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Abstract In a sequential-move, finitely-repeated prisoners’ dilemma game (FRPD), cooperation
can be sustained if the first-mover believes her opponent might be a behavioral type who plays a
tit-for-tat strategy in every period. We test this theory by revealing second-mover histories from
an earlier FRPD experiment to their current opponent. Despite eliminating the possibility of repu-
tation building, aggregate cooperation actually increases when histories are revealed. Cooperative
histories lead to increased trust, but negative histories do not cause decreased trust. We develop
a behavioral model to explain these findings.
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1 INTRODUCTION

Cooperation in the finitely-repeated prisoner’s dilemma (FRPD) is both widely observed and dif-

ficult to rationalize. The model developed by Kreps, Milgrom, Roberts, and Wilson (1982)—the

most prominent theory to justify this behavior—shows that such cooperation can be rational if

one player believes her opponent might be a “behavioral type” who plays the tit-for-tat strategy
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regardless of the history of play. The opponent can then take advantage of these beliefs by imitat-

ing the behavioral type early in the game and defecting as the final period approaches, resulting

in a pattern of cooperation consistent with aggregate-level data from laboratory experiments (e.g.,

Andreoni and Miller, 1993).

This reputation-building theory requires that players have some uncertainty about their op-

ponents’ types. In our experiment, however, we find that cooperative play persists even when

reputation building is rendered impossible by revealing players’ histories of play. Specifically, we

have subjects who completed a block of five sequential-move FRPD games against varying oppo-

nents, play a second block of five games against new opponents, who can see the subjects’ histories

of play from the first block.1 Selfish, rational players cannot credibly imitate the behavioral type

in the second block because their true colors have been revealed through their history of play in

the first block. Despite eliminating type uncertainty, we find aggregate patterns of cooperation

very similar to treatments where no history is revealed. On the individual level, first-movers who

are relatively distrusting (seldom cooperating in the first block) tend to be more cooperative in the

second block, even when the second-mover’s revealed history is relatively uncooperative. Hence,

rather than reducing cooperation by eliminating the opportunity for reputation building, revealing

histories of play generally improves cooperation. This finding is clearly inconsistent with standard

reputation-building explanations of cooperation in FRPDs.

We organize these results through a model of semi-rational behavior similar to those of Kreps

et al (1982) and Radner (1986). Here, players decide in which round to stop playing tit-for-tat and

begin unconditionally defecting by weighing the risk of cooperation against the immediate gain

from defecting. Unlike Kreps et al (1982), players in our model form arbitrary or “naïve” prior

beliefs about how many rounds their opponents will continue playing tit-for-tat, which may be

inconsistent with the opponent’s actual strategy. Players decide how long to conditionally cooper-

ate in each game based only on these naïve prior beliefs and information about their opponents’

history of play, if revealed. Because this model does not assume any higher-level reflection about

the rationality or best-response of the opponent, it provides a contrasting benchmark to a model

of full, commonly-known rationality.

One implication of this model is that cooperation is sustainable for many rounds even when

players have relatively pessimistic beliefs about their opponents’ strategies. For example, the

model predicts that cooperation will be sustained until the penultimate round if the players have

a uniform prior; i.e., if players believe their opponent will defect with equal probability in every

round of the FRPD. In stark contrast to the reputation-building theory, the model also predicts

that the level of cooperation will be the same or even higher when players learn that their oppo-

nent is not a behavioral type. This pattern of behavior is frequently observed in our experiment

and sufficient to reject reputation-building as an explanation for cooperation. Hence, we find that

this semi-rational model of naïve beliefs rationalizes the observed experimental behavior.

The paper is organized as follows. In section II, we review the related theoretical and experi-

mental literature. Section III contains a description of the reputation building theory of coopera-

tion in FRPDs. Section IV details the experimental design and the results of the experiment are

presented in Section V. In Section VI, we propose a model of boundedly-rational cooperation that

1During the first block, subjects know that there will be an optional second experiment but know nothing about its
nature.
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explains the experimental results. Section VII concludes with a summary of the main results. The

Appendix contains the proofs and additional summary statistics.

2 RELATED LITERATURE

Many experiments have studied the consistency of players’ behavior in FRPDs with the theory of

Kreps, Milgrom, Roberts, and Wilson (1982). For example, Andreoni and Miller (1993) compare

the amount of cooperation in 10-round FRPDs with one-shot prisoners’ dilemma games. They

find significantly higher cooperation in the FRPDs compared to the one-shot games, as well as

significantly higher cooperation in early rounds compared to later rounds. These patterns are

consistent with the reputation-building theory of Kreps et al (1982) at an aggregate level, though

in a similar FRPD experiment Cooper, DeJong, Forsythe, and Ross (1996) observe that, at the

individual level, only 25% of subjects play consistently with reputation building. Cooper et al

argue that the time path of play exhibits more cooperation than the Kreps et al model predicts and

speculate that their findings could indicate reputation building if they were to consider alternative

types of “irrational” players.2

Camerer and Weigelt (1988) study the reputation-building sequential equilibrium in a finitely-

repeated investment game that is similar in structure to our FRPD game. The authors randomly

assign a small fraction of second-movers to have payoffs such that they prefer cooperation over

defecting. This exogenously induces the behavioral type. They find evidence consistent with the

equilibrium prediction: as time progresses, first-movers are less likely to trust and second-movers

are more likely to defect. The observed mixing probabilities are different than predicted by the

induced probability of the behavioral type, but can be explained easily by assuming first-movers

believe an additional 17% of second-movers with the “non-cooperative” incentives still prefer co-

operation. To test this theory, the authors run additional experiments in which all second-movers

were given non-cooperative payments. The sequential equilibrium prediction assuming beliefs of

17% is calculated, and the data from the new experiments conform surprisingly well to that predic-

tion. Thus, Camerer and Weigelt (1988) provide strong evidence in favor of a reputation-building

theory in which the first-mover’s beliefs are “homemade” naturally, and need not be induced in

the lab.

Neral and Ochs (1992) extend Camerer and Weigelt (1988) by analyzing the behavioral re-

sponses of players to changes in the parameters of the game. Like Camerer and Weigelt they find

that uncertainty induces players to develop a mutually profitable relationship consistent with the

predictions of sequential equilibrium. However, Neral and Ochs find problems with the compara-

tive static predictions of the sequential equilibrium model. When the parameters of the game are

altered (e.g., decrease the payoff to second-mover) they find that the players respond in the exact

opposite direction from what the theory predicts and that these results cannot be explained using

the homemade priors specified by Camerer and Weigelt.3

2In contrast with the finitely repeated case, experimental evidence has shown that cooperation in the infinitely
repeated prisoners’ dilemma aligns well with theoretical predictions. For example, Roth and Murnighan (1978) and
Murnighan and Roth (1983) study behavior in indefinitely-repeated prisoners’ dilemma experiments and find behavioral
differences predicted by standard folk theorem equilibria. More recently, Dal Bó (2005) finds experimental evidence that
greater cooperation occurs in an indefinitely repeated prisoner’s dilemma with the same expected length as a finitely re-
peated control and Dal Bó and Frechette (2011) find evidence that subgame perfection is a necessary (but not sufficient)
condition in supporting cooperation in an indefinitely repeated prisoners’ dilemma.

3Jung, Kagel, and Levin (1994) analyze the sequential equilibrium of a chain-store game that shared some features
with Camerer and Weigelt’s borrower-lender game and also find discrepancies with the theory that cannot be resolved with
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More recently, Reuben and Suetens (2012) find that many players cooperate in a manner

consistent with Kreps et al (1982). Reuben and Suetens use the strategy method to disentan-

gle strategically and non-strategically motivated cooperation in a sequential prisoner’s dilemma

with an uncertain endpoint in which cooperation is not an equilibrium strategy for rational play-

ers.4 Players in their experiment can condition their action on whether they are currently play-

ing the last period of the game or whether the game will continue. Second-movers who cooper-

ate as long as the first-mover cooperates unless it is the final round are classified as reputation

builders. Among second-movers who cooperate, the authors find that a third to two-thirds do so for

reputation-building rather than reciprocity. Moreover, Reuben and Suetens find that an increase

in the payoff of mutual cooperation increases the ratio of reputation builders to unconditional

defectors, consistent with Kreps et al (1982).

Kagel and McGee (2014) compare individual play and team play in the finitely-repeated pris-

oners’ dilemma. In the team play treatment, each player in the game is a 2-person team that can

chat internally (but cannot communicate with opponents) and makes joint decisions. They find

that teams are initially less cooperative than individuals, but with experience become more co-

operative. Kagel and McGee’s analysis of team chat logs suggests that cooperation is driven by a

failure of common knowledge of rationality, as teams attempt to anticipate when their opponents

might defect and try to defect one period earlier, without accounting for the possibility of their op-

ponents thinking similarly. Inconsistent with Kreps et al (1982), they find no evidence that players

anticipate opponents’ beliefs and attempt to mimic an irrational player, while they find that in-

creased chat about the round in which the opponent will defect is accompanied by an increase in

cooperation over the course of the experiment. This finding is also consistent with Embrey et al

(2014), who find that players learn to play “threshold strategies” in which they conditionally co-

operate for a fixed length of time and then defect. Though players converge to these strategies,

unraveling of cooperation occurs very slowly across supergames. Subjects clearly are not applying

backwards induction reasoning.

Other experiments have examined how cooperation in one-shot prisoners’ dilemma games is

impacted when players see their opponents’ play history. Schwartz, Young, and Zvinakis (2000),

Camera and Casari (2009), and Gong and Yang (2010) all find that observing an opponent’s history

of play significantly increases cooperation, though Duffy and Ochs (2009) do not observe this effect

in their data. In all of these studies, subjects are aware that their actions will be revealed to future

opponents. Thus, players can follow a reputation-building strategy even though their opponents

differ in every period. In contrast, because subjects in our experiment are not told in the first part

of the experiment that their play histories will be revealed later, they are unlikely to perceive any

benefit from cooperating in the final period of each repeated game in the first part.

Alternative models have been proposed that predict rational cooperation in FRPDs. For exam-

ple, Selten and Stoecker (1986) develop an alternative theory based on a Markov learning model.

In their model players establish a period of first defection and update their period of intended

defection based on their experience in the previous supergame. The authors conduct an experi-

ment in which subjects play 25 ten-period FRPD supergames and find that cooperation ends in

an appeal to homemade beliefs. Similarly, both Brandts and Figueras (2003) and Tingley and Walter (2011) find higher
rates of cooperation than predicted by reputation building in shorter finitely repeated games.

4Reuben and Suetens ensure that cooperation is not a rational strategy by setting the probability that the game
terminates below the threshold required for cooperation to constitute a subgame perfect equilibrium.
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earlier periods as subjects gain experience.5 Subjects in their experiment are told that they will

play each opponent only once and are given no information about opponents’ histories of play in

prior supergames. Hence, their data do not address the validity of reputation building directly, nor

are their results inconsistent with reputation building.6 By revealing second-mover histories in

one treatment and not in another, our design allows a more direct examination of how a player’s

intended period of first defection and beliefs about her opponent’s intentions matter for coopera-

tion.7

Other studies have focused on the role of reputation in inducing cooperation, though not in

the context of an FRPD game. Gachter and Thoni (2005) and Ambrus and Pathak (2011) show

how cooperation can be sustained in a public goods contribution game when some players are

selfish and others are reciprocating with varying information on other players’ past behavior. As

in our design, Ambrus and Pathak incorporate a restart in their experimental design to see how

it impacts cooperation, as do Gachter and Thoni (2005). In Gachter and Thoni (2005), the past

behavior of subjects is revealed and the response to these "reputations" in the public goods game

is studied. In Ambrus and Pathak, players in their experiment know in advance that they will be

participating in subsequent games, but in Gachter and Thoni (2005), like our experiment, they

do not. Bolton, Katok, and Ockenfels (2005) examine how information about their partner in an

image scoring game affects cooperation, while Irlenbusch and Sliwka (2005) study the role of repu-

tation and uncertainty about the partner’s type in inducing cooperation in a gift-exchange setting.

