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I INTRODUCTION

The value of laboratory experimentation lies in the researcher’s ability to make obser-

vations in controlled environments. Chemists study pure samples at controlled temper-

atures. Physicists fire lasers through vacuums. In economics, experimenters observe

choices in isolation, abstracting away the complexities of the field. When subjects make

multiple decisions in a single experiment, however, this control may be lost because the

payment from one decision may impact subjects’ choices in another. Even randomized

control trials in the field could be compromised by having multiple incentivized deci-

sions. In this paper, we say that an experiment is incentive compatible if choices are not

distorted by such complementarities. Whether this is satisfied depends both on subjects’

preferences, and on the payment mechanism in use (for example, which problems are

chosen for payment). Our goal is to provide a framework for analyzing experimental

incentives, and a characterization of incentive compatible payment mechanisms using

minimal assumptions about subjects’ preferences.

The most common practice in modern experimental economics is to pay subjects for

every decision (see Table I below). This mechanism is particularly vulnerable to com-

plementarities such as wealth effects, portfolio effects, and hedging. A proposed alter-

native is to pay for one randomly-selected decision—what we call the Random Problem

Selection (RPS) mechanism.1 Although this apparently solves the complementarities

problem, there are examples of preferences for which the RPS mechanism is not incen-

tive compatible (Holt, 1986, e.g.). Thus, exact conditions under which this mechanism

is incentive compatible are not well understood. Neither is it known whether other

mechanisms can be used to guarantee truthful revelation of choices in experiments with

multiple decisions.

In this paper, we develop a very general, choice-based theoretical framework for

studying incentives in experiments. We do not require preferences to satisfy the in-

dependence axiom, or even that gambles have known probabilities. No structure is as-

sumed on the set of choice objects: It could include consumption goods, objective lotter-

ies, ambiguous acts, announcements of preferences, or strategies in a game. We assume

subjects have underlying preferences over these choice objects. In an auction experi-

ment, for example, choice objects are bidding strategies, and the experimenter wishes

1This is most often called the Random Lottery Incentive Mechanism (RLIM). Like Beattie and Loomes

(1997), we avoid that term only because our subjective framework is more general than one that restricts

randomness to be represented by objective lotteries.
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to infer subjects’ preferences (choices) over those strategies. We also assume that pref-

erences extend naturally to random gambles over those choices. We prove that the RPS

mechanism is incentive compatible if these extended preferences satisfy Savage’s event-

wise monotonicity axiom, which simply says that dominated gambles are never chosen.

When nothing more than monotonicity is assumed, we prove that the RPS mechanism

(or, a slightly generalized version of it) is the only incentive compatible mechanism.

Thus, we provide a full characterization of incentive compatible payment mechanisms

under the monotonicity assumption.

Our characterization identifies a small class of mechanisms other than the RPS mech-

anism that may also be incentive compatible in certain experiments. Essentially, the

experimenter must either pay for one randomly-selected decision problem that the sub-

ject actually faces, or else a hypothetical decision problem for which the subject’s optimal

choice can always be inferred from their actual choices. Such hypothetical decision prob-

lems are called surely identified sets, and we refer to this broader family of mechanisms

as Random Set Selection (RSS) mechanisms.2 In practice, non-trivial surely identified

sets rarely exist, in which case these mechanisms cannot be used. Therefore, the RPS

mechanism is the unique incentive compatible mechanism in most experimental de-

signs.3

Our framework follows Savage (1954), modeling random gambles as acts that map

states of the world into outcomes. This allows for unobservable, subjective (and even

non-probabilistic) beliefs by subjects, including ambiguity. Even when an experimenter

draws balls from an urn or rolls a die, a subject who misunderstands the device or

perceives a malevolent nature (Ozdenoren and Peck, 2008, e.g.) may have beliefs that

differ substantially from the long-run frequency of the randomizing device’s outcomes.

The Savage framework naturally encompasses such preferences, but also includes the

standard expected utility model as a special case.

