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Abstract Modelers frequently assume (either implicitly or explicitly) that an agent’s
posterior expectation of some variable lies between their prior mean and the realiza-
tion of an unbiased signal of that variable. We call this property updating toward the
signal (UTS). We show that if the prior and signal error densities are both symmet-
ric and quasiconcave then UTS will occur. If, for a given prior, UTS occurs for all
symmetric and quasiconcave error densities, then in fact the prior must be symmetric
and quasiconcave. Similar characterizations are derived for two additional updating
requirements that are strictly weaker than UTS.

Keywords Signal extraction · Bayes’s rule · Reversion to the mean ·
Posterior beliefs · Bayesian robustness

JEL Classification C11 · D01 · D81 · D83 · D84

1 Introduction

It is common in economic theory to assume that agents infer the value of some
meaningful random variable based on imperfect observation. For example, bidders
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766 C. P. Chambers, P. J. Healy

in common-value auctions infer the unknown value of an object from private signals
(Wilson 1977; Milgrom and Weber 1982), oligopolists choose production levels after
observing noisy signals of the demand curve or of their marginal costs (Novshek and
Sonnenschein 1982; Shapiro 1986), producers in the Lucas “island” economy react to
prices that serve as noisy signals of aggregate demand (Lucas 1972), and agents search
for the best price or wage when the underlying distribution is unknown (DeGroot 1968;
Rothschild 1974).

A standard intuition in such settings is that, by Bayes’s rule, posterior beliefs should
represent a weighted average of the prior beliefs and the observed signal. Thus, it is
often assumed that the posterior expectation lies between the prior expectation and the
observed signal for every possible signal value. We refer to this property as updating
toward the signal (UTS). UTS holds for standard examples such as a normal prior with
a normally distributed and independent signal error. In general, however, UTS does
not hold; Observation 1 below shows how any arbitrary combination of a prior mean,
signal realization, and posterior mean can occur when no restrictions are placed on
the distributions.

Although many authors implicitly assume UTS by analyzing only normally dis-
tributed random variables (Grossman and Stiglitz 1976, 1980; Morris and Shin 2002,
2006), some make this assumption explicit (Shapiro 1986; Moore and Healy 2008) as
it is necessary for the results they describe. UTS clearly imposes restrictions on the
possible distributions of the variable and the signal error. To the best of our knowledge,
however, the nature of these restrictions are not understood.

In addition to UTS, we also study the weaker updating requirements of updating
in the direction of the signal (UDS), where the posterior mean must lie in the same
direction as the signal (relative to the prior mean), and mean reinforcement (MR),
which requires that the posterior mean equal the prior mean when the signal equals
the prior mean. We find that the necessary and sufficient conditions for UTS can be
weakened in intuitive ways to provide necessary and sufficient conditions for UDS
and MR as well.

Throughout this paper, we allow the error to depend on the realizations of the
underlying variable; however, we require that this dependence be symmetric in the
underlying variable. In other words, we require that the signal error distributions be
identical for any two realizations of the underlying variable that are equidistant from
the prior mean. We refer to this condition as symmetric dependence. Under symmetric
dependence, we find that MR obtains when the prior distribution and the (mean-zero)
error distribution are both symmetric. If the error term is also quasiconcave, then UDS
is guaranteed. If, in addition, the errors are independent and the prior is quasiconcave,
then UTS is satisfied. We argue that these results are tight by showing examples where
the conditions for one updating requirement (e.g., UDS) are satisfied, but the stronger
updating requirement (e.g., UTS) fails.

In the other direction, one would like to know the content of explicitly assuming
UTS (or UDS or MR) in a theoretical model. To examine this, we take the approach
of a modeler who is free to choose a prior distribution but cannot commit to strong
assumptions about the error distribution. This would be appropriate, for example, in
a model of asset returns with market microstructure noise because the exact cause
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(A) (B)

Fig. 1 Demonstrating the necessary conditions for a MR and UDS, and b UTS

and structure of the noise in high-frequency asset return data is not well under-
stood.1

Assuming that the family of admissible error distributions is a broad enough class
of symmetric distributions (specifically, assuming the family contains all symmetric
distributions that put a mass of one half on two different mass points), we show that
if MR holds for all errors in this family, then the prior must be symmetric. If the
stronger condition of UDS is assumed, then an impossibility result obtains: there is no
prior distribution for which UDS can be guaranteed for all errors in the family. If the
family of errors is a broad enough class of symmetric and quasiconcave distributions
(specifically, assuming the family contains all symmetric uniform distributions), we
show that MR again implies a symmetric prior, but now UDS places no additional
restrictions; the two are equivalent assumptions. Finally, assuming UTS in this case
implies that the prior must be both symmetric and quasiconcave.

Figure 1 provides a rough intuition for why symmetry is necessary for MR and
UDS, and why quasiconcavity is also necessary for UTS. In Fig. 1a, we show an
asymmetric prior density fX with mean μ. If the error term has a uniform distribution
with radius a > 0, then the posterior distribution after observing a signal z = μ is
given by the shaded area under the prior density function.2 The asymmetry in the prior
leads to an asymmetry in the posterior. In the figure, this causes the posterior mean
to be slightly greater than the prior mean. MR is then violated because a signal equal
to the prior mean leads to a posterior mean that is different from the prior mean. If
z were slightly less than μ, then the posterior mean would still be greater than μ,
and now UDS would be violated since the signal is less than the prior mean while
the posterior mean is greater. Following this argument for every a > 0 leads to the
conclusion that MR and UDS require a symmetric prior density function when all
uniformly distributed errors are admissible.

1 Zhou (1996), Andersen et al. (2000), and others show that, in practice, this microstructure noise creates
a substantial bias when estimating the volatility of an asset using the realized variance of returns sampled
at a high frequency. In response, Zhang et al. (2005), Hansen and Lunde (2006), and Aït-Sahalia et al.
(2005) explicitly model the microstructure noise as a random error term added to the underlying asset
price—acknowledging that the structure of this noise is not well understood—and then derive the optimal
estimation strategy under these conditions.
2 Technically, the posterior distribution would be normalized to have a unit integral.
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768 C. P. Chambers, P. J. Healy

In Fig. 1b, we show a prior distribution that is symmetric, but not quasiconcave.
Again, suppose the error distribution is uniform with radius a > 0 so that the posterior
distribution after observing the signal z is given by the shaded area under the curve.
Since the posterior distribution in this example is strictly increasing over its domain, its
mean must be greater than z. This violates UTS because the posterior mean is farther
from the prior mean than the signal. In general, if the signal realization z occurs in a
region where quasiconcavity of the prior fails and if the radius of the uniform error
distribution is sufficiently small, then UTS will be violated. Thus, quasiconcavity is
necessary for UTS when all uniformly distributed errors are admissible.