The former find that providing players with more information about their partner’s last action

as well as the action of their partner’s previous partner increases cooperation while the latter

find that direct reciprocal behavior is stronger when efforts are revealed. Healy (2007) considers

a reputation-building equilibrium when firms stereotype workers and find that selfish workers

imitate fair-minded types when firms have sufficiently high priors to generate cooperation. Sim-

ilarly, Roe and Wu (2009) find evidence for the reputation-building equilibrium by finding that

employees classified as selfish mimic cooperative employees when individual histories are observ-

able, but not when histories are kept private. Andreoni and Croson (1998) survey repeated public

goods game experiments and find little evidence of reputation-building behavior. Contrary to the

expected result that reputation-building should lead to higher contributions when players’ op-

5Selten and Stoecker use parameter estimates from the first 20 supergames to predict the outcomes of the last five
supergames and find strong agreement between the predictions and actual outcomes.

6Subjects in Selten and Stoeker’s experiment participated in 6-person matching groups so could have learned their
opponents’ types over 25 repetitions. Since subjects were told that they would play each opponent only once, however, they
ruled this possibility out.

7In an fMRI study of a 10-period trust game—which is similar to the FRPD game—King-Casas et al (2005) find that
second-movers’ brains eventually signal the intent to cooperate before the first-movers’ actions are revealed. They also
become more accurate in predicting first-movers’ actions. This is consistent with the hypothesis that players build a model
of their opponent over time, though the data are not informative about the content of that model. A related idea is explored
by Kahn and Murnighan (1993), who conduct an experiment on FRPDs in which they explicitly induce uncertainty about
opponents’ types by varying their pecuniary payoffs. They find that “weak” players (players for whom defection is not a
dominant strategy in the stage game) are more cooperative than “strong” players (with typical prisoners’ dilemma payoffs),
and that uncertainty about opponents’ payoffs increases cooperation for “weak” players.

Samuelson (1987) shows that cooperation can be sustained for at least some periods when the assumption that the
number of periods is common knowledge is relaxed. Following this approach, Normann and Wallace (2012) experimentally
compare repeated prisoners’ dilemma games with known, random, and ambiguous number of periods, finding no significant
differences in cooperation. An experiment by Bruttel, Güth, and Kamecke (2012) studies an FRPD in which the number of
periods is uncertain. They find that cooperation breaks down closer to the final round than in a baseline treatment with a
commonly-known finite horizon. They also find that many players cooperated after they were privately informed about the
number of remaining periods. In the current study, the number of periods is publicly announced to all subjects to eliminate
such uncertainty.
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Fig. 1 A single stage of the sequential-move FRPD.

ponents are fixed, this is not always the case (Andreoni, 1988), and a restart effect seems more

influential than the matching regime in raising contributions.

3 A REPUTATION-BASED THEORY OF COOPERATION

In this section we apply the theory developed by Kreps et al (1982) to the sequential-move FRPD

played by the participants in our experiment and characterize the optimal strategies.8,9 A single

stage of the sequential-move FRPD played in our experiment is shown in Figure 1. As with Kreps

et al (1982), we assume the first-mover believes the second-mover may be a tit-for-tat behavior

type with positive probability and a rational second-mover is aware of (and can take advantage

of) this belief.10 The tit-for-tat type always reciprocates the first-mover’s action, regardless of the

period.11 In the following analysis we therefore focus only on the rational, payoff maximizing

second-mover’s decisions.12

Let pt be the first-mover’s period-t belief probability that the second-mover is the tit-for-tat

type, with p1 ∈ (0,1) representing his prior belief. Updating occurs in equilibrium according to

Bayes’ rule. If pt = 0 in any t, then by standard unraveling arguments both players must play D
in period t and thereafter. For this game there exist sequential equilibria in which there is a belief

threshold pt such that the first-mover is willing to trust the second-mover (by playing C) in period

t if and only if pt ≥ pt. The rational second-mover prefers to maintain a reputation for being the

tit-for-tat type by responding to C with C (i.e., conditionally cooperate) until some later round

that is dependent on pt. As the end of the game nears the expected payoff to the first-mover from

continuing to play C declines since there are fewer rounds left and the probability that a rational

second-mover plays D increases. In consequence, the belief threshold pt is strictly increasing in t
up to p10 = 4/7, given the specific stage-game payments shown in Figure 1.

When p1 < p1 the first-mover will defect in all periods, but when p1 > p1, the first-mover ini-

tially trusts the second-over, who will perfectly imitate a tit-for-tap type if the is rational. Because

8See Kreps et al (1982) for a detailed derivation of the sequential equilibrium and see the appendix for a derivation of
the equilibrium for the specific game used in this experiment, which includes the function used to generate Figure 2.

9We utilize a sequential move game so that we can focus on one player, the second-mover, and her ability to build a
reputation by mimicking a behavioral type.

10That is, similar to Kreps et al (1982) the first-mover’s prior is common knowledge. This assumption could be relaxed.
For example, one could model the first-mover’s prior as coming from a distribution of priors, in which case the second-
mover’s optimal strategy will be a function of the first-mover’s expected prior. The distribution for this expectation may
change as t increases too, but the intuition for the optimal strategies remains largely the same and revealing oneself as
rational removes the uncertainty over the second-mover’s type.

11Such beliefs are certainly justified given that tit-for-tat play is often observed in experimental data; see Andreoni and
Miller (1993), for example.

12We will more simply refer to a player that has the objective of maximizing his own payoff as a rational player.
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Fig. 2 The sequential equilibrium of the sequential-move FRPD with a tit-for-tat type. See the appendix for a proof of the
sequential equilibrium and the equations used to derive the figure.

the second-mover is either tit-for-tat, or imitating a tit-for-tat type, the first-mover’s beliefs do not

change in early periods. At some point in time, however, because the belief threshold increases as

t increases, pt may rise above p1, at which point the first-mover would stop trusting the second-

mover. Let t be the first period in which pt > p1. The second-mover benefits from being trusted

and would prefer to keep pt weakly above pt in every period t ≥ t. He does this by playing a

mixed strategy so that the first-mover’s beliefs shift up to exactly pt = pt for all t ≥ t. That is, if

the second-mover is observed to conditionally cooperate at t, then the first-mover’s belief that the

second-mover is in fact a tit-for-tat type increases given that a rational second-mover would have

defected with some probability. Formally, the second-mover conditionally cooperates in period t
with probability

q∗
t = pt

1− pt

1− pt+1

pt+1
,

and the first-mover’s beliefs update to

pt+1 =
{ pt

pt+qt(1−pt)
if C is realized;

0 otherwise.

We refer to q∗
t as the post-threshold probability of cooperation. Since pt must continue to increase

over time, q∗
t must decrease accordingly to keep pt below pt.

When pt = pt, the first-mover is exactly indifferent between C and D. Since the second-mover is

mixing, he must also be exactly indifferent between C and D. This is done by having the indifferent

first-mover mix between C and D in period t+1 with appropriate probabilities. If the first-mover’s

realized action is D then both types of second-mover respond with D and beliefs do not update.

Thereafter the first-mover does not trust the second-mover (because pt+1 = pt = pt < pt+1), and

the second-mover never has a chance to alter beliefs, so defection occurs in every subsequent
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period.13 The structure of a unique sequential equilibrium for a first-mover having belief p1 > p1

is displayed in Figure 2.

Observe that the path of equilibrium play depends crucially on p1. If p1 > p10 = 4/7 then

no mixing phase is needed; both players play C with certainty until the rational second-mover

defects in the final period. If p1 ∈ [p1, p10] then mixing will begin in period t (the smallest t
such that p1 ≤ pt), after which one defection will lead to defection in all subsequent actions. If

p1 < p1 then the first-mover will never trust the second-mover, the second-mover will never have

an opportunity to alter beliefs, and defection will occur in every action.

Regardless of p1, the realized path of play must feature a regime shift from cooperation to

defection. This shift can be triggered by either player, can occur in the first action, and may never

occur if tit-for-tat players truly exist. In the laboratory beliefs are not directly observable and

second-movers’ types are unknown, so the time at which defection begins cannot be predicted

without additional data.14

4 EXPERIMENTAL DESIGN

Our experiment is designed to test directly the reputation-building aspect of the Kreps et al

(1982) theory in a sequential-move, finitely-repeated prisoner’s dilemma. In all treatments, 20

subjects are divided into two equal-sized groups: first-movers and second-movers. The sessions

are divided into two Blocks. In each Block, each subject plays five finitely-repeated prisoners’

dilemma supergames, with each supergame played against a different subject from the other

group.15 Through the course of the experiment, each subject will therefore play a supergame with

each subject in the other group exactly once (5 in Block 1 and the other 5 in Block 2).16 Each

supergame is 10 rounds in length.

The sequential-move game allows us to focus on the second-mover and her opportunities for

reputation building. We study this by varying the information structure in two treatments, de-

noted 2S and 1S. The first Block of five supergames is identical across the two treatments. Players

see their opponent’s history in the current supergame, but not from any prior supergames. In

Block 2 of treatment 2S, subjects in each supergame see their opponents’ entire history of play

from their five Block 1 supergames, as well as the play of their opponents’ opponents in these

five supergames. Thus, all of the first-mover’s actions, all of the first-mover’s opponents’ actions,

all of the second-mover’s actions, and all of the second-mover’s opponents’ actions from Block 1

are revealed to both players in each Block 2 supergame of 2S. It is commonly known that this

information is revealed to both players.

In treatment 1S, only the first-mover’s history from Block 1 is revealed to the second-mover

(including the first-mover’s actions and the first-mover’s opponents’ actions); the second-mover’s

history is not revealed to the first-mover. Again, this revelation structure is commonly known. The

13The second-mover cannot attempt to restore cooperation by playing C in response to D, for this would reveal his true
rationality with certainty and result in defection in all subsequent periods.

14The model can be generalized slightly by allowing the first-mover’s underlying beliefs to be non-stationary. The
implications of the model are, however, similar to the stationary version.

15Having subjects play multiple supergames in each block allows them to become familiar with the game, and more
importantly, allows second-movers to reveal more information about their types in Block 1. In any single supergame, it
is possible that an individual second-mover might face a very uncooperative first-mover, so that no information about the
second-mover’s type would be revealed.

16In a couple of sessions, less than 20 subjects participated. In these sessions, subjects played against a different subject
from the other group until they had played against all of them once. In the remaining supergames of Block 2, subjects were
matched randomly with one of the subjects had already faced in Block 1 but not yet faced in Block 2.
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purpose of this treatment is to control for changes in behavior between Blocks 1 and 2 that result

from revealing the first-mover’s Block 1 history of play to Block 2 second-movers as well as to use

as a control for any “restart effect”. Differences between 1S and 2S can then be interpreted as the

effect of revealing the second-mover’s Block 1 history of play to Block 2 first-movers (revealing

reputations), given that the second-mover is equally informed about the first-mover’s history. The

treatment names 2S and 1S are mnemonic for “two-sided” and “one-sided” knowledge of histories,

respectively.

At the beginning of Block 1 of both treatments, subjects know they will play five finitely-

repeated prisoners’ dilemma supergames against five different opponents in Block 1. Subjects are

also told at the beginning of Block 1 of both treatments that we will conduct a second experi-

ment immediately following the first in which they may also participate if they want. They are

informed that instructions for the second experiment will be distributed after the first experiment

concludes. The subjects are not told that they will play prisoners’ dilemmas in the second experi-

ment or that their histories from the Block 1 may be revealed in Block 2. Only at the beginning of

the Block 2 do they learn that they will play additional repeated prisoners’ dilemma supergames

and that their history from Block 1 will be revealed (depending on the treatment). Subjects have

the option of taking their earnings after Block 1 and leaving instead of participating in the Block

2 experiment, and if they participate in the second experiment they are guaranteed a second

minimum show-up payment. All of the subjects chose to stay for the second experiment.