In a companion paper (Azrieli et al., 2012), we explore incentives in experiments as-

suming subjects view gambles as lotteries with objective probabilities. Since experi-

menters frequently use objective randomizing devices such as die rolls, it may be appro-

priate to model gambles as having known probabilities. Monotonicity is stronger in that

2Incentive compatibility also requires that each decision problem’s optimal choice be inferrable from the

paid hypothetical problems, and that messages inconsistent with any preference never be optimal (see

Theorem 1).
3To our knowledge, the only example of an RSS mechanism being used that pays based on a hypothetical

decision is in Krajbich et al. (2010).
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Only 1 None One Some All Rank-

Payment Mechanism: Task Paid Random Random Paid Based Total

Individual Choice Experiments
’ Top Five ’ Journals 7 0 4 0 4 0 15

Experimental Economics 2 0 1 0 3 0 6

Muti-Person (Game) Experiments
’ Top Five ’ Journals 6 0 0 0 9 0 15

Experimental Economics 8 1 3 3 5 1 21

TABLE I. Payment mechanisms used among (lab and field) experimental
papers published in 2011. The ‘top five’ journals are Econometrica, Amer-

ican Economic Review, Journal of Political Economy, Quarterly Journal of

Economics, and The Review of Economic Studies.

environment, requiring that subjects’ preferences over gambles respect first-order sto-

chastic dominance. Studying objective lotteries adds substantial structure to the prob-

lem, but—somewhat surprisingly—the results are qualitatively similar to those gener-

ated in the Savage framework. The set of incentive compatible mechanisms is slightly

larger with objective lotteries, but the non-RPS mechanisms still require that choices

from hypothetical decision problems be inferrable from actual decision problems. Again,

this rarely occurs in practice, so the RPS mechanism is essentially the only one that is

incentive compatible in either setting.

The incentive compatibility problem arising from complementarities across decisions

has been known since at least Wold (1952) and Allais (1953). Yaari (1965, p.285) is one

of the first examples of the RPS mechanism being used in practice with the intent of

eliminating complementarities. Grether and Plott (1979) and Cox and Epstein (1989)

both point to income effects (a type of complementarity) as a possible explanation for

observed preference reversals in past work. Many experiments since have provided

evidence of various types of complementarities, including portfolio effects (Laury, 2005),

income effects (Lind and Plott, 1991; Kagel and Levin, 1991; Ham et al., 2005), and

hedging (Blanco et al., 2010; Armantier and Treich, 2013).

Despite these concerns, paying for every decision is still the most frequently-used pay-

ment mechanism in economics experiments. A survey of experimental papers published

in 2011 in top journals and in the field journal Experimental Economics (Table I) reveals

that most experimentalists pay for every decision, with the RPS mechanism being used

less than half as frequently—particularly in tests of multi-player games.4

4This includes both lab and field experiments. Most field studies only have subjects engage in one task, in

which case subjects are either paid for the one task or not paid at all. ‘Some Random’ refers to experiments
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One commonly-stated reason to pay for every decision is that complementarities are

not expected to distort incentives in most environments. Thus, there is no need to use

the RPS mechanism. This is a plausible argument, so we formalize exactly the condition

on preferences necessary to make the pay-for-all mechanism incentive compatible. This

condition—called No Complementarities at the Top (NCaT)—says that if any subset of

decision problems is chosen, and the subject is paid their most-preferred item from each

chosen problem, then that bundle is preferred to any other bundle they could receive

from the same subset of problems. In other words, the bundle of favorites must also be

the favorite bundle. Whether or not such an assumption is appropriate clearly depends

on the nature of the decision problems under investigation.5

We stress that our paper informs but does not resolve the debate about which pay-

ment mechanism to use in practice. As emphasized by Proposition 1, any theoretical

exploration of incentive compatibility must start with assumptions on subjects’ prefer-

ences. Here we assume only monotonicity. This axiom dates back to Wald’s (1939) notion

of admissibility in statistical decision theory, and has been central to almost all models

of choice under uncertainty, including Savage (1954); Luce and Raiffa (1957); Anscombe

and Aumann (1963); Gilboa and Schmeidler (1989); Schmeidler (1989); Machina and

Schmeidler (1992); and Maccheroni et al. (2006).6

Whether or not monotonicity holds in practice, however, is an empirical question, and

the answer is likely to vary depending on the context. Although it appears innocuous

in abstract settings, monotonicity often becomes quite restrictive in more structured

environments when coupled with other commonly-assumed axioms. For example, with

objective lotteries, monotonicity and the reduction of compound lotteries jointly imply

the independence axiom. Various critiques of this axiom appear in the theory litera-

ture, and violations of monotonicity have been documented in certain laboratory ex-

periments.7 Thus, we cannot recommend the use of the RPS mechanism universally.

