l—IZ(SWT, ]{7)) (

In practice, we search over a non-uniform grid of 122 possialues for\; and a uniform grid
of 19 possible values far; for each playei. The maximum-likelihood level for playeris
then given by

ki G, - L* 1GT ]{f .
(G.7) arg, max (sicr|k)

Our games and our model of noisy play are such that the maxitikefihood level is generi-
cally unique. Given that levels greater than three are \aagly observed in past data, we only
calculate likelihood values for € {0, 1,2,3, N}.

We consider two types of analyses. First, we estimate fdr salject one level for all under-
cutting games® = {1,...,4}) and another level for all guessing gamés£ {5,...,10}).
This enables us to compare stability of levels across famdf games. This pooling of several

22| strategies are integers in the undercutting games, iichvbases;, - = sir.
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Game LO L1 L2 L3 Nash
UGLl| 7.76% 32.76% 19.83% 10.34% 29.31%
UG2| 7.76% 32.76% 22.41% 7.76% 29.31%
UG3| 5.17% 27.59% 18.10% 5.17% 43.97%
UG4| 6.03% 31.03% 29.31% 5.17% 28.45%
UGs Pooled 4.31% 28.45% 26.72% 5.17% 35.34%
GG5| 6.03% 70.69% 9.48% 12.07% 1.72%
GG6| 0.86% 65.52% 17.24% 11.21% 5.17%
GG7|43.10% 37.07% 13.79% 1.72% 4.31%
GG8| 6.90% 39.66% 24.14% 21.55% 7.76%
GGY9| 517% 42.24% 23.28% 4.31% 25.00%
GG10| 9.48% 38.79% 24.14% 19.83% 7.76%
GGs Pooled 1.72% 50.00% 10.34% 10.34% 27.59%
TABLE 2. Frequency of levels in each game, and when pooling eacityfafrgames.

games per estimate also matches the standard procedurstifoaing levels in the litera-
ture? Second, we estimate for each subject a levelany game (¢ = {~}). This enables us
to compare stability of levels within each family of gantés$n the appendix, we also explore
intermediate cases where two or three games per estimaiseate

7 RESULTS
Result 1: Aggregate Distributions of Levels

The distributions of levels, both for each game family andefach individual game, are shown
in Table 2. The aggregate game family distributions repregerly typical distributions of
estimated levels: Level-0 is observed fairly infrequeritlvel-1 is the modal type, and Level-
2 and Level-3 are observed less frequently. The distribubo guessing games is similar to
the distribution found by CGC06. We do find that Nash play im ondercutting games is
noticeably higher than what is found in many other games.

23As a robustness check, we apply our procedure to CGCO06's platding all games to generate a single esti-
mated level per subject (as in their paper), and find exagestiby-subject agreement between our estimated
levels and theirs.

24n this casek; (G, ) represents an assignment rule rather than an economein@mes since only one ob-
servation is used for each “estimate” and no standard ecamsbe calculated. For the case|6f = 1, we
alternatively estimated levels in the guessing games loyimditings and ;(s;-, k) and settingh = 1.33 (the
average estimated value dfin CGCO06 using only subjects’ guesses). We then assigiietd @ach observation
using maximum likelihood as described above. Under this peweedure, 85.5% of observations receive the
same level assignment as in our original procedure. Rouggifyof the observations whose level changes be-
came Level-0 observations, implying their likelihood v@kimply falls below the uniform distribution likelihood.
None of the key results of the paper change under these aitarestimates.
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Within the family of undercutting games, the distributidrtypes is generally stable across
games. In all four games, there is a high proportion of L1, h@ lash behavior, and relatively
little behavior corresponding to LO and 3.

Within the guessing games, however, distributions of Ewary substantially from one
game to the next. For example, the fraction of Level-0 playps from 0.86% in guessing
game 6 (GG6) to 43.10% in GG7. The fraction of Level-1 playrtyedoubles from GG7
to GG5. Nash play ranges from 1.72% in GG5 to 25% in GG9. Thigests that either the
Level-£ model lacks descriptive power in these games, or else @dgeels shift substantially
between games.

We also find that 14.22% of all observations in the guessimgegacorrespond exactly to
one of the four (non-zero) levels’ predictions, after romgd This is clearly greater than the
0.7% frequency which would occur if actions were random \aitlniform distribution. The
most frequently-observed exact hit is the Level-1 actiarwhich players best respond to the
midpoint of their opponent’s interval, which accounts foughly one-half of all the exact
hits 26

In an online appendix, we compare a graphical illustratibthe likelihood functions for
each level with a histogram of actions. This analysis shdwas there does not appear to be
a substantial and regular concordance between actionharmutedicted behavior of different
types across games. That is, the spikes in the likelihooctifums do not consistently coincide
with spikes in the data for any type across the different gafhe

25 evel-0 is necessarily under-counted here, since a prigpoof all observed actions should be coming from
Level-0 players. Although this cannot be corrected at aividdal level, the aggregate frequency can be adjusted.
The result simply shifts mass uniformly from the higher lexaown to LO.

26By contrast, 48.9% of the observations in CGCO06’s data éxaotrespond to one of the four levels’ predic-
tions. Cross-game variation in the distribution of levadsmrins high, however. See the online appendix for
details. Again, we conjecture that these differences aestddifferences in experimental instructions and their
use of a best-response understanding test.

2MThis exercise also reveals purely mechanical reasons wWijgats are classified more frequently as the Level-1
and Nash types. First, Level-1 beliefs are disperse, whiehms its likelihood function is quite flat. At the
same)\;, all higher levels have ‘spike-shaped’ likelihoods thateed the Level-1 likelihood only in a small
neighborhood around the predicted action. With uniforiilstributed random data, for example, Level-1 would
be estimated to be the modal type for this reason. Secontiiable type’s predicted play is often at a boundary,
so that logistic-response trembles can only occur in oreetion. This truncation doubles the likelihood function
on the interior of the strategy space, giving it a relativeaadage over types with an interior prediction. We do
find that estimated values of differ significantly across levels, but this appears to leappecause those with
noisier decisions are more likely to be classified as Lewdlid to its flatter likelihood function. In fact, the same
correlation between; andk is found when estimated on randomly-generated strategy ddttis suggests that
these two parameters do not capture independent traits-v&l-Resubject who becomes noisier is likely to be
re-classified as Level-1—and that the correlation betwkemtshould not be interpreted as an insightful result.
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From| To — LO L1 L2 L3 Nash
LO | 0.0% 60.0% 0.0% 20.0% 20.0%
L1[6.1% 424% 6.1% 9.1% 36.4%
L2 |0.0% 51.6% 16.1% 9.7% 22.6%
L30.0% 33.3% 33.3% 0.0% 33.3%
Nash| 0.0% 56.1% 7.3% 12.2% 24.4%
Overall| 1.7% 50.0% 10.3% 10.3% 27.6%
TABLE 3. Markov transitions from the pooled undercutting gameghi®
pooled guessing games.