As mentioned in the previous section, we use the same stage-game payoffs as Andreoni and

Miller (1993), shown in Figure 1. Subjects are paid for one randomly-selected supergame out of

the five supergames in each Block, and this is known in advance.

We use a strategy-elicitation method for second-mover choices, which asks subjects to en-

ter their action conditional on the first-mover defecting (choosing right) and their action condi-

tional on the first-mover cooperating (choosing left) before learning the first-mover’s action in

each round. The second-mover’s strategy for a particular round is implemented for them after the

first-mover chooses an action for that round. In a survey paper comparing the strategy method

to direct-response, Brandts and Charness (2011) found that while the two methods can induce

different behavior in some experiments, there is generally no significant difference in behavior in

prisoner’s dilemma experiments between the two. They conclude from their survey that in cases

where behavior differs between the two methods, the strategy method provides a lower bound for

treatment effects.17

In the sequential-move prisoner’s dilemma, the second-mover’s strategic intention may be cen-

sored in rounds where the first-mover defects, which leads to defection by the second-mover as

well according to a wide range of strategies. We elicited second-mover choices using the strategy

method so that we would be able to identify the second-mover’s intent to cooperate if reciprocated,

17Experiments have also been conducted on the (one-shot) sequential prisoners’ dilemma and they generally show little
difference from simultaneous-move setups. Bolle and Ockenfels (1990) found little difference in cooperation levels between
simultaneous and sequential one-shot prisoners’ dilemma using the strategy method to elicit second-mover strategies.
Brandts and Charness (2000) found no significant difference in cooperation between the sequential one-shot prisoner’s
dilemma using the strategy method and direct response. Blanco, Engelmann, Koch, and Normann (2011) used the strategy
method with role uncertainty in several information conditions and belief-elicitation treatments to show that correlation
between strategies in different roles is driven partially (but not completely) by a consensus effect. Clark and Sefton (2001)
examined sequential prisoners’ dilemma games with varying levels of temptation and overall stakes in both the United
States and the United Kingdom. They found substantial cooperation levels in early rounds which diminished by the tenth
and final round. They also found that second-movers were much more likely to cooperate if the first-mover cooperated,
but this tendency also decreased across rounds and with higher temptation levels. Higher overall stakes lead to a slight
increase in second-mover reciprocal cooperation in the UK, but a decrease in reciprocal cooperation in the US.
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Table 1 Summary Information

Number of Number of
Treatment Revealed Information Sessions Subjects

1S History of play for the first-mover and
his opponents from block 1.

7 130

2S History of play for both the first
and second-movers and their opponents
from block 1.

7 134

regardless of the first-mover’s actual choice. This way, if the first-mover defected and the second-

mover responded by defecting in the same round, we would know whether the second-mover would

have continued cooperating or unilaterally defected if the first-mover had instead cooperated in

that round. All of the second-mover results reported in the paper focus on this conditional cooper-

ation (the second-mover’s choice conditional on cooperation by the first-mover) and not the choice

actually implemented for the second-mover in response to the first-mover.

5 RESULTS

We conducted 14 sessions of the experiment at The Ohio State University experimental economics

lab with a total of 264 subjects: seven sessions of the 1S treatment with 130 subjects and seven of

the 2S treatment with 134 subjects. Subjects were chosen randomly from a pool of students at The

Ohio State University who had previously signed-up to be considered for participation in economic

experiments. Subjects could not participate in more than one session of this experiment. Table 1

provides summary information for the experiment. Payoffs in the experiment were denominated

in “points” and converted into dollars at the rate of 4 points per dollar. Average earnings per

subject were approximately $27. We proceed by first analyzing the players’ aggregate behavior

and then focus on how information impacts behavior at the individual level.

5.1 Aggregate Behavior

We focus on cooperation by the first-mover and conditional cooperation by the second-mover

(choosing to cooperate conditional on the first-mover cooperating) as our outcomes of interest.

The first hypothesis, based on Kreps et al (1982), states that cooperation will be eliminated when

the second-mover’s history reveals she is rational.

Hypothesis 1 Compared to Block 2 of 1S, the rate of aggregate cooperation should not be higher
in Block 2 of 2S.

Figure 3 displays the paths of aggregate cooperation by first-movers over the course of a su-

pergame. The first row represents the data pooled from each treatment for the first block, the

second row represents the Block 2 data for 1S, and the third row represents the Block 2 data for

the 2S treatment. Each column represents a supergame in the order in which they were played.

The paths of play in Block 1 (1S and 2S pooled) and Block 2 of 1S are quite similar for first-movers

as we would expect given that there is no change in the information given to first-movers between

these treatments. The path of play in Block 2 of 2S, however, exhibits higher levels of cooperation

than the other treatments. Moreover, the level of cooperation increases across supergames and

the path of play shows a clear endgame effect in late supergames of Block 2—something that is



Reputation in Repeated Prisoners’ Dilemmas 11

not clearly apparent in other supergames where aggregate cooperation declines more steadily by

round.
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Table 2 Aggregate Cooperation

1st Movers 2nd Movers

% Conditional
# of Subjects % Cooperation # of Subjects Cooperation

Block 1
1S 65 43.2% 65 56.4%
2S 67 42.9% 67 57.0%

Block 2
1S 65 53.4% 65 67.5%
2S 67 60.9% 67 73.1%

Figure 4 displays the paths of aggregate second-mover conditional cooperation—cooperate con-

ditional on the first-mover cooperating—over the course of a supergame. The paths of play are

again shown by treatment and supergame, as in Figure 3. The paths of aggregate cooperation over

supergames in Block 2 of 1S show more of an endgame effect than those in Block 1 (pooled) since

cooperation is maintained in early rounds then drops off more sharply in later rounds. However,

round 10 behavior is roughly the same across blocks, suggesting that players view the endgame

similarly in both.18

The paths of play in Block 2 of both 1S and 2S, exhibit more cooperation than occurs in Block

1 with 2S exhibiting even higher levels of cooperation than that in Block 2 of 1S despite first-

movers observing the histories of second-movers. That greater overall cooperation and sustained

cooperation until later rounds of the supergames are observed when second-mover histories are

revealed to first-movers is again inconsistent with the predictions of Kreps et al (1982).

Result 1 We observe greater aggregate cooperation in Block 2 when second-movers’ histories of
play are exposed to first-movers (treatment 2S, compared to 1S).

Table 2 reports the aggregate cooperation frequencies of first-movers and the aggregate con-

ditional cooperation frequencies of second-movers by block and treatment. There is almost no

difference in overall cooperation between Block 1 cooperation in 1S and 2S for either first and

second-movers. However, not only do both first- and second-movers cooperate more in Block 2 of

2S, but their cooperation rates are slightly higher than that of first- and second-movers in Block

2 of 1S. Wilcoxon-Mann-Whitney tests (bootstrapped to account for clustering by session) confirm

that there is no between-treatment difference in Block 1 cooperation rates for first- or second-

movers (p-values 0.959 and 0.662, respectively), while there is slightly higher Block 2 cooperation

rates in 2S than in 1S (p-values are 0.063 and 0.071 for first- and second-movers, respectively).19

18For both first and second-movers in both treatments, round 10 cooperation/conditional-cooperation is never signifi-
cantly higher in block 2 than in block 1 (Wilcoxon signed-rank tests with the unit of observation being the subject-level
average cooperation/conditional-cooperation in round 10 across all supergames in a block).

19The unit of observation in these tests is the average (conditional) cooperation for an individual first (second) mover
across all periods of all Block 2 supergames. As we are testing whether there is higher cooperation in 2S than 1S, the latter
p-values are based on a 1-sided test in which the null is µ2S = µ1S and the alternative is that µ2S > µ1S . The two-sided
p-values are 0.126 and 0.141, respectively.
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Fig. 5 Average cooperation by mover by subject (all supergames).

5.2 Individual-Level Behavior

As Cooper et al (1996) point out, individual behavior provides a better test of theoretical predic-

tions in the FRPD than aggregate cooperation. We now analyze individual-level behavior, and

classify players into types based on that behavior.

Figures 5(a) and 5(b) plot average cooperation for each subject in Blocks 1 and 2. The first

figure shows cooperate rates for first-movers while the second shows conditional cooperation rates

for second-movers. Each data point represents a single subject. Subjects in the 1S treatment are

black circles, while subjects in the 2S treatment are white. Lack of a treatment effect would ex-

press itself in data points scattered symmetrically about the 45-degree line. In both figures the 1S

data is distributed in this manner. However, the 2S data is skewed above the 45-degree line, in-

dicating that revealing Block 1 histories of second-movers increases cooperation for both first and

second-movers. Wilcoxon signed-rank tests for data having within-group correlations (Larocque,

2005) show that differences in frequency of cooperation across blocks are highly significant in

2S (p-value=0.063 for first-movers and p-value=0.015 for second-movers) and insignificant in 1S

(p-value=0.222 for first-movers and p-value=0.210 for second-movers).20

We classify players into types within each block to control for the heterogeneity in individual

behavior. By focusing on how information differentially impacts players conditional on their type,

we can identify whether the behavior of some players is consistent with the reputation-building

theory. Importantly, we classify players based on histories of play only—not on the off-path choices

of second-movers—as our main focus is on the information contained in Block 1 histories revealed

in Block 2. Furthermore, we classify second-movers based solely on their behavior in rounds in

which the first-mover cooperated. Second-movers cannot reveal any information about their types

in rounds in which the first-mover defected, as tit-for-tat and reputation-building players alike

would defect in such cases. For ease of explaining the type classification, rounds in which the

first-mover cooperated are referred to as trusting rounds.

20We perform a power calculation for the 1S test, assuming the effect size found in 2S and a 10% significance level, and
find that our power is 85%. The standard threshold for acceptable power is 80%.
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Table 3 Second Mover Type Transition Matrix

1S
Block 2

Defector Cooperator Imitator Total

Block 1
Defector 10 12 3 25 (38.5%)

Cooperator 3 16 9 28 (43.1%)
Imitator 1 3 8 12 (18.5%)

Total 14 (26.5%) 31 (47.7%) 20 (30.8%) 65 (100.0%)

2S
Block 2

Defector Cooperator Imitator Total

Block 1
Defector 10 12 4 26 (38.8%)

Cooperator 2 17 10 29 (43.3%)
Imitator 0 9 3 12 (17.9%)

Total 12 (17.9%) 38 (56.7%) 17 (25.4%) 67 (100.0%)

The classification procedure works as follows. For each supergame, a second-mover is classified

as an Imitator if her behavior is consistent with the reputation-building strategy of Kreps et al

(1982); i.e., she plays cooperate in the first trusting round and continues doing so until some

later trusting round (possibly round 10), after which she plays defect in each subsequent trusting

round. Otherwise, she is classified as a Cooperator if she cooperates in the first trusting round

(but did not play as an Imitator) or as a Defector if she does not cooperate the first trusting round.

Her type classification for the block is identified by the mode of her five supergame classifications

within that block. In the case of a tie, the most recently-used modal type is used.21

By this procedure we arrive at a classification of second-movers that summarizes quite well

their Block 1 history of play as observed by first-movers. The overall percentage of Block 1 su-

pergames having a second-mover with a type classification of Imitator, Cooperator, or Defector is

18.2%, 41.7%, and 39.4%, respectively.22 Based on these type classifications we have the following

hypothesis regarding how a second-mover’s classification will change in Block 2 when her history

of play is revealed.

Hypothesis 2 Second-movers in 2S who play as Imitators or Defectors in Block 1 play as Defectors
in Block 2 because they are revealed to first-movers as rational.

Table 3 reports the type classifications for second-movers by treatment and block in the form of

a Markov transition matrix. The data reveal that transitions between second-mover types between

Blocks 1 and 2 in 2S are inconsistent with reputation-building. Surprisingly, nearly half of the

Defectors in Block 1 become Cooperators in Block 2 and only 38% of the Block 1 Defectors remain

Defectors in Block 2. Even more striking, none of the second-movers who are Imitators in Block 1

of 2S become Defectors in Block 2. These findings are summarized in the following result.

21In the appendix we present similar results in which players are classified only by their type from the last supergame
they play.