that pay 2, 3, 4, or 5 decisions, with some paid decisions possibly being fixed. Among ‘Some Random’

and ‘All Paid’ experiments, 18 showed subjects outcomes every period, while the other six only showed

outcomes at the end; all nine of the ‘Top 5’ experiments showed outcomes every period. The rank-based

payment mechanism gives payments to players based on their relative hypothetical earnings summed

across all decisions. The one unpaid experiment used children as subjects. Several authors failed to

describe the payment mechanism in the paper; in those cases it was either found in the instructions or

inferred from conversion rates and average earnings.
5Paying for all decisions may still be acceptable in practice if violations of NCaT are ‘small’. Our current

framework does not include a metric for analyzing robustness to such small deviations, so we focus only

on exact incentive compatibility. Robustness analysis is an interesting direction for future work.
6Monotonicity appears in Savage (1954) as Theorem 3, which is equivalent to his P3 under the sure-thing

principle (P2).
7We review these critiques and documented violations in Section V.
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Rather, the onus is on the experimenter to argue (or test) whether monotonicity is an

appropriate assumption in the context of their experimental design. If so, then the RPS

mechanism is clearly recommended. If NCaT is assumed, then paying for all decisions

is also recommended. The ‘right’ payment mechanism to use depends crucially on the

assumptions the experimenter is willing to make.

In our view, the most significant contribution of this work is in defining appropri-

ate notions of payment mechanisms and incentive compatibility in a general framework

that is tailored to experimental situations. This enables a more transparent dialogue

on incentives in experiments. For example, Holt’s (1986) criticism of the RPS mech-

anism can now be understood as a simple monotonicity violation, caused by the joint

imposition of non-expected utility and the reduction of compound lotteries. The seem-

ingly disparate concerns about subject wealth effects, portfolio effects, and hedging can

now be viewed together as examples of complementarities. The one assumption used

to rule out complementarities in the general framework can then be re-interpreted in

the specific settings where each of these types of complementarities occur. One could

explore incentive compatibility under more specific preference models such as cumula-

tive prospect theory, regret aversion, or case-based decision theory. Alternatively, for any

given mechanism, one could derive necessary and/or sufficient conditions on preferences

for that mechanism to be incentive compatible.

We employ standard mechanism design techniques, drawing on the seminal works of

Vickrey (1961), Hurwicz (1972), Green and Laffont (1977), Myerson (1981), and others.

Our work shares much in spirit with these classical notions, but there are differences.

First, we are not interested in eliciting an entire preference relation or implementing

a social choice correspondence. Instead, we wish only to observe a collection of choices.

This collection is chosen by the experimenter to address her particular research ques-

tion, and is therefore treated as an exogenous constraint in our study. Furthermore, we

desire a strict notion of incentive compatibility: It is not enough that a decision maker

weakly prefers to announce her ‘true’ choices, but also that she would never be willing

to announce false choices. Weak incentive compatibility may lead to incorrect inference

if subjects deviate to non-truthful choices that make them no worse off.

The strict notion of incentive compatibility makes the incentive compatibility problem

extremely difficult. As we establish, it is rare that a deterministic mechanism will allow

for strict incentive compatibility. This is why we must work with random mechanisms.

The papers closest to ours in this respect are Gibbard (1977), Barbera (1977), and Bar-

bera et al. (1998). In fact, the idea of extending a given preference over outcomes to
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an extension over lotteries that respects monotonicity first appears in these works. Our

main characterization result—placed in the domain of objective lotteries—is related to

the main result of Gibbard (1977). Gibbard takes interest in a multiple-agent environ-

ment where payoffs are probabilistic. He seeks to elicit the entire preference relation,

and only requires weak incentive compatibility. Gibbard’s characterization is geomet-

ric, and he never explores the ‘random selection’ aspect of the rules. Our goal is to

understand incentive compatible rules from an experimental design standpoint, so the

practical and intuitive structure of the incentive compatible rules as random selection

mechanisms is a crucial point.