Result 2: Persistence of Absolute Levels

To examine the hypothesis that levels are constant acrase&;(v,7°) = k;(7/, 7°) for

all v and~’), we generate a Markov transition matrix of levels betwdanttvo families of
games. Table 3 reports the frequency with which a subjecesirem each level in the pooled
undercutting games to each level in the pooled guessinggafnem the table, it is apparent
that most of the transitions are into Level-1 and Nash typethé guessing game, and that
these transitions do not show great correlation with a s'bjg/pe in the undercutting games.
The distributions in separate rows of Table 3 are generatilar to the overall distribution in
the final row, which would occur if types were independenbasifamilies of games.

As a measure of the stability of levels across games, considgrediction accuracy of the
Level-k model assuming; is constant. This is simply the probability that a playerygléhe
same level in two different games. We refer to this probgbas theconstant-level prediction
accuracy, or CLPA. Mathematically, the CLPA equals the main diagonal of thelkda matrix
weighted by the overall probability of each level. If types aonstant then the main diagonal
entries are all one, as is the CLPA. If types are randomly drdngn each row of the Markov
matrix equals the overall distribution, and so the CLPA mpy the sum of squared overall
probabilities in any row. In Table 3 the overall frequenaéshe levels would imply a 29.4%
CLPA under the null hypothesis of independent, randoméair levels. The actual CLPA is
27.3%, suggesting a slighegative correlation in types across games.

To test whether levels are uncorrelated, we generate 18d@p0les of 116 randomly-drawn
levels, with each sample drawn independently using theadivdistribution from Table 3. For
each sample we calculate the CLPA, generating an approidistribution of CLPA values
under the null hypothesis. A comparison of the actual CLP&his distribution fails to
reject the null that levels are randomly drawn across gamdiés (p-value 0.68)8
28The cross-game (or cross-family) correlations can be adstested statistically for any pair of games by cal-

culating the Cramér correlation coefficient for categalritata [see 61, p.225] and comparing it against the null
hypothesis of independently-drawn levels, which wouldegin expected Cramér correlation of zero. When
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From| To — LO L1 L2 L3 Nash
LO [43.0% 22.6% 7.5% 9.7% 17.2%
L1| 4.9% 59.7% 14.6% 4.4% 16.4%
L2 | 2.2% 20.2% 57.1% 9.0% 11.5%
L3 | 9.1% 19.2% 28.3% 18.2% 25.3%
Nash| 3.5% 15.6% 7.9% 5.5%67.5%
Overall| 6.7% 31.0% 22.4% 7.1% 32.8%
TABLE 4. Markov transition between single-game levels within fitver un-
dercutting games.

From] To — LO L1 L2 L3 Nash
LO| 8.7% 482% 18.1% 12.3% 12.8%
L1]11.7% 531% 16.8% 11.2% 7.1%
L2 |11.5% 442% 27.4% 10.0% 6.9%
L3[12.4% 46.6% 15.9% 13.2% 12.0%
Nash| 17.7% 40.3% 15.0% 16.3% 10.7%
Overall| 11.9% 49.0% 18.7% 11.8% 8.6%
TABLE 5. Markov transition between single-game levels withingheguess-
ing games.

Tables 4 and 5 also show these transition matrices for thgdesgame levels in the un-
dercutting and guessing games, respectively. Clearlyeptalevels are more stable in the
undercutting games than in the guessing games. In the untiegcgames, over half of all
Level-1, Level-2 and Nash types keep the same type acrossggdmthe undercutting games,
the overall frequencies of the levels (given in the last réwWable 4) would imply a CLPA
of 26.3% if types were randomly drawn. In fact we observe a &£ bP57.6%, indicating
substantially stronger predictive power than if types wareely random, though still far from
perfectly accurate. In a Monte Carlo simulation of 10,00tgkes of independently-drawn
levels, none have a CLPA this large. Thus, we reject the iyplbthesis of random levels with
ap-value of less thafn.0001.

The results are quite different in the guessing games, whevel-1 acts as an absorb-
ing state. Little difference is seen between the rows of 8d&hlsuggesting no correlation
across games. The realized prediction accuracy (CLPA).i8%84The expected CLPA under
randomly-drawn levels is 31.1%. Our Monte Carlo simulatddmandomly-generated levels
does reject the null hypothesis withpavalue of 0.0030, though the absolute magnitude of

comparing between the two families of games using pooledegestimates (Table 3), the null hypothesis of
independently-drawn types again cannot be rejected, w@haanér correlation of only 0.177 andpavalue of
0.562.
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the difference (34.7% versus 31.1%) implies little realngiai predictive accuracy over the
assumption of random levets.

We conclude that estimated levels can reasonably be moae@zhstant within certain fam-
ilies of similar games, but not within other families. Thigggests that Level-thinking may
be applied robustly in some settings, but not in othersld gtiidance is currently available as
to which families of games will trigger Levél+easoning and which will not. In short, using
a player’s level in one game to predict her action in anothay bre a futile exercise without
further information about the factors that determine whettevel reasoning is triggered.

Result 3: Persistence of Relative Levels

To examine the frequency with which the ordinal ranking afygrs’ levels changes between
the two families of games, we consider each possible paiwofglayers and measure the
frequency with which the strictly higher-level player ineogame becomes the strictly lower-
level player in anotherk{(vy, ) > k;(v, 1) butk;(v',7) < k;(7/,7)). We refer to this as the
“switch frequency.” This is compared against the “non-stifrequency,” or the frequency
with which the same player has a strictly higher level in bgdimes ;(v, 7) > k;(v, 7) and
ki(y',T) > k;j(+', 7)). Pairs whose levels are the same in at least one game avelegcko the
switch and non-switch frequencies often do not sum to one “$Stvitch ratio” is the switch
frequency divided by the non-switch frequency; this has>geeted value of one under the
null hypothesis of independently-drawn levels. Under tlegdl4 model with stable relative
levels, the ratio will equal zerd.

The switch frequency, non-switch frequency, and switclorahen comparing the pooled
undercutting games to the pooled guessing games are réporfable 6. The table also
reports these statistics for the four undercutting gamas tlae six guessing games. The last
column shows the predicted values under the null hypotleésmslependently-drawn levels.

For the comparison between game families, switching dgtoaturs more frequently than
non-switching. In other words, if Anne exhibits a higherdethan Bob in the undercutting
games, then Bob is more likely to have a higher level in thesging games. Our 10,000-
sample Monte Carlo simulation actually rejects the nulldtiesis in favor ohegatively cor-
related levels, with a-value of 0.0230. This is consistent with our earlier obagon that
absolute levels are negatively correlated across fanafigames.

2%ur analysis of the CGCO06 data (in the online appendix) lev@&LPA of 41.9%, which is between that of
our guessing games and our undercutting games.