These results lead to three characterizations. First, if the family of error terms is a
sufficiently broad class of symmetric errors, then symmetry of the prior is equivalent
to requiring MR for the entire family of errors. Second, if the family of error terms is
a sufficiently broad class of symmetric and quasiconcave error terms, then symmetry
of the prior is equivalent to MR and MR is equivalent to UDS. Finally, for the same
family of symmetric and quasiconcave error terms, symmetry and quasiconcavity of
the prior is equivalent to UTS.

In econometrics, since the posterior mean can also be thought of as the Bayes
estimator of the underlying variable using a quadratic loss function, the sufficient
conditions for UTS can be also used to guarantee reasonably well-behaved parameter
estimates without relying on the standard normality assumptions. For example, the
literature on robust Bayesian analysis (see Berger 1994 for an overview) argues that
the family of symmetric and quasiconcave prior densities is particularly robust when
performing Bayesian hypothesis tests; since we show that symmetric and quasiconcave
priors imply and are implied by UTS (when the error distributions are also symmetric
and quasiconcave), we provide another sense in which this family of priors is robust.3

Perhaps the closest paper to ours is the work of Andrews et al. (1972). Using a
normally distributed error distribution and a symmetric prior, they show that mean
reinforcement (MR) is satisfied and that if the prior is also quasiconcave then UTS is
satisfied.4 Since normal densities are symmetric and quasiconcave, these two results
are corollaries of our Propositions 1 and 3, respectively.

In the economics literature, this paper is similar in spirit to Milgrom (1981).
Milgrom requires that higher signal realizations lead to higher posterior beliefs in the
sense of first-order stochastic dominance. He uses a similar robustness approach—
requiring monotonicity for all non-degenerate priors—and shows that a signal dis-
tribution has the strict monotone likelihood ratio property (MLRP) if and only if
monotonicity holds for all priors. Our paper differs from Milgrom’s in that we seek to

3 There has also been some interest by statisticians in credibility theory—the use of posterior means that
are (typically) assumed to be linear in the observed data to adjust parameter estimates in actuarial mod-
els—and its appropriateness (see Kahn 1975 for an introduction). The capstone of this literature is Diaconis
and Ylvisaker (1979), in which the authors characterize a conjugate family of distributions by requiring
linearity of the posterior expectation. Our results are independent of this literature, however, since linearity
of the posterior expectation is neither implied by nor implies UTS. Furthermore, the statistics literature has
focused on implied restrictions on the parameters of certain families of distributions rather than restrictions
on the density function directly, as provided by our results.
4 This work is followed by Polson (1991), who provides an exact representation of the posterior mean for
the case of normally distributed errors and arbitrary priors.
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Updating toward the signal 769

order the posterior mean relative to the prior mean while Milgrom’s goal is to order
various posterior distributions according to their signal realizations; in fact, the UTS
concept is neither implied by nor implies any sort of monotonicity of the posterior
mean. Additionally, Milgrom’s approach fixes an error distribution and considers the
family of all non-degenerate priors, while we fix a prior and consider various families
of error distributions. A systematic study of stochastic dominance in the latter case
has not been undertaken; however, we show in a related paper (Chambers and Healy
2009) that for any fixed prior with bounded support one can find a symmetric, quasi-
concave error distribution and a pair of signals such that the lower signal generates a
posterior that strictly stochastically dominates the posterior formed from the higher
signal. Thus, one can always reverse (and not just negate) Milgrom’s monotonicity
result by finding an error term that does not satisfy MLRP but is well behaved in many
other respects.

Finally, work which is related in a broader sense includes Feldman (1991), Jackson
and Peck (1999), Ghirardato (2002), Tadelis (2003), Sandroni (2005), Azrieli and
Lehrer (2007), Menon and Subramanian (2008), and Quint (2010).5

We introduce the environment and notation in Sect. 2. Results appear in Sect. 3,
which is broken into three subsections. The first covers the sufficiency results, the sec-
ond lists the necessity results, and the third combines these into three characterization
theorems. In Sect. 4, we show how the characterization theorems can be applied in the
context of a portfolio choice problem.

2 Environment and notation

We study situations in which a decision maker is interested in the realization of some
underlying real-valued random variable X but instead observes a realization of a
real-valued random variable Z that serves as a signal of X . Formally, consider two
probability spaces (�,B, μ) and (�′,B′, μ′). Let X : � → R be the underlying
random variable of interest, and, for every x ∈ R, let ε̃|x : �′ → R be another
random variable. Together, these random variables jointly generate a random variable
Z : � × �′ → R given by

Z(ω, ω′) = X (ω) + [ε̃|X (ω)](ω′).

We assume below that each ε̃|x has a mean of zero (E[ε̃|x] = 0), so that Z rep-
resents an unbiased signal of the realization X (ε). In this case, each variable ε̃|x is
referred to as an error term. Let {ε̃|x}x denotes a collection of error terms, one for
each x ∈ R.6

5 These references were added at the suggestion of an anonymous referee.
6 Alternatively, one could start with X and Z as primitives and then derive the conditional distributions
X |Z . This approach faces the problem that conditional distributions and conditional expectations are not
unique as they may differ on probability-zero events. The family of conditional distributions we use here
as primitive could be thought of as one particular family of possible conditional distributions derived from
some underlying variables X and Z .
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770 C. P. Chambers, P. J. Healy

We can now define the ‘unconditional’ error term ε̃(ω, ω′) = (ε̃|x(ω))(ω′), so that
Z = X + ε̃, where we also understand X to be a random variable defined on �×�′ but
constant on �′. Thus, properties of ε̃ can equivalently be thought of as properties of
the family {ε̃|x}x , and vice-versa. We emphasize that writing the signal in the additive
form (Z = X + ε̃) does not assume independence between ε̃ and X ; for example,
a multiplicative error structure of the form Z = X θ̃ , where θ̃ is independent of X
(as in Lucas 1972), can be rewritten as an additive structure by defining ε̃ = X θ̃ − X
(or ε̃|x = x θ̃ − x for each x), which clearly depends on X .