Finally, our paper resurrects a foundational issue in revealed preference theory, dat-

ing back at least to Wold (1952): Inferring an entire preference requires observing true

choices from many different menus, but complementarities across these choices may

render such observation impossible. We formalize this argument in our Proposition 1:

Without additional assumptions, only one choice can be observed truthfully. Counter-

factual choices (hence, preferences) cannot be inferred, and so novel predictions cannot

be made. But if one is willing to make an assumption such as monotonicity, then in-

centive compatible mechanisms may exist. These mechanisms can then be used to infer

preferences and make predictions about behavior. Thus, revealed preference theory has

non-trivial testable implications only when incentive compatible methods for observing

multiple choices are employed.

II THE GENERAL FRAMEWORK

The set of possible choice objects is given by the set X . The decision maker (also called

the subject) has a complete, transitive preference relation º over X . For any x ∈ X , let

L(x,º) = {y ∈ X : x º y} and U(x,º) = {y ∈ X : y º x} be the lower- and upper-contour

sets of x according to º, respectively. The º-dominant elements of any set E ⊆ X are

denoted by

domº(E)= {x ∈ E : (∀y ∈ E) xº y}.

Where applicable, strict preference (the asymmetric part of º) is denoted by ≻.

The researcher has an exogenously-given list of k decision problems, denoted D =

(D1, . . . ,Dk), where each decision problem D i is a finite set (or, menu) of choice objects

from which the subject is asked to choose. Thus, D i ⊆ X for each i ∈ {1, . . ., k}. Let

D = {D1, . . . ,Dk} represent the set of decision problems. Empty decision problems and
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decision problems with only one element have no impact on incentives, so, without loss,

we assume |D i| > 1 for all i.8

The researcher does not know the subject’s preference relation º, but wants to use the

decision problems to observe some properties of º. For example, a researcher interested

in correlating risk preferences with time discounting may have D1 be a set of lotteries

used to assess risk aversion, and D2 be a set of intertemporal choices.

Since choices are restricted to D, the choice data from the experiment can be thought

of as an announced choice vector m= (m1, . . . , mk), with mi ∈ D i for each i. We sometimes

call this the subject’s message. The space of all possible messages is M =×iD i. For each

i ∈ {1, . . ., k}, let

µi(º)= domº(D i)

be the set of º-dominant elements of D i, and define µ(º)=×iµi(º). We refer to m ∈ µ(º)

as a truthful message for º.

The researcher pays the subject—based on their message—using objects from X . For

example, if D1 = {cake,pie} and the subject announces m1 = {cake}, he may be given a

piece of cake as payment for that decision. If the subject is paid something outside of
⋃

i D i, then X can be expanded to include the payment objects as well as the choice

objects. In particular, this framework allows for the payment to be a ‘bundle’ of choice

objects, since such bundles may be incorporated directly into X . We discuss in detail the

case of bundle payments in Section IV.

A randomizing device may be used to select payment objects from X . Let Ω be the

state space containing all possible realizations ω of the randomization device. We adopt

the subjective uncertainty framework of Savage (1954), modeling a random payment as

an act—a mapping from Ω into X . The space of all acts is XΩ. We assume throughout

that Ω is finite.9 A constant act is one that pays the same object in X regardless of the

state. For example, if f (ω)= {cake} for every ω ∈Ω, then f is a constant act.

In an experiment, payments depend on the subject’s announced choices. A (payment)

mechanism φ therefore takes the announced choice m and awards the subject with an

act in XΩ. Thus, φ : M → XΩ. If φ is a payment mechanism, then φ(m)(ω) identifies

the choice object in X that is paid if the subject announces choice vector m and state ω

obtains.