30n practice, the switch ratio would not exactly equal zemcsisome Level-0 players would be incorrectly
identified as higher-level players. Our simulations sugtiesactual switch ratio would be around 0.09 using our
overall level distributions.
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Data Null Hyp.
Pooled UGs vs. Pooled GGs
Switch Frequency: 25.0% 24.9%
Non-Switch Frequency: 22.7% 24.9%
Switch Ratio: 1.10 1.00
Undercutting Games
Switch Frequency: 13.2% 27.1%
Non-Switch Frequency: 45.3% 27.1%
Switch Ratio:  0.29 1.00
Guessing Games
Switch Frequency: 19.9%  23.8%
Non-Switch Frequency: 22.2%  23.8%
Switch Ratio:  0.89 1.00
TABLE 6. Observed frequency with which two players’ levels slyistwitch
their ordering, compared to the expected frequency unddependent,
randomly-drawn levels.

Since absolute levels within the undercutting games aréy fatable, we expect similar
persistence in subjects’ relative levels. This is the ca$en-switching pairs are observed
more than three times more frequently than switching p@ngng a switch ratio of 0.29.
None of the 10,000 simulated samples have a switch ratidawisndicating a clear rejection
of the null hypothesis at the 0.0001 level.

In the guessing games, however, switching occurs nearlyegsiéntly as non-switching,
with a switch ratio of 0.89. The Monte Carlo simulation yielad marginap-value of exactly
0.05. Thus, while there is some stability of relative leweiihin the guessing games, it is much
weaker than the stability we observe in undercutting gaimet, in magnitude and statistical
significance.

Overall, we conclude that little to no extra predictive powgegained by considering relative
levels instead of absolute levels. Assumings constant for each subject performs roughly as
well as assuming the ordering bf across subjects is constant.

Result 4: Robustnessto Order of Play

In our experiment, every subject played the games in the sader, with the undercutting
games (UG1-UG4) first and the guessing games (GG5-GG1M)&edde find conformance
with the Levelx model in the first set of games, but not in the second. One eapta for this
result is that subjects become fatigued or lose attenti@utih the course of the experiment,
leading to more random play in later games. To test this thgsi$, we ran two new sessions
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in which the order of the games was completely reversed. fyneight Ohio State subjects
participated in two sessions of fourteen subjects eachgusdightly modified versions of our
original software and instrucitori$ Participants took the quizzes, played GG10 through GG5,
and then played UG4 through UGL1.

Recall that in our original data, the CLPA within the familitmdercutting games is 57.6%,
which is significantly greater than the 26.3% expected unaledomly-drawn levels. In our
new experiment, where the undercutting games are play@mhdethe CLPA rises to 62.5%,
indicating a slightly stronger conformance with the Lekehodel. Again we reject the null
hypothesis)g < 0.0001). The switch ratio, however, rises from 0.29 in the origitata to 0.37
in the new data, indicating slightly weaker conformancéwliie Levelx model. But again we
reject the null hypothesis of random levels with: 0.0001. So the overall conclusion remains
the same: across-game behavior in the undercutting ganfeadysconsistent with the Level-

k model, and certainly far from behavior expected under thmothesis of randomly-drawn
levels, even when these games are played second.

For the guessing games, the CLPA shifts from 34.7% in ourrmalglata to 38.3% when
these games appear first. This suggests slightly strongésrcoance with the Level-model.
Again we reject the nully{ = 0.0070), but note that the predictive accuracy is only 6.4 per-
centage points higher than under randomly-generatedsleVék switch ratio, however, rises
from 0.89 in the original data to 0.93 in the reversed treatmedicating less conformance
with the Levelx model. Again we cannot reject the null hypothegis(0.281).

In summary, we do not find that overall conformance with thedl& model is signifi-
cantly improved in the guessing games when they appeardinsiprsened in the undercutting
games when they appear secdfhdlhus, we reject the hypothesis that order effects explain
our results.

370 determine how many subjects were needed, we ran a bggsttgpower calculation for the Monte Carlo
test of switch ratios. Specifically, for various valuesrof< 116, we created 10,000 simulated data sets by
drawingn subjects (with replacement) from our original data. Thergeeerated 10,000 samplesio$imulated
subjects with randomly-chosen levels. The power of the Md@drlo test af: is the fraction of “real” data sets
whose switch ratio is less than 95% of the “random” data Séis.usual minimum power requirement of 80% is
achieved ati = 9. To be conservative, we aimed to recruit at least 20 subjants actually had 28 participate.
Our test power is over 99%.

32Game-by-game level distributions look similar to the amgidata, though the reversed data exhibit slightly
more Level-1 and Level-2 play and less Level-3 and Nash flag.distributions are fairly stable in the undercut-
ting games and highly variable across guessing games. Twede-family CLPA rises to 41.0% in the reversed
treatment, but we still cannot reject the null of randomlgye = 0.112). The between-family switch ratio drops
noticeably from 1.10 to 0.76, but again we cannot reject thpothesis of random levelg & 0.308).
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| Const. IQ EyeGaze Memory CRT Takeover
Coefficient| 39.179  0.620 0.250 -0.275 0.679  -0.229
p-value| (<0.001) (0.204) (0.318) (0.215)(0.002) (0.261)

TABLE 7. Regression of expected earnings on the five quiz scores.

Result 5: Using Quizzesto Predict Levels

We next consider whether the five quizzes we administeredt@al independent measures
of strategic sophistication—the 1Q quiz, the Eye Gaze gaimemory quiz, the Cognitive
Reflection Test (CRT), and a one-player Takeover Game—grbdhavior in the games. Be-
cause levels in the guessing games are very unstable, we dapert them to be predictable
by quiz scores. But levels in the undercutting game areestablwe are particularly interested
in whether these levels can be predicted using the quizzes.

First we examine correlations between scores on the vaguiages. These are surprisingly
weak. 1Q, memory, and CRT scores all appear to be positivalsetated, though their es-
timated Spearman rank correlation coefficients achieve wrrginal significance. No other
correlations are statistically significant. One might eatjire that our subjects did not exert
sufficient effort on the quizzes, leading to noisier scobeg,absolute performance seems in
line with previous studies for all quizzes except the Talke@ame’® Thus, we do not believe
the lack of correlation is caused by unusually poor perfarcesor lack of effort. Instead, we
believe these quizzes measure relatively orthogonastrait

Next we ask whether quiz scores predict overall earningsre@ioce randomness in the
earnings measure, we calculate what each subject’s expeateings would be in each game
if they played against the empirical distribution of acsaf all other subjects. The correlation
between subjects’ total expected earnings and the sum iofitheequiz scores is positive, but
not statistically significant (Spearman correlation of 2 With p-value 0.064). Regressing
total expected earnings on each quiz (Table 7) reveals tiatloe Cognitive Reflection Test
(CRT) score is significantly correlated with expected aaysi

Intuitively, players using higher levels should be morelssficated. But they do not earn
more money. Indeed, Level-2 is the most profitable type,esmost subjects are estimated to