22The proportion of second-movers who are classified as Cooperators may be inflated relative to Imitators because
first-movers defected first in 41.5% of the Block 1 games with Cooperators. It is possible that these second-movers were
using a reputation-building strategy that is not revealed because of the first-movers’ defection; however, classifying them
as Cooperators is still useful because second-movers are not revealed to first-movers as rational.
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Table 4 First Mover Type Transition Matrix

1S
Block 2

Non-Trusting Trusting Total

Block 1
Non-Trusting 21 10 31 (47.7%)

Trusting 2 32 34 (52.3%)

Total 23 (35.4%) 42 (64.6%) 65 (100.0%)

2S
Block 2

Non-Trusting Trusting Total

Block 1
Non-Trusting 7 19 26 (38.8%)

Trusting 2 39 41 (61.2%)

Total 9 (13.4%) 58 (86.6%) 67 (100.0%)

Result 2 Only 26.3% of second-movers who are classified as Defectors or Imitators in Block 1 of
2S are classified as Defectors in Block 2, while 55.2% of them are classified as Cooperators in Block
2.

The first-mover type classification is slightly different. Kreps et al (1982) allows for two possi-

ble types of first-movers: those who believe the probability of an irrational second-mover is high

enough to justify cooperation in round 1 of a supergame, and those who do not. Therefore, we

classify a first-mover as Trusting if her modal behavior is to cooperate in round 1 of the five su-

pergames in a given block. Otherwise, a first-mover is classified as Non-Trusting. Based on these

type classifications we have the following hypothesis regarding how a first-mover’s classification

will change in Block 2 when the second-mover’s history of play is revealed.

Hypothesis 3 Compared to Block 2 of 1S, first-movers are less likely to be classified as Trusting
in Block 2 of 2S.

Table 4 reports type classifications for first-movers by treatment and block in the form of a

Markov transition matrix. In 1S, 47.7% of first-movers are Non-Trusting and about a third (32.3%)

of these first-movers become Trusting in Block 2. However, in 2S more than 2/3 (73.0%) of first-

movers who are Non-Trusting in Block 1 (38.8% of all first-movers in this treatment) transition

to Trusting in Block 2. Because this result is not conditional on the revealed type of second-mover

opponents, it would not contradict the theoretical predictions if no second movers were exposed

as rational. But some were, so we should expect an aggregate decrease in the number of Trusting

first movers. Instead, we find the opposite: First movers become more trusting when histories are

revealed.

Result 3 A higher proportion of first-movers are Trusting in Block 2 of 2S compared to Block 2
of 1S (p=0.044), while there is no difference in the proportion of Trusting first-movers in Block
1 (p=0.463);23 Additionally, there is a larger increase in the proportion of first-movers who are
Trusting from Block 1 to Block 2 in 2S: 25.4 percentage point increase in 2S (p=0.032) and a 12.3
(p=0.122) percentage point increase in 1S.24

23P-values are based on a Wilcoxon-Mann-Whitney tests with cluster bootstrapped variances.
24P-values are from a McNemar test for data having within-group correlations (Durkalski et al, 2003). We calculate

the power of the 1S test to be 78%, assuming the effect size observed in 2S.
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Fig. 6 Block 2 cooperation rates when the second mover is revealed to have been a Cooperator type in Block 1.

We now study first-mover reactions to the second-mover’s revealed type. Because first-movers

should only cooperate if there is some positive probability that the second-mover is irrational,

exposing the second-mover as an Imitator or Defector in Block 1 should convince the first-mover

that the second-mover is rational and destroy cooperation in Block 2 of 2S. This is summarized in

the following hypothesis.

Hypothesis 4 In Block 2 of 2S, a first-mover whose opponent’s Block 1 history is an Imitator- or
Defector-type will play as a Non-Trusting type against this opponent.

We test hypothesis 4 by splitting the Block 2 data by the second-mover’s Block 1 type and ex-

amining how first-movers respond to their opponents’ revealed histories. Note that in the following

analysis we study Block 2 data using type classifications based on Block 1 data.

First we look at the case where the second mover’s history indicates they are a Cooperator

type. Figure 6 shows average first-mover cooperation and second-mover conditional cooperation

by round in Block 2 games for only those supergames where the second-mover’s Block 1 histories

classify her as a Cooperator. The top two panels show the Block 2 cooperation rates in 1S and 2S,

respectively, for supergames in which the first-mover is Non-Trusting. The bottom panels are for

Block 2 supergames in which the first-mover is Trusting. Both Non-Trusting and Trusting first-

movers cooperate more frequently and into later rounds after the second-mover is revealed to be

a Cooperator compared to when no histories are revealed to first-movers.

Figure 7 presents a similar view of the data for Block 2 supergames where the second-movers’

Block 1 histories classify her as an Imitator. First-movers with Trusting Block 1 histories have

very similar cooperation rates in each corresponding round across treatments. Block 2 cooperation

is much higher in 2S than in 1S for Non-Trusting first-movers, however. Revealing information

that indicates that second-movers are willing to cooperate increases first-mover cooperation even

if that information reveals that the second-mover is rational.
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Fig. 7 Block 2 cooperation rates when the second mover is revealed to have been a Imitator type in Block 1.

Figure 8 is similar to Figures 6 and 7 except data is from Block 2 supergames where the second-

movers’ Block 1 histories classify her as a Defector. Initial cooperation by Trusting first-movers in

2S decreases substantially between 1S and 2S when the second-mover is revealed to be a Defector.

However, Non-Trusting first-movers cooperate slightly more when the second-mover is revealed

to be a Defector. These findings are consistent with the notion that providing the second-mover’s

history causes first-movers to update their beliefs regarding the degree of cooperation that they

can expect from a first-mover. Gachter and Thoni (2005) find a similar result in their public goods

game experiment in which players’ behavior from the first game is revealed to other players in the

subsequent series of games (and players were not told this would happen before the first game).

They find that when players whose contributions were low in the first game are grouped with

other low contributors in subsequent games, they contribute more than when grouped randomly.

As in our experiment, this behavior may be due to a failure of backwards-induction, combined with

updating of pessimistic beliefs that these low contributors hold in the first game; an interpretation

consistent with the model of naive beliefs that we develop in Section 6.

5.3 Rate of First Defection

We use logit regressions to test how first-mover cooperation in Block 2 supergames depends on

the type of second-mover. Robust standard errors are corrected to account for within-subject and

within-session correlations between observations; i.e., the standard errors are clustered by indi-

vidual first-mover and session. Specifications (i) and (ii) of Table 5 show the impact of revealed

player histories on first-mover initial cooperation. Specification (i) explores the impact of revealing

a player’s history of play and indicates that first-movers are more trusting when second-movers

are observed to have cooperated in block 1 supergames. Specification (ii) examines the impact

that a second-mover’s type has on the likelihood that a first-mover will be Trusting. In this speci-
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Fig. 8 Block 2 cooperation rates when the second mover is revealed to have been a Defector type in Block 1.

fication, only second-mover types from 2S are identified by first-movers while second-mover types

from 1S are not observed and represent the omitted second-mover type in the regression.25 The es-

timates show that both Trusting and Non-Trusting first-movers are more likely to trust in Block 2

when the second-mover is revealed to be a Cooperator or an Imitator, compared to when no history

is revealed. However, when facing a Defector, Non-Trusting first-movers are no more likely to trust

than when no history is revealed. Regardless of the second-mover’s type, Trusting first-movers are

more likely than Non-Trusting first-movers to trust in Block 2 when the second-mover’s history of

play is revealed. In this case, even though a second-mover’s model type is Defector, the first-mover

may be responding to the fact that the second-mover likely cooperated in some supergames.

Specifications (iii)-(vi) of Table 5 explore the impact of revealing player types on the number

of periods of joint cooperation before first defection in Block 2 supergames. As the number of

rounds of initial cooperation are censored between 0 and 10, the results are estimated using Tobit

regressions. Furthermore, in contrast to specifications (i) and (ii), second-movers are classified

based on their Block 1 history of play in both 1S and 2S. Although the first-mover cannot classify

a second-mover in 1S, it is useful as an explanatory variable as a second-mover’s type will impact

the overall degree of cooperation and will help us to assess what player characteristics generated

the cooperation rates.

Regardless of whether the second-mover’s history is revealed, average cooperation is slightly

longer in block 2, with some weak evidence that it is even longer in 2S, though the estimate is not

statistically different from zero at conventional levels. That cooperation is longer in block 2 of 1S

suggests that some of the increased cooperation rates seen in 2S is likely driven by second-movers

conditionally cooperating for longer than in block 1. Though average cooperation is informative,

it can be biased by the player types. If, for example, one treatment included more cooperative

25As the type effects are relative to second-mover types in 1S the estimates do not simply reflect a restart effect.
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Table 5 The Effect of Player Types on First-Round Cooperation and Rounds of Cooperation before First Defection

1st Round Cooperation # of Rounds of Cooperation
by First-Mover Before 1st Defection

(i) (ii) (iii) (iv) (v) (vi)

Avg. Block 1 Cooperation 0.054 0.538
(0.308) (0.021)

× 2S 0.138 0.322
(0.019) (0.154)

Defector −0.188
(0.651)

Imitator 0.937 1.606 2.116 1.586
(0.046) (0.186) (0.012) (0.344)

Cooperator 1.069 3.118 0.274 3.722
(0.040) (0.004) (0.818) (0.011)

Trusting
× Defector 1.662 9.779

(0.001) (< 0.001)
× Imitator 3.450 10.472

(< 0.001) (< 0.001)
× Cooperator 2.531 7.002

(< 0.001) (< 0.001)
2S

× Defector 4.647 −4.888 5.863
(< 0.001) (< 0.001) (< 0.001)

× Imitator 3.997 −1.360 5.628
(0.072) (0.011) (0.055)

× Cooperator 3.980 1.996 5.334
(0.074) (0.232) (0.071)

2S×Trusting
× Defector −10.164

(< 0.001)
× Imitator −5.744

(0.010)
× Cooperator −1.855

(0.214)
Supergame# 0.385 0.532 0.755 0.633 −0.566 3.433

(0.036) (0.023) (0.122) (0.243) (0.227) (0.004)
(Supergame#)2 −0.047 −0.066 −0.082 −0.065 0.098 −0.440

(0.122) (0.092) (0.286) (0.439) (0.201) (0.019)
Constant −0.368 −1.257 −0.563 −3.916 7.510 −10.574

(0.241) (0.001) (0.506) (< 0.001) (< 0.001) (< 0.001)

Observations 660 660 660 660 375 285
Notes: Column (v) includes observations with Trusting first-mover and column (vi) includes observations with Non-
Trusting first-mover only. p-values from robust standard errors clustered by individual first-mover and session in paren-
theses.

types, then this could make it appear that average cooperation increased more for that treatment.

Specifications (iv)-(vi) are designed to explore how first- and second-mover types relate to the du-

ration of cooperation. Specification (iv) includes all of the data while specification (v) includes only

Trusting first-movers and specification (vi) includes only Non-Trusting first-movers to help clarify

the impact of the first-movers’ types. The estimate for Cooperator in specification (iv) reveal that

playing with a more cooperative second-mover in either 1S or 2S causes a first-mover to cooperate

for longer within a supergame, especially when the first-mover is Non-Trusting.26 Interestingly

Non-Trusting first-movers are also more likely to cooperate longer with Defector and Imitator

second-movers. Given the results in (ii), part of this result is likely driven by Non-Trusting first-

26For Trusting first-movers the difference in cooperation between 2S and 1S is 2.125, but only with p = 0.259.
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movers’ trusting second-movers more after observing that these second-movers did not initially

defect. Trusting first-movers, however, do not cooperate as long in 2S when facing a Defector and,

to a lesser extent, an Imitator type second-mover. As these first-movers have shown that they are

more willing to trust, even when the second-mover’s history of play is not known, this result can

likely be explained by first-movers examining the number of rounds that second-movers cooper-

ated and trying to pre-empt their defection without performing full backward induction.27

Specifications (v) and (vi) help to clarify the impact of the first-mover’s type by restricting

the sample to either Trusting or Non-Trusting first-movers. Reinforcing the results in (iv), the

estimates for specification (v) indicate that first-movers update the amount that they are willing

to cooperate based on the amount second-movers cooperated in Block 1. Recall that defector is

the omitted category, thus when trusting first-movers encounter a Defector or Imitator in Block

2 they will cooperate for fewer rounds than in 1S but they will also cooperate more with either

an Imitator or Cooperator than a Defector in 2S. The results of specification (vi) reveal that Non-

Trusting first-movers, who were more pessimistic in their Block 1 beliefs (i.e., have a high prior

that their opponent is not a tit-for-tat type), cooperate more in Block 2 even when facing a Defector

who has revealed that she is not a tit-for-tat type, suggesting that first-movers update their beliefs

about how long these second-movers will cooperate based on the history of play. While the amount

of additional cooperation for a Non-Trusting first-mover does not depend on second-mover type,

revealing the second-mover’s history of play is sufficient to increase average cooperation with a

Non-Trusting first-mover.