8It is possible that such decision problems do affect preferences through a framing effect. Framing effects,

however, do not affect incentives within a given experiment. We discuss framing in the sequel.
9The results here continue to hold as stated for infinite state spaces. However, our notion of monotonicity

does not allow for “null” states and so may be less compelling in such environments.
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We refer to the pair (D,φ) as an experiment; D completely specifies the choices the

subject must face, and φ describes how they are paid for those choices. Since φ includes

a description of its domain D, there is little distinguishing an experiment (D,φ) from

its associated mechanism φ; when it causes no confusion, we refer to experiments and

mechanisms interchangeably.10

The original preference º is defined over elements of X , not XΩ. But payments are

objects in XΩ, and these payments must be evaluated by the subject when making their

choices. To this end, we assume that the subject has a complete and transitive pref-

erence º∗ on the space XΩ which “extends” º in a sense to be made precise. To avoid

confusion, we henceforth refrain from calling º∗ a preference relation; instead, we refer

to it as an extension of º. The asymmetric relation ≻∗ denotes the asymmetric part of

º∗.

A given experimenter may view some extensions as plausible (‘admissible’), and oth-

ers not. In general, let E (º) be the experimenter’s set of admissible extensions for any

given preference relation º. Thus, E is a correspondence mapping preferences into

admissible extensions. At this point, we only assume that all admissible extensions

º∗∈ E (º) agree with º on the space of constant acts. Formally, if x º y, and if f and g

are constant acts giving x and y, respectively ( f (ω) = x and g(ω) = y for every ω), then

f º∗ g for all º∗∈ E (º).11 Additional restrictions on E will be discussed throughout.

The incentive properties of a given mechanism depend critically on what extensions the

experimenter considers admissible, and so all of our key concepts and results directly

depend on E .

A successful experiment is one in which the payment mechanism always induces the

subject to announce their choices truthfully, regardless of º and º∗∈ E . We refer to this

as incentive compatibility (with respect to E ) of the experiment.12

Definition 1 (Incentive Compatibility). A mechanism φ is incentive compatible with

respect to E if, for every preference º, every extension º∗∈ E (º), every truthful message

m∗ ∈ µ(º), and every message m ∈ M, we have that φ(m∗) º∗ φ(m), with φ(m∗) ≻∗ φ(m)

whenever m 6∈µ(º).

10We do not consider the mechanism to be fixed or exogenous from the viewpoint of the experimenter.

Rather, the mechanism is a variable chosen by the experimenter, and we study which mechanisms have

desirable incentive properties. This follows the standard mechanism design approach.
11We could equivalently view º∗ as primitive, and º as the restriction of º∗ to constant acts.
12Starmer and Sugden (1991) and Bardsley et al. (2010) refer to incentive compatible experiments as

unbiased. Cox et al. (2012a) say they satisfy the isolation hypothesis. Starmer and Sugden (1991) and

Cubitt et al. (1998) refer to complementarities as contamination.
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In other words, incentive compatible experiments induce the subject to announce

truthfully, treating each decision problem as though it were in isolation. When there

is no confusion, we drop the reference to E and simply refer to φ as incentive compati-

ble.

Model Interpretation

Our framework is quite general, covering nearly any choice-based, incentivized experi-

ment.13 It covers laboratory experiments, field experiments, consumer focus groups, and

essentially any other incentivized choice elicitation procedure. This breadth of applica-

bility arises because no structure is assumed on the set of choice objects X . Elements of

X may be consumption goods. They may represent monetary payments to the subject,

or vectors of payments to all subjects. If D i is a game, then each x ∈ D i would represent

a strategy choice, possibly modeled as an act that maps others’ strategies into payoffs.14

If the game is extensive-form, then x represents a behavioral strategy. In preference

elicitation tasks (Becker et al., 1964, e.g.), each x would represent a possible announce-

ment of the subject’s value, which leads to a particular lottery payment. In the field, x

may represent a labor decision, a portfolio allocation, a decision to exercise, the online

purchase of a good, or any other choice that can be made.

Because X lacks structure, preferences over X are completely general. Following the

revealed preference tradition, º simply represents choices from X . This can capture, for

example, the idea that people care about others’ outcomes. And that they care about the

actions taken that lead to those outcomes (Falk et al., 2008, e.g). In games, we make no

assumption of earnings maximization or equilibrium play. Preferences are unrestricted,

and the researcher seeks to uncover interesting regularities in those preferences.