33In the Eye Gaze test, [7] report that the average score inghergl population is 81%. Our subjects scored
80% on average. In the Wechsler digit span quiz, the averagéaer of digits correctly recalled before the first
failure is 5.63. In clinical applications the test stop®afivo failures; the average score among normal adults is
between 5 and 7 [21, p.416], consistent with our resultshénQRT, the percentage of players scorifgl, 2, 3)
(respectively) is(36%, 28%, 22%, 14%), which is very close to the overall average (88%, 28%, 23%, 17%)
reported in Frederick’s (2005) meta-study. In the Takedvame, our subjects performed worse than in past
studies: the mean bid was 94.3 for our subjects, while masies report mean bids around 50 [39, e.g.]. We do
not have comparable data for our Mensa IQ test scores.
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Eye Gaze Scorevs L-O | vsL-1 | vsL-2 | vsL-3| vsN
Level-0Of —— | -0.311| -0.821 | -0.865 | -0.643
(n=5) (0.223)| (0.006) | (0.048) | (0.020)
Level-1| 0.311 | —— | -0.510 | -0.553| -0.332
(n=33)| (0.223) (0.011) | (0.143)| (0.048)
Level-2| 0.821 | 0.510 | —— | -0.044| 0.178
(n=31)| (0.006) | (0.011) (0.909)| (0.361)
Level-3| 0.865 | 0.553 | 0.044 | —— 0.222
(n=6) | (0.048) | (0.143)| (0.909) (0.554)
Nash| 0.643 | 0.332 | -0.178| -0.222| ——
(n=41)| (0.020) | (0.048) | (0.361)| (0.554)
TABLE 8. Multinomial logit regression coefficient estimates oeHEyaze quiz

scores on pooled undercutting game levels. Each columesepts a regres-
sion with a different omitted category.

be Level-1 types. When looking at correlations between goares and estimated levels, we
therefore do not restrict ourselves to a linear relatignsds Level-2 types may actually score
the highest on the quizzes.

We focus on predicting levels estimated from the pooled liasdbf games. For each type
of quiz, we first perform a Kruskal-Wallis test of the null lotpesis that all five levels’ quiz
scores are drawn from the same distribution. If this nulldtppsis is rejected for some type
of quiz, then that quiz is diagnostic of at least one of the éisgmated levels. In that case, we
perform a mutlinomial logistic regression of levels on tpatticular quiz score to see which
levels have significantly different quiz scores. Since maolhial logistic regressions require
an omitted level against which all others are compared, omggesregression is not useful in
analyzing all possible comparisons. We therefore reperttefficient estimates from all five
possible regressions, where each regression omits aatiffavel*

Figure 6 shows a box plot of the distribution of each quiz ecor each of the five estimated
levels in the pooled undercutting games. Phelues of the Kruskal-Wallis tests for each quiz
type appear in parentheses at the top of the graph. We findisag differences across levels
only for the Eye Gaze quiz, where Levels 0 and 1 appear to penfmrse. The multinomial
logistic regression results (Table 8) confirm that Levely@ Esaze scores are significantly
lower than those of Levels 2, 3, and Nash, and that Level-flescare significantly lower than
Level-2 or Nash scores.

34These five regressions are not meant to be treated as indepeasts; rather, reporting them all provides a
better view of what is essentially one regression. Usingtimumial regression does control for the multiple
comparisons within the regressiare(, within each column).
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FIGURE 6. Box plots of quiz scores for each estimated level in thelgmbo
undercutting gameg-values in parentheses are for Kruskal-Walis tests that all
levels generate the same distribution of quiz scores.

The Eye Gaze correlation with Level-0 and Level-1 play hasiiive appeal: Poor perfor-
mance on the Eye Gaze quiz is diagnostic of adult autism [6f &utism is often characterized
the absence of “theory of mind” [5], or an inability to recazmthat others behave in response
to conscious thought. This suggests that some of the Leaati@ evel-1 types are less able to
consider others’ beliefs and strategies in games, leatizm to play more low-level actioris.

Figure 7 reports the score distributions for levels estaddtom the six pooled guessing
games. The Kruskal-Wallis tests indicate that the CRT hasegmower in predicting subjects’
levels. Specifically, the multinomial logistic regresssdiiable 9) indicate that Level-2 can be
distinguished from the two higher levels, but not from the tawer levels.

3N p-beauty contest games, [22] find that higher-level play&lsbét greater neural activation in the medial
prefrontal cortex (MPFC). Theory-of-mind experiment®disd activation in this region (among others). These
results are roughly consistent with our Eye Gaze finding, @sd suggest more predictable heterogeneity in
p-beauty contest games.
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FIGURE 7. Box plots of quiz scores for each estimated level in thelgmbo

guessing gamesp-values in parentheses are for Kruskal-Walis tests that all

levels generate the same distribution of quiz scores.

If levels in the guessing games are unstable, how can the @QRTbeg predictive of Level-
2? Because Level-2 is also a proxy for higher earnings. Weadir know that the CRT quiz
predicts earnings (Table 7), and those who earn more arelikelseto be classified as Level-2,
so the correlation between CRT quizzes and Level-2 apppar®sis.

We perform similar analyses for game-by-game levels, aeddbults are consistent with
the pooled-game results. In the undercutting games, [ddkat play the Level-1 action in at
least three of four games have lower Eye Gaze scores thamsl@v2, and Nash. They also
have higher Takeover Game scores than Levels 0 and Naste gu#dssing games none of the
quizzes are diagnostic of levels; the Kruskal-Walhgalue for the CRT is 0.082 (with subjects
estimated to be Level-2 in a majority of games scoring thédsg), and is greater than 0.15

for all other quizzes.
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CRT Score vsL-0| vsL-1| vsL-2| vsL-3| vsN

Level-0| —— -2.730| -2.883| -2.574| -2.607
(n=2) (0.824)| (0.815)| (0.834)| (0.832)
Level-1| 2.730 | —— -0.153| 0.156 | 0.123
(n=58)| (0.824) (0.098)| (0.133)| (0.072)
Level-2| 2.883 | 0.153 | —— 0.310 | 0.277
(n=12)| (0.815)| (0.098) (0.018) | (0.008)
Level-3| 2.574 | -0.156| -0.310 | —— -0.033
(n=12)| (0.834)| (0.133)| (0.018) (0.766)

Nash| 2.607 | -0.123| -0.277 | 0.033 | ——
(n=32)| (0.832)| (0.072)| (0.008) | (0.766)

TABLE 9. Multinomial logit regression coefficient estimates of TCRuiz
scores on pooled guessing game levels. Each column refgseseagression

with a different omitted category.
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Result 6: Responsiveness to Sgnals About Opponents

vs. High

29

In each game each subject is asked to choose a strategytagenslomly-selected opponent,
against the opponent with the highest total quiz score, gathat the opponent with the low-
est total quiz score. Although quiz scores are not strorgpted to levels of play—and the
relationship certainly is not linear—they are correlatethwotal earnings, so we hypothesize
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FIGURE 9. For eachk, the percentage of Levélsubjects in pooled undercut-
ting games who do not change levels in response to opponseg.ty

that subjects might treat quiz scores as proxies for sti@segphisticatiort® Thus, how sub-
jects respond to their opponents’ characteristics mayigeoanother testable prediction for
the Level4 model.