In summary, both Trusting and Non-Trusting first-movers are more trusting when they can

view the second-mover’s history of play; Non-Trusting first-movers cooperate longer in 2S than

in 1S regardless of the second-mover type; and Trusting first-movers cooperate for fewer periods

with Defectors and to a lesser extent with Imitators. These results indicate that cooperation in the

finitely-repeated prisoners’ dilemma continues even after the opportunity for reputation-building

by second-movers is destroyed. We therefore reject Hypothesis 4.

Result 4 Compared to a first-mover whose opponent’s history is not revealed, a first-mover whose
opponent’s Block 1 history is revealed as Imitator-type (a) is more likely to cooperate in round 1
of a Block 2 supergame, and (b) Non-trusting first-movers cooperate longer when second-mover
histories are revealed while Trusting first-movers do not cooperate for as long when second-movers
are revealed to be Defectors or Imitators.

5.4 Beliefs

In some later sessions, we added a belief elicitation stage at the end of the experiment. Sub-

jects were presented with a sequence of 5 randomly-selected Block 1 histories of first and sec-

ond movers from previous sessions of the same treatment. They were then asked to state how

many rounds they believed these past participants cooperated before the first defection. For one

randomly-selected belief elicitation question, each subject was paid $5 if her stated belief was

exactly correct.28

27This explanation is also consistent with the rates of defecting first shown in Table A.1: in 2S, Trusting first movers
facing Imitator-type second movers defect first 68.4% of the time, compared to 42.0% in 1S.

28We decided not to elicit beliefs before or during gameplay because doing so is difficult and may itself affect beliefs
and behavior. We thank an anonymous referee for the suggestion of eliciting beliefs about third parties.
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Regression results are shown in Table 7 in the Appendix, summarizing how elicited beliefs

responded to observed cooperation rates in displayed histories as well as the role of the player

whose beliefs are elicited. While we find some evidence that elicited beliefs respond to observed

cooperation in the expected directions, statistical significance is weak due to small sample size.

Furthermore, we find that first and second movers report systematically different beliefs, suggest-

ing that elicited beliefs may be biased by the subjects’ own experience in the experiment.

6 A MODEL OF NAÏVE BELIEFS

In contrast to the predictions of the reputation-building theory of Kreps et al (1982), our exper-

iment shows that there will be substantial cooperation in FRPDs even when players’ previous

histories are revealed. Moreover, learning that an opponent imitated a tit-for-tat type frequently

increases cooperation, rather than destroying it.

The observed increases in cooperation may be partially motivated by fairness or indirect reci-

procity. For example, Ho and Su (2009) utilize an ultimatum game in an experiment and find

that roughly half of their subjects value how their offer compares to offers other followers have

received. A similar notion of fairness could plausibly affect cooperation in other games, such as

the FRPDs played here, when subjects can view how their current opponents treated previous

opponents; however, fairness would seem to be a less salient concern in a prisoner’s dilemma

setting, where payoffs are determined more symmetrically (i.e., both players have a hand in the

outcome), than in an ultimatum game setting, where control over payoffs is heavily unbalanced.

Moreover, a concern for fairness would not explain why Non-Trusting first-movers become more

Trusting when they observe that their opponent is a Defector. In community games with public

reputations, indirect reciprocity has been shown to induce cooperation (see Nowak and Sigmund,

2005, for a recent survey), but these games typically feature frequent re-matching among small

groups of subjects, who play simple, one-shot stage games with unilaterally determined payoffs,

making reputation in future matches a dominant concern. In contrast, the matching protocol we

employ minimizes the opportunity for indirect reciprocity by generally matching each subject no

more than once with each other subject. In addition, the payoff gradient of strategic interactions

in an FRPD supergame is large enough that the direct payoff consequences of behavior in a given

supergame should reduce the extent to which behavior is motivated by potential payoffs in future

supergames.

Though we cannot rule out that cooperation in our experiment may be partially motivated by

fairness or indirect reciprocity, we have reason to doubt that they are the primary drivers of the

cooperation we observe. For example, our results are consistent with the findings of Kagel and

McGee (2014)’s experiment on FRPDs played by teams. They observe an increase in cooperation

over time because teams anticipate that their opponent will defect in later rounds. Kagel and

McGee find no evidence in team chat logs, however, that teams anticipate opponents’ beliefs and

attempt to mimic an irrational player as the Kreps et al (1982) model predicts. Nor do they find

evidence of reciprocity or concerns for fairness. Instead, they find evidence that teams anticipate

when their opponents will defect (i.e., their opponents’ actions, not their beliefs) and attempt to de-

fect one round earlier, which they interpret as a failure of common knowledge of rationality. These

results suggest that boundedly rational behavior is a primary driver of cooperation in FRPDs. We
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now propose a simple model of boundedly rational behavior, in which we relax the requirement

that players’ prior beliefs be consistent with an opponent’s best response.29

As in Kreps et al (1982), players in our model decide in which round to stop playing tit-for-tat

and begin unconditionally defecting. This is decided by weighing the long-term benefit of coopera-

tion against the risk of the other player defecting first.30 The difference between this approach and

that of Kreps et al (1982) is that players do not engage in higher level reflection about the beliefs of

their opponent. Instead, players form “naïve” beliefs which may not be consistent with their oppo-

nent’s best response. This is consistent with Kagel and McGee (2014), who provide evidence that

players simply try to defect one round before their opponent’s anticipated first defection without

reflecting on the beliefs of their opponents. Given arbitrary initial beliefs about how many rounds

the opponent will continue playing tit-for-tat, players update beliefs within the game based on

their opponents’ choices using Bayes’ rule and choose the optimal round to stop playing-tit-for-tat

and begin unconditionally defecting.31

This simple model generates predictions that are consistent with our experimental results.

First, the common finding that cooperation in the FRPD does not break down until one or two

rounds before the last is consistent with the model if players have uniform or even more pes-

simistic beliefs.32 Second, the first-mover who plays cooperatively in Block 1 may defect earlier

in Block 2 supergames after the second-mover’s history of play from Block 1 exposes him as gen-

erally uncooperative. Third, there will be as much, if not more, cooperation in Block 2 after a

second-mover’s history of play from Block 1 has exposed him as rational. The first two predictions

are also consistent with the reputation-building theory of Kreps et al (1982), but the third is not.

These results demonstrate that while the behavior we observe is inconsistent with Kreps et al

(1982), it is rational in a reasonable non-equilibrium sense. While this is not the only model that

could explain our experimental data, the recent evidence from Kagel and McGee (2014) indicates

that this interpretation is worthy of a more careful exploration.

For a formal description of the model, let rounds be counted backwards. Play begins in round

10 and ends after round 1. We assume that all players adopt a strategy from S = {s11, s10, ..., s1}.

A player adopting strategy sk plays tit-for-tat in rounds 10 through k and defects in rounds k−
1 through 1. Strategy s11 is defined as defecting in every round. In addition to the Kagel and

McGee (2014) chat evidence, Embrey, Fréchette, and Yuksel (2014) find that subjects learn with

experience to play exactly these strategies, so we believe that restricting the strategy space in this

way has empirical foundations.

Players have prior beliefs µ over their opponent’s strategies in S. Thus, µ(sk) is the probability

of playing against an opponent using strategy sk. Though s1 is dominated for a payoff-maximizing

29This approach is similar to Radner (1986), in which players have arbitrary beliefs about the opponent’s trigger
strategy choice in a simultaneous-move FRPD and choose a best-response trigger strategy given these beliefs.

30Selten and Stoecker (1986) propose an alternative non-Bayesian model of learning from histories of play in FRPDs
which predicts a general pattern of behavior that is consistent with our data. In their model, a player defects one period
earlier (or later) with some probability if her previous opponent defected earlier (or later) than she did, and she defects in
the same period otherwise. This learning model does not include beliefs about other players nor does it assume optimizing
behavior, but only an iterative Markov-transition learning rule given a starting point and supergame outcome. Unlike our
experiment, subjects in Selten and Stoecker (1986) are given no information about opponents’ histories of play in prior
supergames, and it is not clear how strategies would be updated in their model when players see the current opponent’s
history of play against others. In contrast to Selten and Stoecker, we model players as Bayesian optimizers in a framework
that is general enough to accommodate the informational environment of our experiment as well as most other FRPD
experiments.

31Evidence of non-equilibrium behavior like this is abundant in the experimental literature on strategic sophistication.
See Crawford et al (2013) for a recent survey.

32This observation implies that cooperation would be sustained at least as long for more optimistic beliefs.
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agent, we find a non-negligible amount of last-round cooperation in our data. Thus, we assume

beliefs µ are such that µ(sk) ∈ (0,1) for all k, including k = 1.33

Players’ beliefs are updated within each supergame round-by-round according to Bayes’ rule

based on the prior µ and the opponents’ history of actions in that supergame. If her opponent

has cooperated up to and including round t+1, a player believes that her opponent will continue

playing tit-for-tat for at least one more round with probability pt = ∑t
i=1µ(si)

/∑t+1
i=1µ(si). In Propo-

sition 1, we characterize the beliefs for which a naïve player chooses strategy sk in terms of the

conditional probability pt that the opponent will continue to play tit-for-tat in round t, given that

he has played tit-for-tat for all previous rounds, for all t up to round k.

Proposition 1 (a) The first-mover plays sk if and only if

pl ≥
4∑l

i=k+1

(
3

∏l−1
j=i p j

)+7
∏l−1

i=k pi

for every l ∈ {k, . . . ,10}.
(b) The second-mover plays sk+1 if and only if

pl ≥max

{
1
3

,
5∑l

i=k+1

(
3

∏l−1
j=i p j

)+8
∏l−1

i=k pi

}

for all l ∈ {k, . . . ,10}.

Proposition 1 provides lower bounds on the beliefs needed to sustain a particular strategy, sk.

For each round l ≥ k, the subjective probability that the second-mover will play tit-for-tat until

round l must be high enough that the expected payoff of cooperating in round l exceeds the payoff

that can be obtained by defecting in round l. To build intuition, consider the condition for round

l = k+1 given strategy sk. First notice that the first-mover can always defect in rounds k+1 and

k and obtain a total payoff of 8 from these two rounds (as a rational second-mover would respond

by defecting, earning each player a payoff of 4 in each round). By playing tit-for-tat through round

k instead, the first-mover faces three possible outcomes assuming that the second-mover has also

chosen a strategy in S. She may earn payoffs of 0 in round k+1 and 4 in round k (if the second-

mover defects in rounds k+1 and k), payoffs of 7 in round k+1 and 0 in round k (if the second-

mover cooperates in round k+1 and defects in round k), or payoffs of 7 in both rounds k+1 and k
(if the second-mover cooperates in both rounds). Thus, the first-mover is guaranteed a payoff of at

least 4 from these two rounds. She can gain an additional 4 with certainty by defecting in rounds

k+1 and k, but expects that she can gain either an additional 3 or 10 with some probability by

playing tit-for-tat in rounds k+1 and k. If the subjective probability of these cooperation payoffs

is sufficiently high, then it is rational for the first-mover to play tit-for-tat in round k+1.