Preferences (and their extensions) may depend on the experiment. Incentive compat-

ibility only requires that preferences in the current experiment be truthfully elicited. It

does not require that preferences be stable across experiments. For example, suppose

D1 = {soda,milk}, D2 = {salad,fish}, and D′
2 = {cheeseburger,pizza}. Even in an incentive

compatible mechanism, we might find different announced choices in D1 in experiment

D = (D1,D2), compared to experiment D′ = (D1,D′
2). This is because the underlying

preferences are actually changed by the content of the other decision problem; the mere

13Experiments that only gather non-choice data such as neural activations, eye movements, pupil dila-

tion, or galvanic skin response are excluded.
14This does require that we model strategy choice as a decision problem (as in Aumann, 1987), thus

ignoring any ‘interactive epistemology’.
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discussion of healthy food alternatives may prompt a healthy drink choice. The presence

of such framing effects is not an indictment of the experiment’s incentives, but rather a

suggestion that preferences over D1 are highly sensitive to the context of the decision

environment and, therefore, that laboratory results for this decision may be difficult to

generalize.

Decision problems may be given simultaneously or sequentially. As long as the com-

position of decision problems cannot be affected by subjects’ choices, the incentive com-

patibility of the RPS mechanism (Corollary 1) is robust to timing.15 This is true even if

preferences change over time, perhaps due to framing effects or learning. If the choice

in one decision problem affects the alternatives offered in later problems, however, then

we must view them together as one large, dynamic decision problem. Our results would

not hold otherwise.

Recall that decision problems are units of observation meant to be viewed as indepen-

dent. Thus, the content of the decision problems can vary depending on the research

question. For example, suppose a subject is asked to play a sequence of 20 one-shot

prisoners’ dilemma games with randomly-drawn opponents and feedback after each pe-

riod. A researcher interested in one-shot prisoners’ dilemma games—and how strategy

choices (preferences) change over time—would view these as 20 separate decision prob-

lems. A researcher interested in the ‘contagion’ folk theorem of Kandori (1992), however,

would view this as one large decision problem in which every period is part of a larger

supergame. In this case, payments for the 20-period supergame should mimic the ac-

crual of payments in the repeated game model being tested (see Chandrasekhar and

Xandri, 2011, e.g.).

Restrictions on Admissible Extensions: Monotonicity and Richness

We first consider the case where the researcher is not willing to make any assumptions

about the set of admissible extensions.

Proposition 1. If every extension is admissible, then there exists an incentive com-

patible payment mechanism if and only if k = 1 (the experiment has only one decision

problem).

Proofs not provided in the text appear in appendix.

15We would extend the state space to capture uncertainty about future decision problems, and choice at

each time t would represent an ‘uncertain payment act’ in which future choices are unknown. Monotonic-

ity (defined below) would extend naturally to this domain.
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Most experiments collect data from multiple decision problems. Proposition 1 veri-

fies that, in these experiments, incentive compatibility is never free: The experimenter

must make some assumptions about subjects’ possible extensions. This implies that ev-

ery multiple-decision experiment necessarily represents a joint test of both the main

research question and the assumptions necessary to guarantee incentive compatibility

of the payment mechanism.

One natural restriction on extensions is that they respect dominance. Given the un-

derlying preference º on X , act f is said to dominate act g (written f ⊒ g) if, for every

ω ∈ Ω, f (ω) º g(ω). If f ⊒ g and f (ω) ≻ g(ω) for some ω then f strictly dominates g

( f ⊐ g).16 An extension that respects the dominance relation is said to be (eventwise)

monotonic.

Definition 2 (Monotonicity). The extension º∗ is a monotonic extension of º if f ⊒ g

implies f º∗ g, and f ⊐ g implies f ≻∗ g.

For each º, let E
mon(º) be the set of all monotonic extensions of º.17 Our main results

concern the case where all admissible extensions are monotonic (E (º)⊆ E
mon(º)). Here,

a sufficient condition for incentive compatibility is that acts resulting from truth-telling

messages dominate all acts resulting from any other message, with strict dominance

whenever the other message is not truthful. This fact is used throughout our paper, so

we prove it formally in the following lemma.

Definition 3 (Truth Dominates Lies). A mechanism φ has the truth-dominates-lies

(TDL) property if, for every º, every m∗ ∈ µ(º), and every m ∈ M, we have that φ(m∗) ⊒

φ(m), with φ(m∗)⊐φ(m) whenever m 6∈ µ(º).