Figure 8 shows the histogram of estimated levels in the poahelercutting games for each
of the three types of opponent. Subjects appear to incréaselével of reasoning against
stronger opponents. In particular, Level-1 and Level-28/pecome less frequent—and Nash
types more frequent—when playing against opponents wiheiquiz scoresy? tests con-
firm that the distribution of levels is significantly differebetween the low-score and high-
score opponentpfvalue of(0.018), though not significantly different between the low-score
and random opponentg-{alue of(0.767) or between the random and high-score opponents
(p-value of0.185).

While the above differences in behavior by opponent areesteng, we are concerned with
whether any information can predict this adjustment. Thatan we predict which subjects
have a high enough “capacity” to be able to adjust their bieihan response to information
about opponents? We therefore ask whether quiz scorecptiedimagnitude of adjustment.
Using the pooled undercutting games, we measure for eagicstie difference between their
estimated level against a high-scoring opponent and tegmated level against a low-scoring
opponent. This difference is then regressed on the five goizs. No regression coefficients
are found to be significantly different from zero. Thus, geiz fail to measure the propensity
to adjust play against stronger opponents.

36Many subjects’ responses to a debriefing questionnairerooitiis hypothesis.
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FIGURE 10. Level distributions by opponent in the pooled guessemes.

Looking at which subjects daot shift strategies yields more informative results. For éach
we calculate the fraction of Levélplayers in the pooled undercutting games against random
opponents whose levels do not shift in response to high-vessiooring opponents. We refer
to these astable players. The percentage of stable players for éagte shown in Figure 9. If
players’ levels are constrained by their capacities, wellshexpect that low-level players are
more likely to have low capacities, and therefore are maaylito appear as stable players.
The data is consistent with this hypothesis for Level-1digioLevel-3. Nash types, however,
are the most stable. For the capacity-constrained Lievetdel to hold, it must be that these
players all have high enough capacities so that their chiesehis always greater than four.
Such high levels are rarely observed in the literature, ssiigg that these players are more
likely “stubborn Nash” types who play Nash equilibrium ségies regardless of the opponent.
Thus, there may exist heterogeneity amongst players bepentumber of best responses they
perform.

Similar analyses in the pooled guessing games (Figure &@)s/mo significance differences
in the low-vs-random and low-vs-high comparisor$ f-values of 0.185 and 0.769, respec-
tively). We do find a significant difference in level distriians between random opponents and
high-scoring opponentg{value of 0.035), but the mean level against high-scoringpognts
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Frequency i.i.d. Prob.
Pooled UGs vs. Pooled GGs

Both change in same direction: 27.0% 24.9%
Both change in opposite directions: 29.1% 24.9%
Opposite/same ratio: 1.078 1.00
Undercutting Games
Both change in same direction: 9.6% 27.1%
Both change in opposite directions: 8.5% 27.1%
Opposite/same ratio: 0.884 1.00
Guessing Games
Both change in same direction: 26.6% 23.8%
Both change in opposite directions: 16.5% 23.8%
Opposite/same ratio: 0.618 1.00

TABLE 10. Observed frequency of game-rank switching among ranukins
of subjects between randomly-drawn games, compared toxihectd fre-
quency under independently-drawn (i.i.d.) types.

is actually lower than against random opponents (1.957ge2s121), and a Wilcoxon-Mann-
Whitney test reveals no stochastic dominance of these thselbutions f-value 0.541), so
we cannot claim that players’ levels unambiguously shiffapdown) against stronger oppo-
nents®’

In summary, we do see some subjects adjusting their redbxets against different oppo-
nents, particularly in the undercutting games. This ingissome responsiveness to signals
about opponents, but neither the observed levels nor theesgores are useful in predicting
which subjects will make this adjustment.

Result 7: The Persistence of Players Ordering of Games

An alternative identifying restriction one might imposetbe Levelx model is that the rank-
ing of games be consistent between players. Formally, tbisgdwequire that ifk;(y, 7) >
ki(+', ) for somei and~y thenk;(y,7) > k;(+/,7) for all 5. In this way the Levek model
could be thought of as providing a measure of (relative) gdiffieulty or complexity.

Table 10 shows the frequency with which a randomly-drawn gigplayers changes levels
in the same direction when moving between two randomly-eha@games, or in the opposite
direction. These frequencies do not sum to one since paiesendt least one player does not
switch levels between games are excluded. The reportedenetes are compared against

37[49] shows that this test can be viewed as a test of stochdmtitnance, even with discrete distributions. [33]
provide an excellent survey of valid perspectives for thg.t
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the expected frequencies if levels were drawn indepengénth the empirical distribution of
types.

Comparing the pooled undercutting games with the pooledsing games, switches occur
more often in the opposite direction than in the same dwactl he ratio of switch directions
is close to 1, which is what one would expect if levels wereepehdently drawn in each game
family. A Monte Carlo simulation with 1,000 samples showatttine empirical ratio of switch
directions fails to reject the null hypothesis of indeperttjedrawn levels, with a-value of
0.380. Thus, the two families of games cannot be clearlyegdnising estimated levels.

In the undercutting games we find some support for stabifityame orderings. It is more
likely that players switch levels in the same direction e#w games, as opposed to in the
opposite direction. A Monte Carlo simulation shows thatrwgo of switch directions is not
consistent with the null hypothesis of independently-drdevels, with ap-value of 0.026.
Although this result is statistically significant, its uskfess is tempered by the fact that the
vast majority of pairs have at least one player maintairtiegsme level between games. Thus,
a fairly large sample of behavior would be needed to rank gabased on observed levels.
Analyzing the game-by-game directions of shifts indicdled UG3 is “easier” than the other
three undercutting games. This is also evident from thetfattUG3 has substantially more
Nash play than the others. The relative ranks of the otheetgames is ambiguous. Thus, the
ability to rank the undercutting games seems to stem epfrein UGS3.

Although the ratio of switch directions is lower in the guegsgames, we cannot reject
the null hypothesis that the ratio of switch directions waseayated by independently-drawn
levels—the Monte Carlo simulation yieldspavalue of 0.070. This occurs because the level
distributions vary more across guessing games, so theneariaf switch directions under the
null hypothesis is much larger.