Realizations of X , Z , and ε̃ are represented by x , z, and ε, respectively. For each
possible realization z of the signal Z , the decision maker forms a posterior belief about
X via Bayes’s rule, represented by the random variable X |z. The goal of our study was
to identify conditions on the distributions of X and ε̃ that guarantee updating toward
the signal (UTS), which we formally define below. Conversely, we explore the con-
tent of assuming that UTS holds for a given family of models. We also perform these
inquiries for updating in the direction of the signal (UDS) and mean reinforcement
(MR), also defined below.

If each ε̃|x has a continuous density, then we define the conditional density by

fX |z(x |z) = fε̃(z − x |x) fX (x)
∫

t fε̃(z − t |t) fX (t)dt
(1)

whenever this ratio exists, and E[X |z] = ∫
x x fX |z(x |z)dx is the conditional expec-

tation of X given Z = z. In general, if ε̃ does not have a density, then we define
conditional expectations in the usual way. In this case, both fX |z and E[X |z] need
not be unique; different versions of these objects are equivalent if they vary only on
sets of realizations of Z that occur with zero probability. Thus, all of our results on
conditional expectations and distributions are true ‘almost surely’ in Z .

Throughout this paper, we apply the following assumptions unless otherwise spec-
ified:

A1: All random variables have finite means.
A2: The random variable X has a well-defined density function continuous on R.
A3: E[ε̃|x] = 0 for each x .

The first assumption does rule out some interesting distributions; however, the ques-
tions we ask are meaningless if means do not exist, so this assumption is necessary
for our inquiry.

The requirement that X has a continuous density function is not substantive but
simplifies the presentation of proofs. In several specific examples, we use discontin-
uous distributions for X ; in all such cases, the distribution could be replaced by a
continuous approximation with no change to the results of the examples.

The third assumption restricts attention to the case of conditionally unbiased sig-
nalling structures. Since a Bayesian decision maker must ‘de-bias’ any observations
of biased signals by shifting their posterior beliefs appropriately, properties such as
UTS will obviously be violated when this de-biasing generates a large enough shift in
posterior beliefs; hence, we only consider the case of conditionally unbiased signals.
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Updating toward the signal 771

Our sufficiency results are proved assuming each ε̃|x also has a well-defined den-
sity and the collection {ε̃|x}x satisfies a ‘symmetric dependence’ condition, defined
below. Our necessity results make use of error terms with discontinuous densities
that are independent of X . When we combine these results to generate characteriza-
tions, we simply apply continuity arguments to ‘close the gap’ between these differing
assumptions.

The formal definitions of UTS, UDS, and MR are as follows:

Definition 1 Given a random variable X and an error term ε̃, when E[X ] is in the
support of Z , the pair (X, ε̃) satisfies mean reinforcement (MR) if

E[X |z = E[X ]] = E[X ].

For continuous distributions, the probability of E[X ] occurring is zero, and so
E[X |z = E[X ]] is not uniquely defined. In this case, the definition of mean rein-
forcement makes sense when we use the specific conditional expectation defined by
Eq. 1.

Definition 2 Given a random variable X and an error term ε̃, the pair (X, ε̃) updates
in the direction of the signal (or, satisfies UDS) if for almost every z in R there exists
some α ≥ 0 such that

E[X |z] = α z + (1 − α) E[X ]. (2)

The order of quantification is important in the definition of UDS; because α can
vary with z, UDS does not require that the posterior mean be linear in the signal real-
ization. See Diaconis and Ylvisaker (1979) for a discussion of the more-restrictive
linear case.

Definition 3 Given a random variable X and an error term ε̃, the pair (X, ε̃) updates
toward the signal (or, satisfies UTS) if for almost every z in R there exists some
α ∈ [0, 1] such that (2) holds.

The two properties of density functions that are central to our results are symmetry
and quasiconcavity:7

Definition 4 A random variable with cdf F and mean μ is symmetric if, for every
a ≥ 0, F(μ + a) = 1 − limx→a− F(μ − x).

Note that if a symmetric random variable has a continuous density function with
finite mean μ, then the density function is symmetric about the mean ( f (μ + a) =
f (μ − a) for all a). Symmetry of ε̃ is taken to mean symmetry of each ε̃|x .

Definition 5 A random variable is quasiconcave if it has a density function f such
that for all x, x ′ ∈ R and λ ∈ (0, 1), f (λx + (1 − λ)x ′) ≥ min{ f (x), f (x ′)}.

7 Quasiconcave density functions are often called “unimodal” in the statistics literature.
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Our results indicate links between quasiconcave and symmetric random variables
and UTS, UDS, and MR. Although quasiconcavity and symmetry are strong require-
ments, they are properties of naturally occurring processes where small deviations
from the mean are more frequent than large deviations.

In the following section, we study sufficient conditions on the distributions of X
and ε̃ to guarantee that either UTS, UDS, or MR hold for the posterior distribution, and
conversely, what properties of X and ε̃ are implied by assuming that UTS, UDS, or
MR hold for the posterior when a large family of error terms is considered admissible.

3 Results

We first verify that Bayes’s rule places no restrictions on the location of the posterior
mean when no restrictions are placed on the underlying distributions. Thus, restric-
tions on the pair (X, ε̃) are necessary to generate restrictions on the relative locations
of the signal realization and the prior and posterior means.

Observation 1 For any three real numbers μ, z, and a, there exist distributions for
X and ε̃ such that ε̃ is symmetric and independent of X, E[X ] = μ and E[X |z] = a.

Proof Consider the case of z �= a.8 Pick any continuous fX with fX (a) > 0, fX (2z −
a) = 0, and

∫
x fX (x) dx = μ. Let ε̃ have the two-point distribution (z − a, 1/2; a −

z, 1/2) (meaning ε = z − a and ε = a − z each occur with probability one-half),
which is independent of X . In this case,

E[X |z] = a
fX (a)

fX (a) + fX (2z − a)
+ (2z − a)

fX (2z − a)

fX (a) + fX (2z − a)
,

which then reduces to E[X |z] = a. ��

3.1 Sufficient conditions

All of the sufficiency results in this section depend on symmetry of the joint distribution
fX,ε̃(x, ε) along the x-axis in (x, ε)-space, so that, if X is mean-zero, then fX,ε̃(x, ε) =
fX,ε̃(−x, ε) for almost all (x, ε) pairs. Since fX,ε̃(x, ε) = fX (x) fε̃|x (ε|x), symmetry
is achieved when fX is symmetric and when fε̃|x (ε|x) = fε̃|x (ε|−x) for every realiza-
tion ε. This second condition places the reasonably mild restriction on the structure of
the dependence of the error term that the error distribution is identical for two realiza-
tions of X that are equidistant from its mean. Clearly, error terms that are independent
of X satisfy this restriction.