Lemma 1. If E (º)⊆ E
mon(º) for every º and φ has the TDL property then φ is incentive

compatible with respect to E .

We will also study cases where every monotonic extension is admissible (E (º)= E
mon(º

)), or at least that the class of admissible extensions is “sufficiently rich”.

Definition 4 (Richness). The correspondence E is rich (or, satisfies richness) if, for

every º,

(1) E (º)⊆ E
mon(º), and

16Technically, ⊒ and ⊐ depend on º. Because it will always be obvious, we use a notation which sup-

presses this dependence.
17This definition of monotonicity implicitly assumes that all states ω ∈ Ω are non-null under each º∗∈

E
mon(º), which essentially means that the subject views every state as having some (possibly tiny) chance

of occurring. See Savage (1954, p.24) for a formal definition.
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(2) if f º∗ g for every º∗∈ E (º), then f ⊒ g.

In addition to monotonicity, our definition of richness requires that each E (º) be suf-

ficiently large so that if f is preferred to g for every admissible extension, then we can

conclude that f dominates g. This is satisfied in many standard domains of extensions,

including the following cases:

• Every monotonic extension is admissible (E = E
mon).

• Every (subjective) expected utility extension is admissible.

• For every state ω, there is an admissible expected utility extension that puts

subjective probability on ω arbitrarily close to one.

• Every probabilistically sophisticated extension is admissible.

• Every multiple priors extension is admissible.

Lemma 2. Suppose E is rich. A mechanism φ is incentive compatible with respect to E

if and only if it has the TDL property.

Thus, our characterization theorem—which assumes richness—is simply a character-

ization of mechanisms satisfying the TDL property.

Incentive Compatibility of the RPS Mechanism

The following definition formalizes the RPS mechanism in our framework.

Definition 5 (Random Problem Selection Mechanisms). A payment mechanism φ

is a random problem selection (RPS) mechanism if there is a fixed partition {Ω1, . . . ,Ωk}

of Ω with each Ωi non-empty such that, for each r ∈ {1, . . ., k} and m ∈ M, ω ∈Ωr implies

that

φ(m)(ω)= mr.

It is well known that the RPS mechanism is incentive compatible when all admissi-

ble extensions satisfy the expected utility axioms. What is not well understood in the

existing literature is whether the RPS mechanism is incentive compatible under more

general preferences. With our framework, it is easy to see that the RPS mechanism sat-

isfies the TDL property: deviating from truth-telling to a less-preferred option in some

D i results in an act that gives a worse outcome in the state where D i is chosen for pay-

ment. If extensions are monotonic, this property is sufficient for incentive compatibility.

This simple argument proves the following result.

Corollary 1. If E ⊆ E
mon then every RPS payment mechanism is incentive compatible

with respect to E .
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In the appendix, we provide a (mechanism-specific) weakening of monotonicity—which

we call φ-monotonicity—and show that an RPS mechanism φ is incentive compatible

with respect to E if and only if every extension in E satisfies φ-monotonicity. In this

sense, φ-monotonicity characterizes incentive compatibility of the RPS mechanisms.18

Since monotonicity implies φ-monotonicity, Corollary 1 follows immediately.

III A CHARACTERIZATION OF INCENTIVE COMPATIBLE MECHANISMS

To obtain a full characterization of incentive compatible mechanisms, we assume in this

section that only strict preferences on X are admissible. We discuss the case of weak

preferences after the main theorem.

With strict preferences, the most-preferred element in each decision problem is unique

(|µi(º)| = 1). In that case, Lemmas 1 and 2 would be modified slightly to say that (D,φ)

is incentive compatible with respect to a rich E if and only if, for every preference º and

every message m 6= µ(º),

φ(µ(º))⊐φ(m).

Another consequence of assuming strict preferences is that there may be messages

that cannot be truthful for any preference relation. For example, if D1 = {x, y}, D2 = {y, z},

and D3 = {z, x}, then m = (x, y, z) cannot be rationalized by any º, since it would imply

x ≻ y ≻ z ≻ x. We therefore need to distinguish messages that can be rationalized from

those that cannot. Let

MR =
{

m ∈ M : (∃º) m=µ(º)
}

be the set of rationalizable messages. MNR = M \ MR is then defined as the set of non-

rationalizable messages. One immediate necessary condition for incentive compatibility

with respect to a rich E is that, for any º, all non-rationalizable messages be dominated

by the truthful message.