8 DISCUSSION

As a broad summary of our findings, the success of the Lievebdel is mixed: We find very
little cross-game stability when comparing the family otlencutting games with the family
of two-person guessing games. We do find reasonably strarsg-game stability within the
family of undercutting games, but zero stability in the tperson guessing games. Even in the
undercutting games, however, observed levels are harcethgbiwith our five psychometric
measures, except that Level-1 players may have a less kesmerags of others’ emotions
and cognition. Finally, it appears that some players “stppagainst stronger opponents
in undercutting games, but we are unable to predict who midiesadjustment using either
psychometric measures or observed levels.
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Although ours is the first paper to thoroughly examine cigesie stability of individual
levels, our conclusions about the success of the Levalbdel are broadly consistent with
the past literature. Many papers find strong support for Lévalay in certain games using
behavioral data alone [62, 63, 54, 31, 42, 10, 18] or behalaata augmented with lookup
data [24, 23] or eye-tracking data [19, 65]. For some gammsetier, the Levelk model does
not appear to organize the data well [43, 44, ¥dp0] even find that the model’s fit can vary
within a single game when different components of the pafgofEtion are emphasized, with
a better fit as the game becomes closer to a standhehuty contest and a worse fit as the
game approaches the incomplete-information global ganfg2df The broad conclusion that
emerges from this line of research is that the Levapproach works well in some games, but
not in others.

Camerer et al. [18, p. 873] argue that “fitting a wide rangearhgs turns up clues about
where models fail and how to improve them.” Our researchesgmts one such contribu-
tion, by demonstrating the varying individual-level romess of Levelk models across two
families of games. This suggests that the Levahodel may be one of many possible deci-
sion processes players employ to select strategies in gavets. Different processes may be
triggered unconsciously in different settings, dependingeatures such as the characteris-
tics of the game and the way in which the game is describedutBeantests, simple matrix
games, and our undercutting games all seem to trigger theldkdveuristic in a large fraction
of subjects, while its use appears infrequent in commounevaluctions, global games, and
endogenous-timing investment games. In two-person guggsimes, Levek-reasoning may
not be triggered unless subjects are given sufficient iostmuand experience calculating best
responses prior to play (see the online appendix).

Understanding the boundaries of the domain of applicgbilitthe Level# model means
understanding when it is used, when it is not, and what fadiogger its use; this, in turn,
increases the overall predictive power. At this point, wajeoture that Levek play is trig-
gered by simple, normal-form games of complete informataanwell as in situations where
the game’s instructions directly focus attention on caltinh best responses, either directly
through understanding tests or indirectly through frameffgcts. In other settings we ex-
pect less frequency of Levélreasoning. These hypotheses give rise to a wide range of open
questions that can be addressed in future work.

Given our conclusions, we suggest focusing behaviorabrebkéboth on identifying distinct
decision “heuristics” employed by people playing garaed exploring their triggers. For ex-
ample, [43] identify plausible “rules of thumb” to explaimgir data when Levet-and quantal

38[26] point out that the Levek model fails to account for overbidding in second-price Buns.
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response equilibrium cannot; to what extent do these hegiextend beyond the dynamic
investment game they study? In our two-person guessing gangedo not identify an alter-
native heuristic that organizes the data since our andlysises on players’ estimated levels
and not their actual strategies.

Finally, a multiple-heuristics model of strategic thingitmplies that researchers should
take care in extrapolating the success of any one model tofesample strategic settings.
Instead, future work should focus on understanding whichibgcs are widely used and which
features of a strategic environment trigger the use of iiffeheuristics. We speculate that
experimental protocols, training, and experience all feavempact on the choice of heuristic,
and that the presentation of a game in matrix form (as in odetsutting games) is more
likely to trigger best-response-based heuristics likeL#neel-X model.
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APPENDICESFOR ONLINE PUBLICATION

APPENDIX A (ONLINE): COMPARISONWITH CGCO06

The two-person guessing games used in our experiment vikene frmm [23]. In this appendix
we compare our results to data from their procedurally simiBaseline’ and ‘Open Boxes’
treatments to identify any significant differences. We first our maximume-likelihood proce-
dure on their raw data to generate levels for each subjecadh game, and then repeat all of
the above analyses on those levels. Unlike CGCO06, we alloweeel-0 types (which account
for 9.06% of our data and 9.16% of theirs) but exclude donirasnd sophisticated types
(which occur in 9.09% of their datd.

To our knowledge, there are two notable differences betvoeerexperimental design and
theirs.First, CGCO06 ran their experiments using studaois fUniversity of California, San
Diego and University of York who were enrolled in quantiatcourses but did not have ex-
tensive training in game theory. Our subjects were takem fagool of Ohio State University
undergraduate students, many of whom are economics majersgid not select or filter sub-
jects based on their major or courses. Both subject poolsaapp be standard within the
experimental economics literature.

Second, and perhaps more importantly, the instructionpeséxperiment procedures were
substantially different between the experiments. CGC@étgects read through 19 screens of
instructions that included a four-question test in whicbhjeats were required to calculate
best-response strategies to hypothetical choices of dpgionent, as well as their opponent’s
best-response strategies to their own hypothetical chfic@®ur instructions consisted of
five printed pages and only informed subjects of how theiroffayare calculated. We did
not explicitly ask subjects to calculate best responses gpponents’ best responses), and
we required no test of understanding before proceedingrGikie relatively similar subject
pools, we expect any differences in behavior between theskes to stem mainly from the
instructions and the best-response understanding test.

Table 11 shows that the aggregate distribution of levelsre@GCO06’s guessing games
(estimated game-by-game) looks similar to that found indaia, though with more Level-2
subjects. But, as in our data, the game-by-game frequentiesels feature a large degree

39As a robustness check, we use our program to estimate a fugldor each subject across all 16 games, as in
CGCO06, and verify that our level estimates match theirs ¥erngesubject, excluding those levels and types that
are not common between the two studies.

4OFor example, subjects were asked: “If s’he guesses 500hwhjour guesses earns you the most points?”, and
“If you guess 400, which of her/his guesses earns her/hinmib&t points?”. Any subject who failed to answer
the four questions correctly was not allowed to participatde experiment.
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Game LO L1 L2 L3 Nash
1 7.95% 47.73% 12.50% 19.32% 12.50%
2 14.77% 21.59% 45.45% 18.18% 0.00%
3 14.77% 55.68% 18.18% 11.36% 0.00%
4 14.77% 35.23% 50.00% 0.00% 0.00%
5 14.77% 73.86% 4.55% 6.82% 0.00%
6 7.95% 54.55% 37.50% 0.00% 0.00%
7 9.09% 62.50% 26.14% 2.27% 0.00%
8 5.68% 71.59% 20.45% 2.27% 0.00%
9 13.64% 38.64% 40.91% 2.27% 4.55%
10 0.00% 37.50% 32.95% 26.14% 3.41%
11 10.23% 36.36% 46.59% 2.27% 4.55%
12 1.14% 45.45% 34.09% 18.18% 1.14%
13 4.55% 23.86% 40.91% 10.23% 20.45%
14 10.23% 35.23% 28.41% 18.18% 7.95%
15 7.95% 36.36% 30.68% 13.64% 11.36%
16 9.09% 46.59% 36.36% 2.27% 5.68%
Total 9.16% 45.17% 31.61% 9.59% 4.47%

TABLE 11. Frequency of estimated levels in each game of CGCO06.

