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a b s t r a c t

PaulMilgrom [Milgrom, P.R., 1981. Goods news and bad news: representation theorems and applications.
The Bell Journal of Economics 12, 380–391] showed that if the strict monotone likelihood ratio property
(MLRP) does not hold for a conditional distribution then there exists some non-degenerate prior and
pair of signals where the higher-signal posterior does not stochastically dominate the lower-signal
posterior. We show that for any non-degenerate prior with bounded support there exists a conditional
distribution (satisfying several natural properties) and pair of signals such that the lower signal’s posterior
stochastically dominates that of the higher signal. Thus, for every bounded prior, higher signals may
represent strictly ‘‘worse’’ news.

© 2011 Elsevier B.V. All rights reserved.

The classic ‘‘good news, bad news’’ result of Milgrom (1981)
shows that the strict monotone likelihood ratio property (MLRP) is
both necessary and sufficient for higher signals of a noisy random
variable to be ‘‘good news’’, in the sense of first-order stochastic
dominance. More formally, suppose Z is a noisy signal of X , where
X is distributed according to F , and conditional on X = x, Z is
distributed according to Gx, with density gx. The family of all such
conditional distributions is denoted {Gx}. This family satisfies the
strict MLRP if, for all z ′′ > z ′, the likelihood ratio gx(z ′′)/gx(z ′) is
increasing in x.2 Denote the unconditional distribution of Z by G,
and the distribution of X conditional on Z = z by Fz . Using this
notation, Milgrom’s result tells us that Fz′′ first-order stochastically
dominates Fz′ for all z ′′ > z ′ independently of F if and only if the
family {Gx} satisfies the strict MLRP. The result is compelling, as we
tend to think higher values of a noisy signal should be ‘‘good news’’
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2 Definition 1 gives a slightly more precise definition.

about the underlying parameter. Milgrom’s result tells us exactly
when this is the case.

According toMilgrom’s result, a failure of theMLRP on {Gx} does
not preclude the possibility that, for some F , Fz′′ first-order stochas-
tically dominates Fz′ for all z ′′ > z ′. In fact, it merely demonstrates
that there exists some F , and a pair z ′′ > z ′ for which Fz′′ does not
first-order stochastically dominate Fz′ . This is not the same as say-
ing that Fz′ first-order stochastically dominates Fz′′ , so this does not
imply that a higher signal necessarily leads to ‘‘bad news’’. It may
depend on which prior is chosen.

Here, we ask if it is possible that a failure of the MLRP can lead
to an ‘‘extreme’’ failure of Milgrom’s result, in the sense that a
higher-signal realization can lead to ‘‘bad news’’, regardless of the
prior. When the prior has a known, bounded support, we show
that in fact it can, and we do so with a signal structure that seems
reasonably ‘‘close’’ to satisfying the MLRP. Specifically, we choose
Z = X+ε̃, where ε̃ is independent of X , unimodal, and symmetric.3
Thus, higher values of x lead to higher-signal distributions for Z ,
in the sense of stochastic dominance. Given some finite support
[a, b] for the prior, we show that there exists ε̃ and a pair z ′′ > z ′

3 Unimodality is equivalent to requiring that the density function be quasicon-
cave.
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Fig. 1. An example of the conditional density used in the proof.

such that for any non-degenerate F whose support lies in [a, b], Fz′
first-order stochastically dominates Fz′′ . Thus, the higher-signal
realization is ‘‘bad news’’, no matter what the prior.

The intuition of our proof is simple. For any prior distribution
with bounded support, consider a symmetric and unimodal signal
distribution with mean equal to the parameter realization and
whose support is significantly larger than the support of the prior
(though still bounded). Thus, the signal equals the underlying
parameter realization plus a high-variance, mean-zero ‘noise’
variable. If this error distribution has sufficiently ‘fat’ tails, then
any extremely large positive observation z ′′ is likely due to a very
large error term, indicating a relatively small parameter value.
For a less extreme observation z ′ that falls in the support of the
prior it becomes more likely that the observation is indicative
of a large parameter value. By carefully constructing the noise
distribution one can guarantee that the posterior after observing
z ′ stochastically dominates the posterior after observing z ′′. In fact,
the construction of the noise distribution needs only to depend on
the support of the prior. For the case where the prior has support
on [−10, 10], the constructed conditional distribution (for any x)
is shown in Fig. 1. With this conditional distribution, the posterior
after observing z ′

= 10 stochastically dominates the posterior
after observing z ′′

= 30 for any prior with support on [−10, 10].
Our proof relies heavily on the support of the prior being

bounded. Our theorem does not hold if the prior is the (improper)
uniform distribution over the entire real line. With this prior and
a signal that is a mean-preserving spread, the signal realization
simply shifts the location of the posterior distribution. Higher
signals shift the entire posterior to the right, and so signal-posterior
monotonicity is restored. Whether our result holds for integrable
unbounded priors remains an open question.4

More carefully, given are a real-valued random variable X
with cumulative distribution F and, for each realization x of X ,
a conditional random variable Z |x with distribution Gx.5 Here,
X represents some economically relevant parameter, and Z |x a
randomsignal of that parameter. EachGx is assumed to have awell-
defined density function gx, and typical realizations are denoted by
z.6 The family of conditional distributions is {Gx}, and the family of
conditional densities is {gx}.