The second-mover’s strategy is governed by similar belief conditions to the first-mover’s. Con-

sider the second-mover’s condition for round l = k+1 given strategy sk (assuming that the first-

mover cooperates in round k+1). The second-mover can always defect in rounds k+1, k and k−1 to

obtain a total payoff of 20 from these three rounds (12 in round k+1 and 4 in each of the following

two rounds). By playing tit-for-tat through round k instead, the second-mover faces three possible

33We restrict µ(sk) ∈ (0,1) so that Bayes’ rule can always be used. Without changing the results of this section, we could
instead assume players update via Bayes’ rule whenever possible and allow beliefs to be free when zero-probability events
are observed and an opponent’s history does not eliminate any strategies and assign a new belief of zero when a particular
strategy may be eliminated based on the opponent’s history.
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outcomes assuming that the first-mover has also chosen a strategy in S. She may earn payoffs

of 7 in round k+1 and 4 in rounds k and k−1 (if the first-mover defects in rounds k and k−1),

payoffs of 7 in rounds k+1 and k and 4 in round k−1 (if the first-mover cooperates in round k and

defects in round k−1), or payoffs of 7 in rounds k+1 and k and 12 in round k−1 (if the first-mover

cooperates in rounds k and k−1). Thus, the second-mover is guaranteed a payoff of at least 15

from these three rounds. She can gain an additional 5 with certainty by defecting in rounds k+1,

k and k−1, but expects that she can gain either an additional 3 or 11 with some probability by

playing tit-for-tat in rounds k+1 and k. If the subjective probability of these cooperation payoffs is

sufficiently high, then it is rational for the second-mover to play tit-for-tat in round k+1. However,

if the subjective probability that the first-mover plays tit-for-tat in any round is less than 1
3 , it is

strictly dominant for the second-mover to defect before that round due to the incentive to defect

before the first-mover (and earn a payoff of 12 instead of 4 for one round).

The conditions in Proposition 1 are permissive enough that cooperation is sustained into later

rounds with a large variety of beliefs. The following examples demonstrate the range of beliefs

that can support late-round cooperation.

Example 1 (Uniform Prior) Assume that both players have prior beliefs such that µ(sk)= 1/11 for

all k. Then by Proposition 1 the first-mover’s optimal Block 1 strategy is s2 and the second-mover’s

optimal Block 1 strategy is s3.34 That is, the first-mover plays tit-for-tat until the last round, in

which she always defects, while the second-mover plays tit-for-tat up to the next-to-last round and

always defects in the last two rounds. Hence, cooperation until the penultimate round is observed.

Example 2 (Pessimistic Triangular Prior) Assume that both players have prior beliefs µ(sk) =
k /66 for all k. Then by Proposition 1 the first-mover’s optimal Block 1 strategy is s3 and the

second-mover’s optimal Block 1 strategy is s5. That is, the first-mover plays tit-for-tat for eight

rounds and then defects, while the second-mover plays tit-for-tat for six rounds and then defects

thereafter. These relatively pessimistic beliefs still support cooperation for more than half of the

supergame.

Now consider how players update their beliefs based on revealed Block 1 histories. We assume

that players’ own past opponents’ behavior from either Blocks 1 or 2 does not affect beliefs be-

cause players know that they will not face previous opponents again. In Block 2, however, players

incorporate their opponents’ histories into their beliefs when available. Let µ̃ represent the up-

dated beliefs based on the prior µ and the observed Block 1 history. Because players are assumed

to adopt a pure strategy from S, beliefs are updated such that if a player’s opponent never de-

fected before her opponent in rounds 10, ...,n, then
∑11

i=n−1 µ̃(si) = 0 holds. If the opponent always

defected before her opponent by round m, then
∑m

i=1 µ̃(si) = 0 holds. If the opponent’s opponent

always defected first, then µ̃(si)=µ(si) holds for all i.

If players focus on how long they can expect their opponent to cooperate, then first-movers

could have a fairly optimistic prior (i.e., first-movers may be trusting in Block 1) and then, upon

learning that their opponent was a Defector in Block 1, become more pessimistic and cooperate

less in Block 2. This argument is formalized in the following proposition.

34Calculation of the conditional probabilities pt and the conditions in Proposition 1 for a uniform prior show that this is
the case. Take the first-mover for example. Because pt decreases in t for these beliefs, sk is optimal if and only if pk ≥ 4/7
holds because pk ≥ 4/7 implies that pl ≥ 4

/[∑l
i=k+1

(
3

∏l−1
j=i p j

)+7
∏l−1

i=k pi
]

holds for all l ≥ k. s2 is optimal because
pk ≥ 4/7 holds for all k ≥ 2 and p1 < 4/7 . The calculation is similar for the second-mover.
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Proposition 2 Suppose that the second-mover always defected before her opponent by round n of
Block 1 supergames. If the naïve first-mover’s prior beliefs satisfy µ(sk+1) ≤ (3/4 )

∑k
i=1µ(si) for all

k ∈ {m, ...,10}, where m ≤ n, then her Block 1 strategy is sm and her Block 2 strategy is sm+t for
some t ≥ 1.

Proposition 2 applies to the set of first-mover prior beliefs such that, for a certain number of

rounds beginning with the first, the probability that the second-mover will begin unconditionally

defecting in each of these rounds is not more than three-fourths the probability that the second-

mover will play tit-for-tat in that round. This set includes Examples 1 and 2 above and infinitely

many others. Given such beliefs, a first-mover who is classified as Trusting in Block 1, playing

strategy si, will respond to a second-mover’s Defector history (s j, j ≥ i) by choosing a strategy

si+t, t ≥ 1 in Block 2. In other words, if the first-mover had been playing tit-for-tat up to round i in

Block 1, she will defect at least one round earlier in Block 2 games against a second-mover whose

game history shows that he always defected in round i or earlier in Block 1. Again, this prediction

is consistent with our data, which shows a significant decrease in cooperation by Trusting first-

movers whose opponents are revealed as Defectors compared to those whose opponents’ types are

not revealed. Proposition 2 also predicts earlier defections in a given supergame by Trusting first-

movers when the second-mover is revealed to be a Defector than when no information is revealed,

as observed in the data.

In contrast, a first-mover may become more optimistic about how long he can expect to coop-

erate when his opponent is revealed to be an Imitator through her Block 1 history. In this way, a

first-mover will choose to cooperate longer upon seeing that his opponent was cooperative in Block

1. The following proposition formalizes this argument.

Proposition 3 Suppose that the second-mover never defected before her opponent in rounds 10, ...,m
of Block 1 supergames.

(a) If the naïve first-mover’s prior beliefs satisfy µ(sk+1)≤ (3/4 )
∑k

i=1µ(si) for all k ∈ {n, ...,10}, where
n > m, then her Block 1 strategy is sn and her Block 2 strategy is sn−t for some t ≥ 1.

(b) If the naïve first-mover’s prior beliefs satisfy µ(s11) > 3/7 then her Block 1 strategy is s11 and
her Block 2 strategy is s11−t for some t ≥ 1.

Proposition 3 applies to the same set of prior beliefs as Proposition 2 as well as beliefs under

which the first-mover defects in every round of Block 1 supergames. Given these beliefs, a first-

mover plays strategy s11, is classified as Non-Trusting in Block 1, and responds to a second-

mover’s Imitator-type history (si, i ≤ 10) by choosing a strategy s j, j ≤ 10 in Block 2. The simple

intuition for this result is that if the first-mover had been playing tit-for-tat up to round i in Block

1, she will continue to play tit-for-tat at least one round later in Block 2 games against a second-

mover whose game history shows that he always played tit-for-tat beyond round i in Block 1. This

prediction is consistent with our data, which shows a significant increase in initial cooperation

by Non-Trusting first-movers when their opponents are revealed as Imitators compared to those

whose opponents’ types are not revealed, a finding that is clearly inconsistent with the predictions

of the Kreps et al (1982) model. This model may also provide a more plausible explanation than

Kreps et al (1982) for the finding of Gachter and Thoni (2005)’s public goods experiment, where

low contributors contribute more when grouped with other players revealed to have made low

contributions in the past.
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7 CONCLUSION

We have shown that cooperation in FRPDs occurs when the reputation-building theory of Kreps

et al (1982) predicts complete unraveling. The results of the experiment indicate that first-movers

change their strategy when they observe their opponent’s history of play by either increasing or

decreasing their degree of cooperation based on the relative cooperativeness of their opponent.

First-movers tend to cooperate at least as often initially and continue cooperating at least as long

when second-mover histories are revealed, except in the case of relatively trusting first-movers

meeting relatively uncooperative second-movers. Second-movers also tend to behave more cooper-

atively when their histories are revealed. In particular, we find the surprising result that revealing

histories improves cooperation even in the case of a relatively Non-Trusting first-mover meeting a

relatively uncooperative second-mover. Thus, cooperation persists and often increases, even when

revealed histories are relatively uncooperative. These results are clearly inconsistent with the

reputation-building theory.

We show that an alternative behavioral model to Kreps et al (1982) generates predictions that

are consistent with the features of our experimental data. Players in this model form beliefs over

the strategies of their opponents which may not be consistent with the opponent’s best response,

and then choose the optimal strategy based on those naïve beliefs. We do not view this as the ulti-

mate model of behavior in FRPDs, but as a simple and reasonable one which generates predictions

that fit the observed behavior better than prevailing equilibrium models. By using such a simple

model, we avoid ad hoc assumptions about more specific behavioral types which could possibly fit

behavior in this game more precisely. One limitation of this analysis is that beliefs are a critical

part of our behavioral model, but we are able to observe beliefs only in a very limited way. Because

our main hypotheses could be tested without elicited beliefs, and because eliciting beliefs before

or during gameplay is complicated and may itself alter beliefs and behavior, we opted not to do so.

Examining beliefs in more depth may be an interesting direction for future research.
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APPENDIX A

Table A.1 First and second-movers’ Frequency of Defecting First

Trusting first-mover
2S 1S

1st 2nd 1st 2nd
2nd Mover Mover Mover Neither Mover Mover Neither

Imitator 68.4% 31.6% 0.0% 42.9% 57.1% 0.0%
Cooperator 43.6% 40.4% 16.0% 53.2% 29.9% 16.9%

Defector 63.0% 37.0% 0.0% 38.5% 50.8% 10.8%

Non-Trusting first-mover
2S 1S

1st 2nd 1st 2nd
2nd Mover Mover Mover Neither Mover Mover Neither

Imitator 81.8% 18.2% 0.0% 84.4% 12.5% 3.1%
Cooperator 62.7% 21.6% 15.7% 77.8% 12.7% 9.5%

Defector 63.2% 31.6% 5.3% 76.7% 18.3% 5.0%

Table A.2 Mean number of round before first defection (conditional defection) for first-movers (second-movers)

Trusting first-mover
2S 1S

2nd Mover 1st Mover 2nd Mover 1st Mover 2nd Mover

Imitator 7.6 8.1 8.2 8.3
Cooperator 8.1 8.2 6.6 8.1

Defector 3.2 4.1 6.4 6.3

Non-Trusting first-mover
2S 1S

2nd Mover 1st Mover 2nd Mover 1st Mover 2nd Mover

Imitator 4.0 7.5 2.2 5.0
Cooperator 4.9 7.6 2.9 6.3

Defector 3.5 4.5 1.2 3.4
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Table A.3 Elicited Beliefs

Predicted # of Rounds of Cooperation

1S 2S

Respondent is a first-mover
× first-mover avg. rounds coop. in block 1 0.497 −0.011

(< 0.001) (0.920)
× second-mover avg. rounds coop. in block 1 0.113

(0.769)
Respondent is a second-mover 0.447 −7.134

(0.665) (0.098)
× first-mover avg. rounds coop. in block 1 0.129 0.092

(0.339) (0.642)
× second-mover avg. rounds coop. in block 1 0.734

(0.051)
Constant 3.201 6.689

(< 0.001) (0.042)
Observations 460 200
Notes: p-values from Robust Standard Errors Clustered by Individual Mover.
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Table A.4 The Effect of Player Types on First-Round Cooperation and Rounds of Cooperation before First Defection –
Types Defined by Last Block 1 Supergame