43

of heterogeneity across games. In games 2-8, for examplee&@o Nash types, while in
game 13 over 20% of the observations are consistent with &sh Wpe. Level-1 play varies
from 21.59% (game 2) to 73.86% (game 5). Following CGCO06se¢hk5 games are ordered
so that lower-numbered games require fewer rounds of daro@alimination to solve the
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Data L1 L2 L3 Nash| Total
New Data| 14.66% 9.23% 0% 61.67%14.22%
CGC06| 25.36% 21.16% 13.71% 17.61P49.46%
TABLE 12. Frequency of exact conformity with the Levemodel in the new
data and in [23].

From To LO L1 L2 L3 Nash
LO | 20.9% 44.0% 23.6% 7.2% 4.4%

L1| 8.9% 544% 24.9% 8.1% 3.6%

L2 | 6.8% 35.6% 43.1% 10.2% 4.2%

L3 | 6.9% 384% 33.6% 14.3% 6.9%

Nash| 9.0% 36.5% 29.8% 14.7% 9.9%

Overall| 9.2% 452% 31.6% 9.6% 4.5%

TABLE 13. Markov switching matrix of levels in the CGCO06 data.

equilibrium. None of the five levels’ frequencies have a gigant correlation with the game
number (at the 5% level), indicating that this underlyingisture is not driving the variation
in level distributions across games.

One of the largest and most obvious differences between GGCata and ours is the
frequency with which subjects choose strategies that gxestrespond to one of the levels’
predictions (excluding Level-0). Only 14.22% of obsereat correspond to an ‘exact hit’ in
our data, and nearly 20% of CGCO06 observations are exadfaitée 12). Over 25% of Level-
1 observations in the CGCO06 data are exact hits, as are o%&eo2the Level-2 observations.
Our Nash players conform exactly with the predicted strategre frequently than in CGCO06,
though the total number of Nash types is relatively low. Whkebe the differences in exact
hit frequencies—especially among Levels 1 and 2—is mosiylikiriven by the difference
in instructions between studies and their use of a besbresgpunderstanding test, either of
which may trigger a Levek heuristic in subjects.

The stability of levels appears slightly higher in the CGQi2fa, but not as stable as we
found in our guessing games. The Markov transition matriwben games is shown in Table
13. Asin our data, Level-1 acts as an absorbing state, whenggects have a high probability
of transitioning to Level-1, regardless of their currenvele The CLPA (constant-level predic-
tion accuracy) of this Markov matrix is 41.9%. Monte Carlmasiations reveal that this is
significantly higher (at the 1% significance level) than tBe3% CLPA expected if individual
levels were independently drawn from the population cstion of levels in each game. In
absolute terms, a 41.9% CLPA lies between the 34.7% CLPArebdén our guessing games
and the 57.6% CLPA in our undercutting games.



The Persistence of Strategic Sophistication 45

Frequency i.i.d. Prob.
CGCO06 Guessing Games
Switch Frequency: 14.8% 22.9%
Non-Switch Frequency: 26.7% 22.9%
Switch Ratio: 0.553 1.00
TABLE 14. Observed frequency of level-switching among pairs bfestts be-
tween randomly-drawn games in CGCO06’s data, compared texjpected fre-
quency under independently-drawn (i.i.d.) types.

The stability of relative levels in CGCO06's data also liesAmen that of our guessing games
and our undercutting games. Table 14 reveals a switchingo&0.553, which lies between
the ratio of 0.29 found in our undercutting games and 0.89uinguessing games. Monte
Carlo simulations easily confirm that a switching ratio @3B is not generated by random
data p-value less than 0.001), though it implies that one out of\etleree pairs of subjects
with well-ordered levels will generate a strict switch ieihlevels between games.

Finally, using levels to order games also generates a rlestiiteen our guessing game and
undercutting game results: The ratio of strict game-ordetiches over strict non-switches for
randomly-drawn pairs of subjects is 0.683, in between ttie 6d0.618 in our guessing games
and 0.884 in our undercutting games.

The improvement in stability in the CGCO06 data is likely dodhe lengthier instructions
and the use of an understanding test. [28] argue that a égsbmse understanding test is
crucial for replicating field settings because “most pegaem to understand very well how
their payoffs are determined” (p. 32). Although we did najuige an understanding test,
our instructions provided adequate and simple descriptadrsubject payoffs. For example,
subjects in our experiments were told “you will be paid fastilame based on how small your
error is, and smaller errors mean larger payoffs”, mathealedormulas for calculating errors
and payoffs were given along with verbal descriptions, [ffay@s a function of errors) were
shown in graphical form, and two numerical examples wereaaout. In a post-experiment
questionnaire, we received no feedback that subjects veerieiged about payoffs in any of
the games.

We view differences between these studies as evidencehbdtavel4# model’s predic-
tions are not robust to varying protocols, as varying thérircsions and understanding tests
may trigger different behavioral heuristics within the sagame. Applying any one behav-
ioral model to the field may require some attention to thelle¥enstruction or amount of
experience that agents have received. Unfortunatelye tlaesors may be difficult to quantify,
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heterogeneous across agents, or unobservable. Uncgdhmit past experiences would then
lead to uncertainty about the predictive accuracy of theel-e\model.

APPENDIX B (ONLINE): VISUALIZING MODEL FIT IN GUESSING GAMES

The fit of the Levelk model in a given guessing game can be visualized by plottingtagram

of actions along with likelihood functions for each of thesfpossible levels. This is done for
each game in Figure 12. For simplicity, the likelihood fuoos are all plotted assuming
A = 1l ande = 0. The label for each level appears below its likelihood fiorcs peak, and the
Level-0 likelihood appears simply as a uniform distribataver the strategy space. The range
of dominated strategies for each game (if any) appears asteeddine labeled DOM. For any
action on the horizontal axis, the assigned level is thatsghiielihood function is greatest at
that point, given thah is chosen optimally for each level.

Before analyzing fit, we note two mathematical regularities arise with the logistic spec-
ification. First, the Level-1 likelihood function is muchtlier than that of the higher levels.
This is because its beliefs are uniform, making deviatiommfperfect best response less costly
in terms of expected loss to the player. Higher levels, bytresih have degenerate beliefs. De-
viations from best response are significantly more costlgné estimates the Levél-model
with randomly-generated data, the Level-1 type will tyfliche the modal type because of
this discrepancy. In other words, the fact that many autkd@stify the Level-1 type is the
most frequently-observed could be an artifact of the logstecification.

Second, levels whose actions are at the boundary of thegyrapace receive nearly double
the likelihood for nearby strategies than do levels witkeiitr actions. This is because the
trembles beyond the boundary are truncated, and the treohpabbability mass is distributed
among strategies within the boundaries. For example, in,G@&§ers who choose actions
closer to the Level-3 prediction may still be categorizedNash types because the Nash like-
lihood function is amplified by truncation much more than tevel-3 likelihood function.
Similar phenomena occur in GG7 and GG9. This is visible iruFeégl2. Since Nash types
are the only types whose predictions lie at the bounda@esiam data will generate relatively
larger frequencies of Nash types than Level-3 types. Adhisjs consistent with our results.