4 Our current proof uses conditional distributions with bounded support; if the
prior were unbounded then a conditional distributionwith bounded support would
not generate the necessary reversal. Limiting arguments are problematic because
the space of probability measures over the real line is not compact in the weak∗

topology, so even if a sequence of bounded priors converges to an unbounded prior,
the required conditional distributions and signals need not converge.
5 In the interest of simplicity, we refrain from defining the underlying probability

space on which these random variables are defined.
6 When x is outside the support of the prior, let gx be any arbitrary distribution.

A randomvariableX (and its distribution F ) is said to be bounded
if there exists some a, b ∈ R for which the probability that X
lies in [a, b] is equal to one. The support of X is the smallest such
interval. X is degenerate if there is some a ∈ R such that F(a) = 1
and F(b) = 0 for all b < a; it is non-degenerate otherwise. If
the conditional distributions are such that Z |x − x is identical (in
distribution) for every x, and if E[Z |x] = x for each x, then we
say that the signal forms an independent additive signal of X . This
implies that the (unconditional) signal can bemodeled as a random
variable Z = X + ε̃ for some mean-zero random variable ε̃ that is
independent of X .

The distribution F is referred to as the ‘prior’; upon observing
any signal realization z a Bayesian observer’s posterior belief is
given by the conditional distribution Fz , formed according to Bayes’
Law in the usual way.

For completeness, we state Milgrom’s sufficiency result here.

Definition 1 (MLRP). A family of density functions {gx} has the
strict monotone likelihood ratio property (MLRP) if x′′ > x′ and
z ′′ > z ′ imply gx′′(z ′′)gx′(z ′) > gx′′(z ′)gx′(z ′′). Thus, for any z ′′ >
z ′, gx(z ′′)/gx(z ′) is strictly increasing in x.

Theorem (Milgrom, 1981). If a family of conditional density
functions {gx} does not have the strict MLRP then there exists some
non-degenerate prior distribution F and two signals z ′′ > z ′ such that
the posterior Fz′′ does not first-order stochastically dominate Fz′ .

Inspection of Milgrom’s proof leads to a slightly stronger
version of this result.

Corollary (Milgrom, 1981). If a family of conditional density
functions {gx} does not have the strict MLRP then there exists some
non-degenerate prior distribution F (which puts mass on only two
points) and two signals z ′′ > z ′ such that the posterior Fz′ strictly
first-order stochastically dominates Fz′′ .

The following theorem is our main result. It shows how signal
monotonicity can be reversed for any non-degenerate, bounded
prior if the modeler cannot commit to a particular noise (or
conditional) distribution.

Theorem. Fix any a < b. There exists a family of conditional density
functions {gx} and two signal realizations z ′′ > z ′ such that for all X
whose support is [a, b], Fz′ strictly first-order stochastically dominates
Fz′′ . Furthermore, {gx} forms an independent additive signal, and each
gx is unimodal and symmetric.

Proof. Let [a, b] ⊂ R (with a < b) be the support of X , set
d = b − a, and for each x ∈ [a, b] let gx be given by

gx(z) =



1
4d + d2

for z ∈ [x − 2d, x − d] ∪ [x + d, x + 2d]

1
4d + d2

(1 + d + (z − x)) for z ∈ (x − d, x]

1
4d + d2

(1 + d − (z − x)) for z ∈ (x, x + d).

Note that gx has a mean of x, is symmetric, and unimodal for each
x; an example of this distribution is shown in Fig. 1. Now consider
z ′

= b and z ′′
= b + d, which are two feasible realizations of Z

such that z ′′ > z ′. Fix any w ∈ [a, b] and note that the posterior
distribution on X given z ′ is equal to

Fz′(w) =

 w

a (x − a + 1)dF(x) b
a (x − a + 1)dF(x)

. (1)

Moreover, note that the posterior of X conditional on z ′′ is
distributed the same as the prior, so that Fz′′ ≡ F .
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Separately integrating the numerator and denominator of (1) by
parts and rearranging, we obtain

Fz′(w) =
(w − a + 1)F(w) −

 w

a F(x)dx

(d + 1) −
 b
a F(x)dx

=
F(w) −

 w

a [−F(w) + F(x)]dx

1 −
 b
a [−1 + F(x)]dx

=
F(w) +

 w

a [F(w) − F(x)]dx

1 +
 b
a [1 − F(x)]dx

. (2)

Clearly, if F(w) = 0 then this expression evaluates to 0 at
w and hence Fz′(w) ≤ Fz′′(w), consistent with Fz′ stochastically
dominating Fz′′ . If F(w) = 1 then obviously Fz′(w) ≤ Fz′′(w) since
Fz′′(w) = 1.