1st Round Cooperation # of Rounds of Cooperation
by First-Mover Before 1st Defection

(i) (ii) (iii) (iv) (v) (vi)

Avg. Block 1 Coop. 0.042 0.455
(0.251) (0.006)

× S2 0.116 0.253
(0.013) (0.169)

Defector −0.274
(0.489)

Imitator 0.706 1.264 2.698 0.996
(0.113) (0.377) (< 0.001) (0.588)

Cooperator 1.127 2.278 1.950 2.425
(0.010) (0.006) (0.038) (0.016)

Trusting
× Defector 1.398 8.374

(0.005) (< 0.001)
× Imitator 2.796 9.921

(< 0.001) (< 0.001)
× Cooperator 2.114 8.144

(< 0.001) (< 0.001)
S2

× Defector 4.701 −4.950 5.729
(< 0.001) (< 0.001) (< 0.001)

× Imitator 4.434 0.040 6.079
(0.061) (0.939) (0.042)

× Cooperator 5.028 0.953 6.521
(0.004) (0.556) (0.004)

S2×Trusting × Defector −10.205
(< 0.001)

× Imitator −4.520
(0.039)

× Cooperator −4.042
(0.003)

Supergame# 0.385 0.493 0.760 0.839 −0.402 4.517
(0.035) (0.041) (0.129) (0.143) (0.466) (0.019)

(Supergame#)2 −0.047 −0.061 −0.081 −0.099 0.066 −0.596
(0.121) (0.126) (0.300) (0.262) (0.469) (0.049)

Constant −0.307 −1.223 −0.321 −4.219 5.983 −11.873
(0.226) (0.001) (0.653) (< 0.001) (< 0.001) (< 0.001)

Observations 660 660 660 660 405 255
Notes: Column (v) includes observations with Trusting first-mover and column (vi) includes observations with Non-
Trusting first-mover only. p-values from Robust Standard Errors Clustered by Individual 1st Mover.
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Proposition 4 Let p ∈ (0,1) be the common belief that the other player plays tit-for-tat and pt the period t posterior belief.
The following is a sequential equilibrium for a sequential-move FRPD.

(a) The second-mover plays tit-for-tat in round t with probability

qt (p)=min
{

p
1− p

1− p̄t+1
p̄t+1

,1
}

.

Otherwise, the second-mover defects in round t.
(b) The first-mover cooperates in round t if and only if t ≥ t∗(p) where

t∗ (p)=min {t ∈N : p ≥ p̄t} and p̄t =
(

4
7

)t
hold for all t.

Otherwise, the first-mover defects in round t.

Proof It is easier notationally to derive the equilibrium by counting backwards with t = 10 representing the first round
of the supreme. In the body of the paper, however, time is indexed forward with t = 1 representing the first round of the
supreme. Now, in any period t, the first-mover will cooperate if

pt

(
7+Vt−1

(
pt

pt + (1− pt) qt (pt)

))
+ (1− pt)

[
qt (pt)

(
7+Vt−1

(
pt

pt + (1− pt) qt (pt)

))
+ (1− qt (pt))Vt−1 (0)

]
≥ 4+Vt−1 (pt) ,

where Vt−1 (p) is the continuation value of the first-mover entering period t−1 with belief p. Let V0 ≡ 0. Let p̄t be the
smallest value of pt satisfying this inequality. (We will show later that the inequality in fact grows in pt.)

The probability a selfish second-mover cooperates is the highest q such that the first-mover is willing to cooperate in
periods t−1 after observing cooperation in period t. Thus, if p̄t is the lowest belief at which first-mover will cooperate in
period t, then qt (p) solves

qt (p)= argmax
{

q ∈ [0,1] :
p

p+ q (1− p)
≥ p̄t−1

}
,

and so
qt (p)=min

{
p

1− p
1− p̄t−1

p̄t−1
,1

}
.

For completeness, let qt (1)= 1 for all t and qt ≡ 1 for any t where p̄t−1 = 0. Since a selfish second-mover never cooperates
in the last period, set q1 (p)= 0 for all p. (This is equivalent to setting p̄0 = 1.)

For any t > 1, consider the case where pt ≥ p̄t−1. Here, qt (pt)= 1 (the second-mover cooperates with certainty) and

pt
pt + (1− pt) qt (pt)

= pt,

‘ so the above inequality becomes

pt (7+Vt−1 (pt))+ (1− pt)
[
(7+Vt−1 (pt))

]≥ 4+Vt−1 (pt) ,

or
7≥ 4.

In other words, the first-mover always cooperates if pt ≥ p̄t−1. This proves that p̄t ≤ p̄t−1.
Now suppose pt < p̄t−1. Here

qt (pt)= pt
1− pt

1− p̄t−1
p̄t−1

and so
pt

pt + (1− pt) qt (pt)
= p̄t−1.

The above inequality becomes

pt (7+Vt−1 (p̄t−1))

+ (1− pt)
[

pt
1− pt

1− p̄t−1
p̄t−1

(7+Vt−1 (p̄t−1))+
(
1− pt

1− pt

1− p̄t−1
p̄t−1

)
Vt−1 (0)

]
≥ 4+Vt−1 (pt) .
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After several steps of algebra, this reduces to

pt ≥ p̄t−1
4+Vt−1 (pt)−Vt−1 (0)

7+Vt−1 (p̄t−1)−Vt−1 (0)
.

Since p̄t solves this inequality exactly, it has the property that

p̄t = p̄t−1
4+Vt−1 (p̄t)−Vt−1 (0)

7+Vt−1 (p̄t−1)−Vt−1 (0)
.

In t = 1 the first-mover cooperates if
p1 (7)+ (1− p1) [0]≥ 4,

and so
p̄1 = 4/7.

Thus,

V1 (p)=
{

7p if p ≥ p̄1

4 otherwise
,

or
V1 (p)=max {7p,4} .

Note that V1 (p1)= 4=V1 (0) for any p1 ≤ p̄1.

In t = 2 we know that if p2 ≥ p̄1 = 4/7 then the first-mover cooperates with certainty.

If p2 < p̄1 then he will cooperate only if p2 ≥ p̄2, where p̄2 solves

p̄2 = p̄1
4+V1 (p̄2)−V1 (0)
7+V1 (p̄1)−V1 (0)

=
(

4
7

)2
.

The expression for V2 (p) is given by

V2 (p)=


p (7+V1 (p))+ (1− p) (7+V1 (p)) if p ≥ p̄1

p (7+V1 (p̄1))+ (1− p)
(

p
1−p

1−p̄1
p̄1

(7+V1 (p̄1))+
(
1− p

1−p
1−p̄1

p̄1

)
(V1 (0))

)
if p ∈ [p̄2, p̄1)

4+V1 (p) otherwise

,

which is equal to

V2 (p)=


7+7p if p ≥ p̄1

7 p
p̄1

+4 if p ∈ [p̄2, p̄1)

4+4 otherwise

.

Note that V2 (p2)= 8=V2 (0) for any p2 ≤ p̄2.

In t = 3 we know that if p3 ≥ p̄2 then the first-mover cooperates with certainty.

If p3 < p̄2 then he will cooperate only if p3 ≥ p̄3, where p̄3 solves

p̄3 = p̄2
4+V2 (p̄3)−V2 (0)
7+V2 (p̄2)−V2 (0)

=
(

4
7

)3
.

The expression for V3 (p) is given by

V3 (p)=


p (7+V2 (p))+ (1− p) (7+V2 (p)) if p ≥ p̄2

p (7+V2 (p̄2))+ (1− p)
(

p
1−p

1−p̄2
p̄2

(7+V2 (p̄2))+
(
1− p

1−p
1−p̄2

p̄2

)
(V2 (0))

)
if p ∈ [p̄3, p̄2)

4+V2 (p) otherwise

,

which is equal to

V3 (p)=


7+7+7p if p ≥ p̄1

7+7 p
p̄1

+4 if p ∈ [p̄2, p̄1)

7 p
p̄2

+4+4 if p ∈ [p̄3, p̄2)

4+4+4 otherwise

.
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In general we will have

p̄t =
(

4
7

)t

and
qt (p)=min

{
p

1− p
1− p̄t−1

p̄t−1
,1

}
.

Let
t∗ (p)=min {t ∈N : p ≥ p̄t} .

First-movers will cooperate in period T if p∗
T ≥ p̄T . Thereafter they will cooperate as long as they have never seen a

defection and will never cooperate after seeing a defection. In that case beliefs will evolve according to the formula

p∗
t =

{
p∗

t+1 if t ≥ t∗
(
p∗

T
)

p̄t otherwise
.

Beliefs change to p∗
t = 0 if a defection is observed in any previous period. If p∗

T < p̄T then both players always defect and
p∗

t = p∗
T for every period t. The on-path continuation value of the first-mover will equal

Vt (p)=
 7

(
t− t∗ (p)

)+7 p
p̄t∗(p)−1

+4
(
t∗ (p)−1

)
if t∗ (p)≤ t

4t if t∗ (p)> t
,

where we set p̄0 = 1.

Proof of Proposition 1

(a) Let the first-mover’s expected payoff in round s from the remaining rounds 1, ..., s given beliefs p1, ..., ps be denoted by
Vs(p1, ..., ps). The expected payoff for cooperating in round t is pt(7+Vt−1(p1, ..., pt−1))+(1− pt)Vt−1(0, ...,0). The expected
payoff for defecting in round t, given that the second-mover will respond by defecting for at least one round, is at most
4+Vt−1(p1, ..., pt pt−1). Therefore, the first-mover plays tit-for-tat in period t if and only if the following inequality holds:

pt(7+Vt−1(p1, ..., pt−1))+ (1− pt)Vt−1(0, ...,0)≥ 4+Vt−1(p1, ..., pt pt−1).

We need to show that:

Vt(p1, p2, ..., pt)= 4(t−1)+
t∑

i=k+1
(3

t∏
j=i

p j)+7
t∏

i=k
pi

if
pl ≥

4∑l
i=k+1(3

∏l−1
j=i p j)+7

∏l−1
i=k pi

∀t ≥ l ≥ k

and
Vt(p1, p2, ..., pt)= 4t

otherwise.

The proof is by induction. First, we know that the first-mover cooperates in round 1 if and only if p17+ (1− p1)0 ≥ 4
holds. Therefore, if p1 ≥ 4

7 holds then we have V1(p1)= 7p1, and if p1 < 4
7 holds then we have V1(p1)= 4, and the formula

is true for t = 1.

Now, assume that the formula holds for all rounds up to t−1 and show that it holds for round t. Assume that the
following holds:

Vt−1(p1, p2, ..., pt−1)= 4(t−2)+
t−1∑

i=k+1
(3

t−1∏
j=i

p j)+7
t−1∏
i=k

pi

if
pl ≥

4∑l
i=k+1(3

∏l−1
j=i p j)+7

∏l−1
i=k pi

∀t−1≥ l ≥ k

and
Vt−1(p1, p2, ..., pt−1)= 4(t−1)

otherwise.

The first-mover cooperates in round t if and only if:

pt(7+Vt−1(p1, ..., pt−1))+ (1− pt)Vt−1(0, ...,0)≥ 4+Vt−1(p1, ..., pt pt−1).
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We have assumed that pl ≥ 4∑l
i=k+1(3

∏l−1
j=i p j )+7

∏l−1
i=k pi

holds for all l such that t−1 ≥ l ≥ k. First, suppose also that

pt pt−1 ≥ 4∑t−1
i=k+1(3

∏t−2
j=i p j )+7

∏t−2
i=k pi

holds. Then the first-mover cooperates in round t if and only if:

pt(7+4(t−2)+
t−1∑

i=k+1
(3

t−1∏
j=i

p j)+7
t−1∏
i=k

pi)+ (1− pt)4(t−1)≥ 4+4(t−2)+
t−1∑

i=k+1
(3

t∏
j=i

p j)+7
t∏

i=k
pi

⇔ 7pt +4(t−2)pt +
t−1∑

i=k+1
(3

t∏
j=i

p j)+7
t∏

i=k
pi +4(t−1)−4(t−1)pt ≥ 4(t−1)+

t−1∑
i=k+1

(3
t∏

j=i
p j)+7

t∏
i=k

pi

⇔ (7−4)pt ≥ 0⇔ pt ≥ 0.