If the Level+« model fits well, peaks in the histograms should align withiigea the like-
lihood functions. Quality of fit clearly differs by game, assvshown in the game-by-game
estimated level distributions in Table 2. The high propmrif Level-0 types in GG7 is due to
players whose action lies in the upper half of the strateggspwhile all levels’ predictions
lie in the lower half. The large frequency of Level-1 type&65 comes from that type having
a flat likelihood function that captures several peaks indé@. The jump in Nash types in



The Persistence of Strategic Sophistication

47

GG5 GG6
200}
10%}
O% Frerrrrrrrrreerrrny
L1 13 L2 N Bon. N L2 13 L1
GG7 GG8
20%
10%}
O%N L L2 Ll rrrrerrenen trrrrrrrrrrrrerrrrrrrren L2 Ll L N
3 DOM. 3
GG9 GG10
20%
10% /\
O% trrrrrrrrrrrrrrrrrrrrrrrrrrrren \IN trrrrrrrrrrrrrrrrerrren
N L3L1 L2 B 13 L2 L1 Lo

FIGURE 12. Histograms of actions in each guessing game, with hkeld
functions for each level (assuming= 1).

GG9 is due to a large number of players choosing the lower@ntlpf the strategy space. If
these players are truly using equilibrium logic, then maestanly doing so in this one game;
the frequency of Nash play is much lower in the other five games

APPENDIX C (ONLINE): ROBUSTNESS TO THENUMBER OF GAMES PERESTIMATE

In this appendix we briefly explore the robustness of Lavettimates to the number of games
used in each estimafé It may be that assigning a single level to each observatisadnces
significant noise in the resulting levels, causing the tsdolappear artificially biased toward

4lWe thank Vince Crawford for suggesting this test.
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randomly-generated levels. Estimating levels based otipleigames may reduce this vari-
ability and lead to more reliable estimates of players’ sypeading to greater stability in the
Level-£ model.

Formally, letl’ = {v1,72,...,7vx} denote the set ol games played by the subjects. For
each divisor- of m one can construct partitions of the fodfy, . = (p1, . .., p.) of I' consisting
of r sets ofm/r games each. For examplenif = 6 andr = 3 then one possible partition
of the 6 games into 3 setsi% 3 = {{1,2}, {3,4},{5,6}}. Lettings = m/r, the number of
partitions containing equal-sized sets afelements each is given by

(D)) Q)

q(m,s) = i

Note thatg(m, m) = q(m, 1) = 1. Letq index the various partitions fromto ¢(m, s), so Py, .
is one of the partitions af: games into- equal-sized subsets.

Take any set of data from players overn games, and any divisorof m. We can pick
anyq € {1,...,q(m,r)}, take the partition®?, . = {p1,p2,...,p,}, and for each partition
elemenp;, estimate a level for each subjeaiver the set of games . This is done exactly
according to the maximum-likelihood procedure used in C&@0d in this paper, where the
likelihood of observing data point under levelk is given by a logistic error structure around
the optimal strategy fok, with a ‘spike’ of weights on the exact Levek strategy. The result
is a level estimate for each playem each partition element;, which we denote simply by
k;(j). Thus, we generatelevels for each subject, using/r games (or, data points) for each
level estimated.

In CGCO6r always equals one; in our papeeither equalsn (for game-by-game analyses)
or one (for pooled analyses). In either caser, s) = 1, so the choice of which partition to
choose is trivial. Here we explore intermediate cases wherer < m. ldeally, we would
fix r, generate all possible partitions of sizeand for each partition, generateestimated
levels per subject. We could then perform analysis of thbilgiaof thoser levels (as in
the body of the paper). For example, the switch ratio can bsuledied for each partition
qg€{1,...,q9(m,s)} and the entire ‘distribution’ of (m, s) switch ratios reported.

Sinceq(m, s) can be quite largeg(16,4) = 2,627,625, for example), we instead draw a
small random sample of possible partitions. We then esém#gvels per subject, calculate
the switching ratio for each randomly-drawn partition, aegort the sample distribution of
switch ratios. We perform this exercise for each divisaf m to see how the distribution
of switch ratios would change as more games are used perdstiglate (or, equivalently, as
fewer level estimates per subject are performed). Thismedor both our guessing game data
(wherem = 6) and the CGCO06 guessing game data (where 16).
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FIGURE 13. Switching ratios as the number of levels estimated pkjest
varies, using many randomly-drawn partitions of the games.

The results of this analysis appear in Figure 13. The hot&axis contains the various
values ofr. The case of = 1 is degenerate; each subject has only one level estimate and
so stability measures such as the switching ratio are natet&fiThe vertical axis reports the
switching ratio, as described in the body of the paper.

As benchmarks, we include a horizontal line at one to indi¢he switching ratio if the
levels were independent random draws from a fixed distobutiVe also simulate the switch-
ing ratio for the Levelt model with constank; functions; in theory these ratios should all
equal zero, but because a true Level-0 subject (who randeeiécts their strategy) would
occasionally be misclassified as a different level, somdaamess is introduced into the level
estimates. This can result in a small but non-trivial switglratio.

As the number of estimates per subject decreases, so todliwé&gquency with which
randomly-drawn subjects can be strictly ordered by theglkin two randomly-drawn games.
Thus, both the numerator and denominator of the switchitig keecome smaller as de-
creases; this generates higher variance in the switchiiggdiatributions for smalt-.
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CGCO06 order their games based on ‘structure’, roughly spoading to how many steps of
elimination of dominated strategies are necessary to shiv&lash equilibrium of the game.
We report the switching ratios for the partitions that resgais ordering. Specifically, if
{1,2,...,16} is the original ordering of the 16 games, we report the switghatios for the
partitions{{1,...,8},{9,...,16}},{{1,...,4},...,{13,...,16}},{{1,2},{3,4},...,{15,16}},
and{{1},{2},...,{16}}.

The graph reveals that stability in the CGCO06 data improv#sfewer estimates per subject
(or, more games per estimate), though its switching ragesnoverlap with the constant-level
switching ratios. In the best case< 2) the switching ratios approach the 0.288 ratio achieved
in our undercutting games. The ordering of CGC06’s gamesdas structure, however,
does not generate obviously greater or smaller switchitigg.aSwitching ratios in our data
do not improve with more games per estimate. This suggeatsQBCO06’s subjects were
somewhere more persistent in their underlying type anddnhtfaere was some noise added
to their estimated levels by using only one game per estun@e more correctly, assigned)
level.

Again, the most obvious difference in experimental desigiwvieen CGC06 and our exper-
iment is in the length of instructions and use of an undedstantest. We therefore speculate
that one or both of these design features triggered the usieedfevel4 heuristic in more
subjects in the CGCO06 experiment than in ours. This resnltelatively more stable level
estimates across games for their data.