8 If z = a, simply let ε̃ be uniformly distributed with support [−1, 1] (independent of X ), and let X have a
uniform distribution whose support includes [a − 1, a + 1] so that E[X |z = a] = ∫ a+1

a−1 x (1/2) dx , which
equals a.
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Updating toward the signal 773

Definition 6 An error term ε̃ satisfies symmetric dependence with respect to X if, for
each x , ε̃|x has a continuous density function fε̃|x satisfying

fε̃|x (ε|E[X ] + a) = fε̃|x (ε|E[X ] − a),

for almost every ε and a in R.

For notational simplicity, we denote fε̃|x (ε|x) by fε̃(ε|x) since this causes no confu-
sion. The following example shows how MR, UDS, and UTS cannot be guaranteed—
even with well-behaved distributions—when symmetric dependence is violated.

Example 1 Let fX be constant and positive on [−11, 11], let ε̃|x ∼ U [−1, 1] (ε̃|x is
uniformly distributed on [−1, 1]) for all x ≥ 0, and ε̃|x ∼ U [−11, 11] for all x < 0.
In this case, E[X |z = 0] = −5/2, violating MR, and E[X |z = 1] = −7/8, violating
both UDS and UTS. Thus, quasiconcavity and symmetry of the random variables is
not sufficient for any of these properties without adding symmetric dependence.

Given its clear importance, we assume symmetric dependence for the remainder of
this subsection and only work with independent error terms (which therefore satisfy
symmetric dependence) in the next subsection.

A4: All error terms ε̃ satisfy symmetric dependence.

Note that, in particular, we assume that each ε̃|x has a density; consequently, con-
ditional densities are given by Eq. 1.

The proofs of the three propositions in this section all make use of the following
lemma:

Lemma 1 If X is symmetric and ε̃ satisfies symmetric dependence, then E[X |z] � 0
if and only if

∞∫

0

x [ fε̃(z − x |x) − fε̃(z + x |x)] fX (x) dx � 0. (3)

Proof Suppose E[X |z] ≥ 0 (the proofs for E[X |z] = 0 and E[X |z] ≤ 0 are identical).
Then

∞∫

−∞
x fX |Z (x |z)dx ≥ 0.

By splitting the integral at zero, this becomes

∞∫

0

x fX |z(x |z)dx ≥
0∫

−∞
−x fX |z(x |z)dx,
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774 C. P. Chambers, P. J. Healy

or, by a change of variables and rearranging,

∞∫

0

x
[

fX |z(x |z) − fX |z(−x |z)] dx ≥ 0. (4)

By Bayes’s rule,

fX |z(x |z) = fZ |x (z|x) fX (x)
∫

fZ |t (z|t) fX (t)dt

= fε̃(z − x |x) fX (x)
∫

fZ |t (z|t) fX (t)dt
.

Thus, inequality 4 becomes

∞∫

0

x [ fε̃(z − x |x) fX (x) − fε̃(z + x | − x) fX (−x)] dx ≥ 0. (5)

Symmetry of X implies that fX (x) = fX (−x) and symmetric dependence implies
that fε̃(ε|x) = fε̃(ε| − x) for any x and ε. Therefore, Eqs. 3 and 5 are equivalent. ��

We are now prepared to demonstrate a sufficient condition for the mean reinforce-
ment property.

Proposition 1 If X and ε̃ are symmetric, then the pair (X, ε̃) satisfies mean reinforce-
ment (MR).

Proof Without loss of generality assume that E[X ] = 0. Letting z = 0, we now wish
to show that E[X |0] = 0. Using Lemma 1, this is equivalent to showing that

∞∫

0

x [ fε̃(0 − x |x) − fε̃(0 + x |x)] fX (x) dx = 0.

But the bracketed term equals zero almost everywhere since ε̃ is symmetric, so the
claim follows immediately. ��

The following example shows that these sufficient conditions for MR are not suf-
ficient for the stronger requirement of updating in the direction of the signal (UDS).

Example 2 Consider an X that is uniformly distributed over [−2, 2] and an error term
ε̃ that is independent of X with the symmetric two-point distribution (−10, 1/2; 10,

1/2).9 If the signal realization is z = 9, then it is known with certainty that x = −1
and ε = 10. UDS requires E[X |z = 9] > 0, but here E[X |z = 9] = −1, so UDS
fails.

9 These distributions may be approximated by continuous densities to conform to the assumptions of this
subsection.
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Updating toward the signal 775

In order to guarantee UDS, a stronger condition is needed. From Example 2, it is
clear that quasiconcavity of the prior is not sufficient. Instead, we find that quasicon-
cavity of the error distribution is sufficient for UDS, even when the prior is symmetric,
but not quasiconcave.

Proposition 2 If X is symmetric and ε̃ is symmetric and quasiconcave, then the pair
(X, ε̃) satisfies UDS.

Proof Without loss of generality, let E[X ] = 0. Assume first that z ≥ 0, in which
case we wish to show that E[X |z] ≥ 0. Using Lemma 1, this is equivalent to showing
that

∞∫

0

x [ fε̃(z − x |x) − fε̃(z + x |x)] fX (x) dx ≥ 0. (6)

Symmetry of ε̃ implies that fε̃(z − x |x) = fε̃(|z − x | |x), so the bracketed term can
be rewritten as

[ fε̃( |z − x | |x) − fε̃(z + x |x)] .