Finally, consider the case where F(w) ∈ (0, 1). For these values
of w the following is true of the numerator of (2):

F(w) +

∫ w

a
[F(w) − F(x)]dx

= F(w)


1 +

∫ w

a

[
1 −

F(x)
F(w)

]
dx


≤ F(w)


1 +

∫ w

a
[1 − F(x)]dx


≤ F(w)


1 +

∫ b

a
[1 − F(x)]dx


.

If w > a then the first inequality is strict since F(w) < 1. If
w = a then the second inequality is strict because b > a.7 Dividing
by the term in parentheses, we thus establish that

Fz′(w) =
F(w) +

 w

a [F(w) − F(x)]dx

1 +
 b
a [1 − F(x)]dx

< F(w).

Recalling Eq. (2) and the fact that Fz′′ ≡ F , the above inequality im-
plies Fz′(w) < Fz′′(w). Therefore, Fz′ strictly first-order stochastic
dominates Fz′′ , even though z ′ < z ′′. �

The following key points are important.

• As stated, requiring the signal to be an independent additive
signal of X and to satisfy additional properties results in amuch
stronger theorem than if no such conditions were required.
If the signal distribution were not required to satisfy any
conditions, setting Z = −X would establish our result trivially.

• Our result is not implied by, nor does it imply, Milgrom’s result.
Nor do simple modifications of either result imply the other.
To be clear, the difference lies in the quantification. Milgrom’s
result shows that for any conditional distribution failing MLRP
there exists a prior distribution generating a reversal of signal
monotonicity. Our result has the quantifiers reversed: for any
prior distribution there exists a (well-behaved) conditional
distribution generating a reversal of signal monotonicity.
Actually, this conditional distribution can be chosen as a
function of the support only. This distinction in quantification
is critical.

• The corollary of Milgrom’s result given above generates
a reversal of signal monotonicity using a particular prior
distribution with a two-point support. Focusing on priors with
two-point supports necessarily strengthens the contrapositive
of Milgrom’s original theorem because the FOSD relation

7 Recall that this case assumes F(w) > 0, so w = a implies a point mass at a.
Since b > a it cannot be that F(w) = 1.

restricted to the family of distributions which have the same
two-point supports is complete. Thus, we emphasize the point
alluded to in the previous bullet. Our theorem holds for any
prior distribution which is non-degenerate and has bounded
support—not just those whose support has only two points.

• Although the conditional distribution used in our proof
obviously must fail the strict MLRP (see below for verification
of this fact), we argue that it is natural in most other respects.
In particular, symmetry around x and quasiconcavity of the
density imply that signals are unbiased and signals closer to x
are more likely than signals farther from x.

By Milgrom’s result, it must be that, for any bounded X , the
family of conditional distributions used in the proof violates the
strict MLRP. We now verify this fact directly, for completeness. Let
the support of X be [a, b] with a < b, set d = b − a, and consider
x′

= a, x′′
= b, z ′

= b, and z ′′
= b + d. The strict MLRP requires

that

gx′(z ′)gx′′(z ′′) > gx′(z ′′)gx′′(z ′),

or, substituting in the above values of x′, x′′, z ′, and z ′′,

ga(b)gb(b + d) > ga(b + d)gb(b).

This expression evaluates to
1

4d + d2

2

>


1

4d + d2

 
1 + d

4d + d2


,

but the right-hand side is strictly larger, so the strict MLRP is
violated.

Finally, we illustrate our theorem with a simple application
borrowed fromMilgrom (1981).We imagine an economywith one
risky and one riskless asset. The risky asset’s returns have density
f . We have a collection of identical agents, each of whompossesses
the same differentiable utility u. Each consumer is endowed with
one unit of the risky asset and one unit of the riskless asset. By
normalizing the price of the riskless asset to one, the price of the
risky asset (in equilibrium) is given by

p =
E[Xu′(1 + X)]

E[u′(1 + X)]
.

Note in particular that by defining the ‘‘density’’ function h(x) =

f (x) u′(1+x)
E[u′(1+X)]

, we get that p = E[X], where E is the expectation for
p, taken with respect to h. If, instead, agents observe information
in the form of a noisy signal Z before trading, then the equilibrium
price of the risky asset is given by

p(z) =
E[Xu′(1 + X)|z]
E[u′(1 + X)|z]

.

According to Milgrom, this is the same as p(z) = E[X |z].
Milgrom’s theorem implies that if the noisy signal satisfies the

strictMLRP, then p(z) is monotonically increasing in z. The point of
our theorem is to show that there can be very well-behaved signal
structures (specifically, where Z = X + ε̃ and ε̃ is independent
of X , unimodal, and symmetric) under which monotonicity can be
reversed for some signals. There are two signals z ′′ > z ′ where
p(z ′′) < p(z ′).
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