Now suppose that pt pt−1 < 4∑t−1
i=k+1(3

∏t−2
j=i p j )+7

∏t−2
i=k pi

holds. Then the first-mover cooperates in round t if and only if:

pt(7+4(t−2)+
t−1∑

i=k+1
(3

t−1∏
j=i

p j)+7
t−1∏
i=k

pi)+ (1− pt)4(t−1)≥ 4t

⇔ pt(3+
t−1∑

i=k+1
(3

t−1∏
j=i

p j)+7
t−1∏
i=k

pi)≥ 4

⇔ pt ≥ 4∑t
i=k+1(3

∏t−1
j=i p j)+7

∏t−1
i=k pi

.

Hence, the first-mover cooperates in round t and Vt(p1, p2, ..., pt)= 4(t−1)+∑t
i=k+1(3

∏t
j=i p j)+7

∏t
i=k pi if and only

if pl ≥ 4∑l
i=k+1(3

∏l−1
j=i p j )+7

∏l−1
i=k pi

holds for all l such that t ≥ l ≥ k. Otherwise, the first-mover defects in round t and

Vt(p1, p2, ..., pt)= 4t.

(b) Let the second-mover’s expected payoff in round s from the remaining rounds 1, ..., s−1 given beliefs p1, ..., ps−1 be
denoted by Vs(p1, ..., ps−1). The expected payoff for cooperating in round t is 7+pt(7+Vt(p1, ..., pt−1))+(1−pt)(4+Vt(0, ...,0)).
The expected payoff for defecting in round t, given that the first-mover will respond by defecting for at least one round,
is at most 12+Vt(p1, ..., pt pt−1). Therefore, the second-mover plays tit-for-tat in period t+1 if and only if the following
inequality holds:

7+ pt(7+Vt(p1, ..., pt−1))+ (1− pt)(4+Vt(0, ...,0))≥ 12+Vt(p1, ..., pt pt−1).

We need to show that:

Vt+1(p1, p2, ..., pt)= 4(t−1)+
t∑

i=k+1
(3

t∏
j=i

p j)+8
t∏

i=k
pi

if
pl ≥max{

1
3

,
5∑l

i=k+1(3
∏l−1

j=i p j)+8
∏l−1

i=k pi
}∀t ≥ l ≥ k

and
Vt+1(p1, p2, ..., pt)= 4(t−1)

otherwise.

The proof is by induction. First, we know that defection is the dominant action for the second-mover in round 1. The
second-mover cooperates in round 2 if and only if 7+p112+(1−p1)4≥ 12+4 holds. Therefore, if p1 ≥ 5

8 holds then we have
V2(p1)= 4+8p1, and if p1 < 5

8 holds then we have V2(p1)= 4, and the formula is true for t = 1.

Now, we assume that the formula holds for all rounds up to t−1 and show that it holds for round t. Assume that the
following holds:

Vt(p1, p2, ..., pt−1)= 4(t−2)+
t−1∑

i=k+1
(3

t−1∏
j=i

p j)+8
t−1∏
i=k

pi

if
pl ≥

5∑l
i=k+1(3

∏l−1
j=i p j)+8

∏l−1
i=k pi

∀t−1≥ l ≥ k

and
Vt(p1, p2, ..., pt−1)= 4(t−2)

otherwise.

The second-mover cooperates in round t+1 if and only if:
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7+ pt(7+Vt(p1, ..., pt−1))+ (1− pt)(4+Vt(0, ...,0))≥ 12+Vt(p1, ..., pt pt−1).

We have assumed that pl ≥ 5∑l
i=k+1(3

∏l−1
j=i p j )+8

∏l−1
i=k pi

holds for all l such that t−1≥ l ≥ k. First, suppose that pt pt−1 ≥
5∑t−1

i=k+1(3
∏t−2

j=i p j )+8
∏t−2

i=k pi
holds. Then the second-mover cooperates in round t+1 if and only if:

7+ pt(7+4(t−2)+
t−1∑

i=k+1
(3

t−1∏
j=i

p j)+8
t−1∏
i=k

pi)+ (1− pt)4(t−1)≥ 12+4(t−2)+
t−1∑

i=k+1
(3

t∏
j=i

p j)+8
t∏

i=k
pi

⇔ 11+4(t−2)+3pt +
t−1∑

i=k+1
(3

t∏
j=i

p j)+8
t∏

i=k
pi ≥ 12+4(t−2)+

t−1∑
i=k+1

(3
t∏

j=i
p j)+8

t∏
i=k

pi

⇔ pt ≥ 1
3

.

Now suppose that pt pt−1 < 5∑t−1
i=k+1(3

∏t−2
j=i p j )+8

∏t−2
i=k pi

holds. Then the second-mover cooperates in round t+1 if and

only if:

7+ pt(7+4(t−2)+
t−1∑

i=k+1
(3

t−1∏
j=i

p j)+8
t−1∏
i=k

pi)+ (1− pt)4(t−1)≥ 12+4(t−1)

⇔ pt(3+
t−1∑

i=k+1
(3

t−1∏
j=i

p j)+8
t−1∏
i=k

pi)≥ 5

⇔ pt ≥ 5∑t
i=k+1(3

∏t−1
j=i p j)+8

∏t−1
i=k pi

.

Hence, the second-mover cooperates in round t+1 and Vt+1(p1, p2, ..., pt) = 4(t−1)+∑t
i=k+1(3

∏t
j=i p j)+8

∏t
i=k pi if

pl ≥ max{ 1
3 , 5∑l

i=k+1(3
∏l−1

j=i p j )}+8
∏l−1

i=k pi
holds for all l such that t ≥ l ≥ k. Otherwise, the second-mover defects in round

t+1 and Vt+1(p1, p2, ..., pt)= 4t.

Proof of Proposition 2

By Proposition 1, the first-mover’s Block 1 strategy is sm if and only if µ is such that pk ≥ 4∑k
i=m+1(3

∏k−1
j=i p j )+7

∏k−1
i=m pi

holds for all k ∈ {m, ...,10}. This condition can be re-written in terms of the prior beliefs µ as:

∑k
i=1µ(si)∑k+1
i=1 µ(si)

≥ 4∑k
i=m+1(3

∏k−1
j=i (

∑ j
l=1µ(sl )

/∑ j+1
l=1 µ(sl ) ))+7

∏k−1
i=m(

∑i
l=1µ(sl )

/∑i+1
l=1µ(sl ) )

for all k ∈ {m, ...,10}. After several steps of algebra, the denominator of the right-hand-side of the above inequality simplifies
to 1∑k

i=1µ(si )
((7+3(k−n))(

∑m
i=1µ(si))+3

∑k
i=m+1((k+1− i)µ(si))), and the condition can be simplified to:

µ(sk+1)≤ 3
4

(k+1−m)
m∑

i=1
µ(si)+

1
4

k∑
i=m+1

((3(k− i)−1)µ(si))

for all k ∈ {m, ...,10}.

Now suppose that the first-mover’s prior beliefs satisfy µ(sk+1) ≤ (3/4 )
∑k

i=1µ(si) for all k ∈ {m, ...,10}. For k = m, the
above condition is satisfied trivially. We now show that the above condition is satisfied for k = m+ r for any r ≥ 1. For any
r ≥ 1, the inequality µ(sm+r+1)≤ (3/4 )

∑m+r
i=1 µ(si) can be re-written as:

µ(sm+r+1) ≤ 3
4

m∑
i=1

µ(si)+
3
4

m+r∑
i=m+1

µ(si)+
3
4

r
m∑

i=1
−3

4
r

m∑
i=1

+ 1
4

m+r∑
i=m+1

(3(m+ r− i)−1)µ(si)−
1
4

m+r∑
i=m+1

(3(m+ r− i)−1)µ(si)

= 3
4

(r+1)
m∑

i=1
µ(si)+

1
4

m+r∑
i=m+1

(3(m+ r− i)−1)µ(si)

− 3
4

r
m∑

i=1
µ(si)+

1
4

m+r∑
i=m+1

(3(1−m− r+ i)+1)µ(si)

= 3
4

(r+1)
m∑

i=1
µ(si)+

1
4

m+r∑
i=m+1

(3(m+ r− i)−1)µ(si)+δ
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where δ = 1
4

∑m+r
i=m+1(3(1− m− r + i)+1)µ(si)− 3

4 r
∑m

i=1µ(si). If r = 1, then δ = µ(sm+1)− 3
4

∑m
i=1µ(si) ≤ 0 holds and the

condition for the first-mover to play strategy sm in Block 1 is satisfied. Now suppose that r ≥ 2. We can rewrite δ as
follows:

δ = 1
4

m+r∑
i=m+1

(3(1−m− r+ i)+1)µ(si)−
3
4

r
m∑

i=1
µ(si)

= µ(sm+r)+ 1
4
µ(sm+r−1)+ 1

4

m+r−2∑
i=m+1

(3(1−m− r+ i)+1)µ(si)−
3
4

r
m∑

i=1
µ(si)

= µ(sm+r)+ 1
4
µ(sm+r−1)+γ− 3

4
r

m∑
i=1

µ(si),

where γ= 1
4

∑m+r−2
i=m+1 (3(1−m− r+ i)+1)µ(si). Note that if r ≥ 2, then γ< 0. Therefore, we have the following:

δ < µ(sm+r)+ 1
4
µ(sm+r−1)− 3

4
r

m∑
i=1

µ(si)

≤ ((
3
4

)r + 1
4

(
3
4

)r−1 − 3
4

r)
m∑

i=1
µ(si)

= 3
4

((
3
4

)r−2 − r)
m∑

i=1
µ(si).

r ≥ 2 implies that ( 3
4 )r−2 − r < 0, so δ< 0 holds and the condition for the first-mover to play strategy sm in Block 1 is

satisfied.

Given that the second-mover always defected before her opponent by round n of Block 1 supergames, where m < n, we
have µ̃(sk) = 0 for all k ≤ m. Therefore, p̃l = 0 holds for all l ≤ m. By Proposition 1 it follows that the first-mover’s Block 2
strategy is sm+t for some t ≥ 1.

Proof of Proposition 3

(a) By Proposition 1, the first-mover’s Block 1 strategy is sn if and only if µ is such that pk ≥ 4∑k
i=n+1(3

∏k−1
j=i p j )+7

∏k−1
i=n pi

holds for all k ∈ {n, ...,10}. By similar logic to the proof of Proposition 2, if the first-mover’s prior beliefs satisfy µ(sk+1) ≤
(3/4 )

∑k
i=1µ(si) for all k ∈ {n, ...,10} then the condition for the first-mover to play strategy sn in Block 1 is satisfied. Given

that the second-mover never defected before her opponent in rounds 10, ...,m of Block 1 supergames, where m < n, we
have µ̃(sk) = 0 for all k > m. Therefore, p̃l = 1 holds for all l ≥ m. By Proposition 1 it follows that the first-mover’s Block 2
strategy is sn−t for some t ≥ 1.

(b) µ(s11) > 3/7 implies that µ(s11) > (3/4 )
∑10

i=1µ(si) holds, so the condition for the first-mover to play strategy s11

in Block 1 is satisfied. Given that the second-mover never defected before her opponent in rounds 10, ...,m of Block 1
supergames, where m ≤ 10, we have µ̃(sk)= 0 for all k > m. Therefore, p̃l = 1 holds for all l ≥ m. By Proposition 1 it follows
that the first-mover’s Block 2 strategy is s11−t for some t ≥ 1.
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