We now show that this bracketed term is non-negative for almost all x ∈ [0,∞).
First, since fε̃ is symmetric and quasiconcave, it is maximized at its mean: fε̃(0|x) ≥
fε̃(ε|x) for all ε and almost every x . Second, since z and x are non-negative in this
integral, it must be that 0 ≤ |z − x | ≤ z + x , and so there is some λ ∈ (0, 1) such
that |z − x | = λ0 + (1 − λ)(z + x). But since fε̃(0|x) ≥ fε̃(z + x |x), quasiconcavity
implies that fε̃(|z − x | |x) ≥ fε̃(z + x |x) for almost all x . Therefore, the bracketed
term is non-negative almost everywhere under the integral, and so inequality (6) holds,
proving the result for z ≥ 0. The proof for z ≤ 0 is symmetric. ��

We now consider the stronger condition of updating toward the signal (UTS). The
following example shows that symmetry of the prior and symmetry and quasiconcav-
ity of the error distribution—which were sufficient for UDS—are not sufficient for
UTS.

Example 3 In this example, we simply switch the role of the two distributions in
Example 2. Specifically, let X has (a continuous approximation of) the symmetric two-
point distribution (−10, 1/2; 10, 1/2) and let ε̃ has the (symmetric and quasiconcave)
uniform distribution over [−2, 2]. Now, when z = 9, it is known with certainty that
x = 10 and ε = −1. UTS requires that E[X |z = 9] ∈ [0, 9] but E[X |z = 9] = 10,
so UTS fails.

Our final sufficiency result shows that UTS is satisfied when both the error distri-
bution and the prior distribution are symmetric and quasiconcave, and in addition, the
error term is independent of the prior. It is well known that if the prior and error term
are independent and normally distributed, then the pair satisfies UTS; this fact can
now be derived as a corollary of the following result.
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Proposition 3 If X is symmetric and quasiconcave and ε̃ is symmetric, quasiconcave,
and independent of X, then the pair (X, ε̃) satisfies UTS.

Proof Without loss of generality let E[X ] = 0 and consider the case where z ≥ 0.
By Proposition 2 we know that UDS is satisfied, so E[X |z] ≥ 0. It remains to show
that E[X |z] ≤ z.

Note that since Z = X + ε̃, E[X |z] ≤ z if and only if E[ε̃|z] ≥ 0, or

∞∫

−∞
ε fε̃|z(ε|z) dε ≥ 0.

Breaking the integral at zero, this inequality becomes

∞∫

0

ε fε̃|z(ε|z) dε ≥
0∫

−∞
−ε fε̃|z(ε|z) dε.

Applying a change of variables (from ε to −ε) and rearranging gives

∞∫

0

ε
[

fε̃|z(ε|z) − fε̃|z(−ε|z)] dε ≥ 0.

By Bayes’s rule,

fε̃|z(ε|z) = fε̃(ε|z − ε) fX (z − ε)
∫

fε̃(t |z − t) fX (z − t)dt
,

so the above inequality becomes

∞∫

0

ε [ fε̃(ε|z − ε) fX (z − ε) − fε̃(−ε|z + ε) fX (z + ε)] dε ≥ 0. (7)

Since ε̃ is symmetric and independent of X , then fε̃(ε|z − ε) = fε̃(−ε|z + ε) for
every ε and z, so the inequality can be rewritten as

∞∫

0

ε fε̃(ε) [ fX (z − ε) − fX (z + ε)] dε ≥ 0.

Since |z−ε| ≤ z+ε for non-negative ε, symmetry and quasiconcavity of fX imply that
the bracketed term is non-negative almost everywhere [the proof of this fact follows
exactly the same arguments used to show that inequality (6) from the proof Proposition
2 is non-negative almost everywhere]. Thus, the integral is non-negative, proving the
result. The proof for z ≤ 0 is symmetric. ��
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Table 1 Summary of results

Result Error terms Prior Condition

Proposition 1 Sym Sym ⇒ MR

Example 2 Sym Ind Sym QC �⇒ UDS

Proposition 2 Sym QC Sym ⇒ UDS

Example 3 Sym QC Ind Sym �⇒ UTS

Example 4 Sym QC Sym QC �⇒ UTS

Proposition 3 Sym QC Ind Sym QC ⇒ UTS

Proposition 4 All Ind, Sym, 2-Point Errors Sym ⇐ MR

Proposition 5 All Ind, Sym, 2-Point Errors � ∃ ⇐ UDS

Proposition 6 All Ind Uniform Errors Sym ⇐ MR

Proposition 7 All Ind Uniform Errors Sym QC ⇐ UTS

Sym symmetric, QC quasiconcave, Ind independent

Unlike the previous results, Proposition 3 requires independent error terms. The
following example shows that if independence is relaxed to symmetric dependence,
then the UTS no longer holds.

Example 4 Let X ∼ U [−4, 4]. If |x | ≤ 1, then let ε̃|x ∼ U [−1, 1] and if |x | > 1,
then ε̃|x ∼ U [−2, 2]. All random variables are symmetric and quasiconcave, and
ε̃|x satisfies symmetric dependence but is not independent of X . Consider z = 2,
where fZ (2) = ∫ 4

−4 fε̃(z − x |x) fX (x)dx equals
∫ 4

1 (1/4)(1/8)dx = 3/32. Thus,

E[X |z = 2] equals
∫ 4
−4 x fε̃(z−x |x) fX (x)/(3/32)dx , or

∫ 4
1 x(1/4)(1/8)/(3/32)dx =

∫ 4
1 xdx(1/3), which equals 5/2. Since E[X |z = 2] > 2, UTS fails.

A summary of the sufficiency results appears in the top half of Table 1. The bound-
aries of Proposition 3 are nicely highlighted by comparing it to Examples 2, 4, and
3; if we relax quasiconcavity of the prior or independence of the error then UTS fails
(Examples 3 and 4), and if we relax quasiconcavity of the error terms then both UTS
and UDS fail (Example 2).

3.2 Necessary conditions

We now explore conditions on the prior and error distributions that must be true of
the pair satisfies MR, UDS, and UTS. The following example shows, however, that
no combination of symmetry and quasiconcavity is necessary for MR, UDS, or UTS.

Example 5 Let X and ε̃ both have (continuous approximations of) the two-point distri-
bution (4, 1/3;−2, 2/3). This mean-zero distribution is neither symmetric nor quasi-
concave though ε̃ is independent of X and, therefore, satisfies symmetric dependence.
The three possible signal realizations are z = 8, z = 2, and z = −4. If z ∈ {8,−4},
then x is known with certainty. In particular, E[X |z = 8] = 4 and E[X |z =−4]=−2.
If z = 2 is observed, then x = 4 and x = −2 are equally likely; thus, E[X |z = 2] = 1.
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In all three cases, E[X |z] = z/2, so UDS and UTS are satisfied, and MR is vacuously
satisfied.

Given this difficulty in identifying necessary conditions for any particular pair
(X, ε̃), we follow Milgrom (1981) and ask what conditions MR, UTS, and UDS would
imply on one of the distributions given freedom in the specification of the other. Spe-
cifically, we take the viewpoint of a modeler who fixes a prior distribution but, in the
interest of model robustness, is unwilling to commit to a particular error distribution.
For example, she may select a normally distributed prior but allow for any symmetric
and quasiconcave error distribution. In this setting, we ask what the restrictions on the
prior must be if MR, UDS, or UTS is assumed to hold for all such error distributions.

We focus on two cases of interest: First, when the modeler requires MR, UDS,
or UTS to hold for all symmetric, independent, two-point error distributions (or, by
extension, any larger family of error distributions that includes all symmetric, two-
point distributions) and second, when the modeler requires MR, UDS, or UTS to hold
for all independent, uniformly distributed error terms (or any larger family).

Our interpretation of these two families of error distributions is that any sufficiently
broad family of error terms that includes symmetric (but not necessarily quasiconcave)
distributions will include all symmetric, independent, two-point error distributions as
a subset, and any sufficiently broad family of error terms that includes symmetric and
quasiconcave distributions will include all independent, uniformly distributed error
terms as a subset. The results of this section explore the freedom in the choice of the
prior that can be obtained when one requires MR, UDS, or UTS while allowing for
such flexibility in the specification of the error terms.

Clearly, studying two-point or uniformly distributed error terms violates the sym-
metric dependence assumption because symmetric dependence—as defined above—
requires ε̃ to have a continuous density function. We dispose with this assumption and
work only with error terms that are independent of X . Our results then apply to any
family containing these families of independent error terms. We link our sufficiency
results (which assume symmetric dependence) with these necessity results in the next
subsection.

Proposition 1 showed that symmetry of both the error and prior distribution is suf-
ficient for mean reinforcement (MR). The following provides a rough converse to this
result: if all symmetric two-point distributions are admissible, then requiring MR for
all admissible error terms implies that the prior distribution must be symmetric.

Proposition 4 If X is such that (X, ε̃) satisfies mean reinforcement (MR) for all inde-
pendent, symmetric, error terms ε̃ with a two-point distribution, then X is symmetric.

Proof We prove the contrapositive, which says that if X is not symmetric then there
is some two-point error term for which MR fails.

Assume without loss of generality that E[X ] = 0. Since X is not symmetric, there
is some y > 0 such that fX (y) �= fX (−y). Consider the error term ε̃ with the two-
point distribution (−y, 1/2; y, 1/2), which is independent of X . The posterior mean
given z = 0 is then

E[X |z = 0] = y fX (y) − y fX (−y)

fX (y) + fX (−y)
,
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which cannot equal zero (the prior mean) since fX (y) �= fX (−y) (see Fig. 1a for an
illustration). Thus, MR fails. ��

With a broad enough class of symmetric error terms, the above result shows that
mean reinforcement implies symmetry of the prior. We now demonstrate that one can-
not use the stronger condition of UDS if this same family of error terms is admissible.

Proposition 5 There is no X such that (X, ε̃) satisfies UDS for all independent, sym-
metric error terms ε̃ with a two-point distribution.

Proof Suppose, by way of contradiction, that X satisfies UDS for all independent,
symmetric ε̃ with two-point distributions. Pick any pair (x1, x2) with x2 > x1 > 0
and consider the error term

ε̃(x1,x2) ∼
(

− x1 + x2

2
,

1

2
; x1 + x2

2
,

1

2

)

and the signal z = (x2 − x1)/2 when Z = X + ε̃(x1,x2). In this case, the posterior on
X given z has the two-point distribution

(

−x1,
fX (−x1)

fX (−x1) + fX (x2)
; x2,

fX (x2)

fX (−x1) + fX (x2)

)

.

Thus, E[X |z] is proportional to −x1 fX (−x1) + x2 fX (x2), which must be non-neg-
ative since X satisfies UDS. Therefore, x2 fX (x2) ≥ x1 fX (−x1). Since UDS implies
MR, we know by Proposition 4 that X must be symmetric, so we have that

x2 fX (x2) ≥ x1 fX (x1).

But this argument can be repeated for all x2 > x1 > 0, so x fX (x) is increasing in x
for x > 0. But then E[X ] = ∫ ∞

−∞ x fX (x)dx does not exist unless fX is zero almost
everywhere. This is a contradiction since UDS requires that X have a finite mean. ��

The above impossibility result implies that UDS and UTS cannot be satisfied if all
independent, symmetric, two-point error distributions are admissible. The sufficiency
results, however, indicate that quasiconcavity also plays a role in both UDS and UTS,
so we proceed by adding quasiconcavity to the admissible family of error terms. This
is done by considering the family of all independent, uniformly distributed error terms.
We now show that in this case symmetry of X is not only implied by UDS, but that
it is implied by the weaker concept of mean reinforcement as well. Note that the fol-
lowing Proposition relies on error terms possessing densities, so that Eq. 1 is used for
computing conditional expectations.

Proposition 6 If X is such that (X, ε̃) satisfies mean reinforcement (MR) for all inde-
pendent, uniformly distributed error terms ε̃, then X is symmetric.

Proof Suppose that (X, ε̃) satisfies MR for every independent, uniformly distributed
error term ε̃. Pick any y > 0 and choose ε̃y to have the uniform distribution over
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[−y, y]. In this case, the posterior mean given z = 0 is proportional to
∫ y
−y x fX (x) dx .

If (X, ε̃y) satisfies MR for every y > 0, then

y∫

−y

x fX (x) dx = 0, (8)

for almost every y > 0. Differentiating this expression with respect to y establishes
that

y fX (y) = y fX (−y)

or

fX (y) = fX (−y),

for almost every y > 0. Thus, X is symmetric. ��
Finally, we saw from the sufficiency results that quasiconcavity of the prior can be

used to guarantee UTS, so we demonstrate now that UTS implies that the prior should
also be quasiconcave when all independent, uniform distributions are admissible.

Proposition 7 If X is such that (X, ε̃) satisfies UTS for all independent, uniformly
distributed error terms ε̃, then X is symmetric and quasiconcave.

Proof Proposition 6 and the fact that UTS implies MR give the result that X is symmet-
ric; we now demonstrate a failure of UTS when X is symmetric, but not quasiconcave.

Let E[X ] = 0 (without loss of generality) and consider any z ≥ 0. UTS implies
that E[X |z] ≤ z, or equivalently that E[ε̃|z] ≥ 0. Consider the error term ε̃ with a
uniform distribution over [−y, y]. Then E[ε̃|z] ≥ 0 if and only if

y∫

−y

ε fX (z − ε) dε ≥ 0.

By breaking this integral at y = 0 and applying a change of variables the expression
can be rewritten as

y∫

0

ε [ fX (z − ε) − fX (z + ε)] dε ≥ 0. (9)

Since fX is not quasiconcave then, by symmetry, there is a pair of values x ′′ >

x ′ ≥ 0 such that fX (x ′′) > fX (x ′). Fix some α ∈ ( fX (x ′), fX (x ′′)). Let x̂ = sup{x ∈
[x ′, x ′′] : fX (x) < α} so that fX (x̂) = α by continuity. Now let x∗ = inf{x ≥ x̂ :
fX (x) > α} so that fX (x∗) = α as well though it may be the case that x∗ > x̂ .
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Since α > fX (x ′) it must be that x̂ > x ′ ≥ 0, and so x∗ > 0. Thus, there is some
δ > 0 small enough such that x∗ − δ > 0 and, for each ε ∈ (0, δ), fX (x∗ − ε) ≤ α

and fX (x∗ + ε) > α. We have therefore established an interval (x∗ − δ, x∗ + δ)

with fX ≤ α on the lower half of the interval and fX > α on the upper half. Thus,
fX (x∗ + ε) > fX (x∗ − ε) for all ε ∈ (0, δ) (see Fig. 1b for an illustration). But if we
consider the case where the signal realization is z = x∗ and the error term is uniformly
distributed on [−y, y] with y = δ, then UTS implies Eq. 9, which contradicts the fact
that fX (z + ε) > fX (z − ε) for almost every ε in [0, y]. Thus, UTS fails. The proof
for z ≤ 0 is symmetric. ��

3.3 Characterizations

All sufficiency and necessity results are summarized in Table 1. Combining each
sufficiency result with the appropriate necessity result allows us to state three charac-
terization theorems that roughly summarize the findings throughout the paper.

The first characterization highlights the link between mean reinforcement and sym-
metry of the prior and error distributions.

Corollary 1 X is symmetric if and only if (X, ε̃) satisfies MR for every independent,
symmetric, two-point error term ε̃.

Proof Necessity follows immediately from Proposition 4. For sufficiency, we cannot
directly apply Proposition 1 because its proof required ε̃ to have a well-defined density.
However, sufficiency is easily proven directly: Without loss, assume X is symmetric
with E[X ] = 0, and let ε̃ has two-point distribution (−y, 1/2; y, 1/2), independent
of X . Then E[X |z = 0] is proportional to y fX (y) − y fX (−y), which equals zero by
symmetry of fX , and so MR is satisfied. ��

The second characterization is perhaps the most surprising; we show that MR is
exactly as strong as UDS when the family of admissible error terms is a broad enough
family of symmetric and quasiconcave errors.

Corollary 2 Consider the following three statements:

1. (X, ε̃) satisfies MR for all independent, uniformly distributed error terms ε̃,
2. X is symmetric, and
3. (X, ε̃) satisfies UDS for all independent, uniformly distributed error terms ε̃.

We have that (1) ⇔ (2) ⇒ (3). If E[X |z] is continuous at z = E[X ], then all three
statements are equivalent.

Proof Statement (1) implies (2) by Proposition 6, and (2) implies (1) by Proposition 1
since uniform distributions are symmetric. Statement (2) also implies (3) by Propo-
sition 2 since uniform distributions are also quasiconcave. If E[X |z] is continuous at
z = E[X ] then UDS implies MR, and so statement (3) implies (1). ��

Finally, we find an equivalence between priors that satisfy UTS for all independent,
uniformly distributed error terms and priors whose distributions are symmetric and
quasiconcave.
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Corollary 3 X is symmetric and quasiconcave if and only if (X, ε̃) satisfies UTS for
all independent, uniformly distributed error terms ε̃.

Proof Follows immediately from Propositions 3 and 7. ��

4 Application: portfolio selection

We now demonstrate our main theorems by applying them to the well-known portfolio
allocation problem described by Arrow (1971, Chapter 3).10 Consider a risk-averse
investor allocating a fixed endowment of wealth between a risky asset and a risk-
free asset. Initially, he makes a portfolio allocation decision based only on his prior
beliefs about the risky asset’s return. Then he receives an informative signal and is
asked if he would like to revise his investment decision. In this setting, Observation 1
shows that an outside observer who knows nothing about the shape of the investor’s
belief distributions can never predict whether and in what direction the investor will
switch his investment strategy after observing the signal. This is true even if the utility
function, risk-free return, signal realization and prior mean are all public informa-
tion.

It may seem fairly innocuous to assume, however, that an investor who has chosen
to invest a positive amount in the risky asset before observing a signal will continue to
invest some positive amount in it if the signal is, in some sense, favorable. Similarly,
one might assume that investors who do not invest in (or who sell) the risky asset con-
tinue not investing (or selling) after seeing unfavorable signals. Given Observation 1,
such assumptions place some restriction on the underlying belief distributions, but it
is not at all transparent how severe a restriction they imply.

To formalize the argument, let the agent’s endowment of wealth be given by ω > 0,
and his utility for money be a twice-differentiable function u : R → R with u′ > 0
and u′′ ≤ 0. The return on the risk-free asset is r̂ ≥ 1, which is known with certainty,
and the return on the risky asset is given by the random variable X with distribution
function FX and mean μX . A typical realization of X is denoted by x .

The signal shown to the investor is a realization z of the random variable Z := X+ε̃,
where ε̃ is a mean-zero error term with distribution Fε̃. In this section, we use only
error terms ε̃ that are independent of X . Using Bayes’s rule, the investor’s posterior
belief about X upon observing Z = z is given by the distribution FX |Z (·|z).

From a modeling perspective, we will take the prior distribution X as fixed. We
consider the case where Fε̃ might be one of any number of possible error distributions.
For example, the signal might represent an early earnings report that, though unbiased,
is believed to be more informative by some investors than by others. In the interest of
model robustness, one might want to allow for the possibility that all independent and
uniformly distributed error distributions are admissible. Thus, assuming that positive
signals always reinforce positive investments in the risky asset means assuming this
property for all admissible error terms ε̃. The larger the family of admissible error
terms, the stronger such assumptions become.

10 See also Markowitz (1952), Markowitz (1958), Pratt (1964), and Tobin (1958) for further discussion of
the basic portfolio selection problem.
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The investor’s choice before receiving a signal is to invest an amount y0 ∈ R in the
risky asset (assuming no credit constraints), with ω− y0 being invested in the risk-free
asset. Upon observing the signal realization, the investor forms updated beliefs and
re-solves his optimization problem, resulting in a new investment level y1. Formally,
the pre-signal investment level is the maximizer of the function

V (y0) :=
∫

u
(
ωr̂ + y0[x − r̂ ]) dFX (x)

and the post-signal investment (given Z = z) maximizes

V (y1|z) :=
∫

u
(
ωr̂ + y1[x − r̂ ]) dFX |Z (x |z).

Here, [x − r̂ ] is referred to as the excess return of the risky asset. For simplicity, we
say that the investor “invests” prior to the signal if y∗

0 > 0 and “does not invest” if
y∗

0 ≤ 0, and that he “invests” after the signal if y∗
1 > 0 and “does not invest” if y∗

1 ≤ 0.
We now define three different notions of how the investor’s signal might reinforce

his prior investment decision.

Definition 7 The investor’s decision is reinforced at the prior mean if, for all r̂ , he
never changes his decision (y∗

1 = y∗
0 ) after observing Z = E[X ].

Definition 8 The investor’s decision is reinforced around the prior mean if, for all r̂ ,
whenever he has invested (y∗

0 > 0) and then receives a signal above the prior mean
(z > E[X ]) he continues to invest (y∗

1 > 0), and whenever he has not invested (y∗
0 ≤ 0)

and then receives a signal below the prior mean (z < E[X ]) he continues not to invest
(y∗

1 ≤ 0).

Definition 9 The investor’s decision is reinforced around r̂ if, for all r̂ , whenever he
has invested (y∗

0 > 0) and then receives a signal above the risk-free return (z > r̂ )
he continues to invest (y∗

1 > 0), and whenever he has not invested (y∗
0 ≤ 0) and then

receives a signal below the risk-free return (z < r̂ ) he continues not to invest (y∗
1 ≤ 0).

Applying two of our main results gives the following characterizations.

Theorem 1 If E[X |z] is continuous at z = E[X ], then the following are equivalent:

1. The investor’s decision is reinforced by the mean signal for all uniformly
distributed error terms ε̃.

2. The investor’s decision is reinforced around the prior mean for all uniformly
distributed error terms ε̃.

3. The investor’s prior distribution has a symmetric density function.

Theorem 2 The investor’s prior has a symmetric and quasiconcave density function
if and only if his decision is reinforced around r̂ for all independent, uniformly dis-
tributed error terms ε̃.

Thus, a modeler who assumes that good signals always reinforce a decision to
invest (for all uniform error distributions) and bad signals always reinforce a decision
not to invest implicitly assumes symmetry and perhaps quasiconcavity of the prior
distribution.
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Appendix: Proofs of Theorems 1 and 2

We first show the equivalence between MR, UDS, and UTS and Definitions 7–9,
respectively.

Proposition 8 An investor’s beliefs satisfy MR if and only if his decision is reinforced
at the prior mean, his beliefs satisfy UDS if and only if his decision is reinforced
around the prior mean, and his beliefs satisfy UTS if and only if his decision is rein-
forced around r̂ .

This follows from a well-known proposition in the portfolio choice literature:

Lemma 2 A risk-averse agent invests a positive (negative) amount in the risky asset
if and only if the agent’s expected excess return for the risky asset is positive (negative).

Proof The first-order condition for pre-signal maximization at some optimal point y∗
0

is given by

V ′(y∗
0 ) =

∫
[x − r̂ ]u′ (ωr̂ + y∗

0 [x − r̂ ]) dFX (x) = 0.

The objective function V is weakly concave in y0 since u′′ ≤ 0, so the first-order
condition is also sufficient. Note that at y0 = 0,

V ′(0) = u′ (ωr̂
)
∫

[x − r̂ ]dFX (x)

= u′ (ωr̂
) [E[X ] − r̂ ],

so V ′(0) has the same sign as E[X ] − r̂ . Thus, if E[X ] > r̂ then V ′(0) > 0 and so he
invests a positive amount in the risky asset. If E[X ] < r̂ , then the optimal investment
quantity is negative. Identical arguments establish that y∗

1 > 0 if E[X |Z = z] > r̂
and y∗

1 < 0 if E[X |Z = z] < r̂ . ��
Proof (Sketch of the Proof for Proposition 8) For example, suppose the investor’s
beliefs satisfy UTS. If he invests before the signal (meaning E[X ] > r̂ ) and gets a
signal above the risk-free return (z > r̂ ), then we must have E[X |Z = z] > r̂ since,
by UTS, E[X |Z = z] must be between E[X ] and z. Thus, he continues to invest. If he
does not invest before the signal (E[X ] < r̂ ) and z < r̂ , then E[X |Z = z] < r̂ , and
so he continues not to invest. In the other direction, if his beliefs do not satisfy UTS,
then there is some z (say, with z ≥ E[X ]) such that either E[X |Z = z] < E[X ] ≤ z
or E[X ] ≤ z < E[X |Z = z]. In the first case, if r̂ is such that E[X |Z = z] < r̂ <

E[X ] ≤ z, then the agent invests before the signal, receives a signal above r̂ , but then
does not invest. In the second case, if r̂ is such that E[X ] ≤ z < r̂ < E[X |Z = z], then
the agent does not invest before the signal, receives a signal below r̂ , but then invests.
In either case, his decision is not reinforced by r̂ . The argument is symmetric for
z ≤ E[X ]). Finally, similar arguments can be used for the equivalences between MR
and decisions reinforced at the prior mean and between UDS and decisions reinforced
around the prior mean. ��
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Given Proposition 8, Theorems 1 and 2 then follow directly from Corollaries 2 and
3, respectively.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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