To understand how incentive compatibility can extend beyond the RPS mechanism,

consider a mechanism φ and suppose for the moment that the subject’s submitted an-

nouncement vector m∗ is truthful, meaning m∗
i
= µi(º) for each i. Given any other set

E ⊆ X , we can also ask whether m∗ reveals the subject’s true favorite element in E.

If φ pays this ‘inferred favorite’ element from E in some state of the world, incentive

compatibility may still be maintained.

18The φ-monotonicity assumption is a form of local monotonicity that applies only for specific acts which

depend on the particular experiment under consideration. We also show in Proposition 3 that if one

requires φ-monotonicity for all possible experiments that use the RPS mechanism then the (global) mono-

tonicity axiom is implied.
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To construct such mechanisms, we must first characterize the sets E whose favorite

element can always be inferred from the subject’s choices in D = (D1, . . . ,Dk). To do

this, we must identify the preferences that are revealed by any truthful announcement

m ∈ MR . For two distinct choice objects x, y ∈ X , say that x is directly revealed preferred

to y under announced choices m = (m1, . . . , mk) if there is 1 ≤ i ≤ k such that mi = x and

y ∈ D i. Denote the transitive closure of this relation by R(m), and say that x is revealed

preferred to y under choices m if x R(m) y.19

The relation R(m) is transitive and asymmetric since m ∈ MR , but it need not be

complete. Denote by L(x, m) = {y ∈ X : x R(m) y} and U(x, m) = {y ∈ X : y R(m) x} the sets

of elements that are revealed to be worse than x and better than x under choices m,

respectively. Clearly, L(x, m) ⊆ L(x,º) and U(x, m) ⊆U(x,º) when m = µ(º), with strict

inclusions for some x when R(m) is not a complete relation. It is well known (Richter,

1966, e.g.) that m is rationalizable (m ∈ MR ) if and only if R(m) is acyclic.

Let

domm(E)= {x ∈ E : (∀y ∈ E) x R(m) y}

be the set of R(m)-dominant elements of E. If E has no element that is R(m)-dominant

(meaning m does not reveal the most-preferred element of E), then domm(E) =∅. Oth-

erwise, domm(E) contains a unique element since preferences are strict. If m = µ(º),

then either domm(E)=∅ or else domm(E)= domº(E).

We can now describe the sets E ⊆ X whose most-preferred elements are always re-

vealed when the subject submits a truthful message.

Definition 6 (Surely Identified Sets). A non-empty set E ⊆ X is surely identified (SI)

if, for every m ∈ MR ,

domm(E) 6=∅.

In other words, E is SI if, for any order º, the message m = µ(º) identifies the most-

preferred element of E, so that domm(E)= domº(E).

Let SI(D) be the collection of sets surely identified from the given set of decision

problems D.20 Obviously, any D i is in SI(D), but there may be other sets in SI(D).

For instance, if D1 = {x, y}, D2 = {y, z}, and D3 = {z, x}, then {x, y, z} ∈ SI(D). Also, any

singleton set {x} is trivially SI. A full characterization of SI sets is given by Proposition 4

in the appendix.

19Formally, x R(m) y if there is a chain x = z1, . . . , zl = y such that zi is directly revealed preferred to zi+1

for every i = 1, . . . , l1.
20Recall that D = {D1, . . . ,Dk} is the collection of decision problems, while D = (D1, . . . ,Dk) is the ordered

list of decision problems.
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We wish to discuss mechanisms that choose sets in SI(D) for payment; to this end,

define the payment set of a mechanism φ at each state ω by

Pφ(ω)=
{

φ(m)(ω)
}

m∈M
,

and the collection of all payment sets by

P
φ
=

{

Pφ(ω)
}

ω∈Ω
.

In an RPS mechanism, P
φ = D. The following definition generalizes RPS mechanisms

to allow other surely identified sets to be used as payment sets.

Definition 7 (Random Set Selection Mechanisms). A mechanism φ is a random set

selection (RSS) mechanism if

(1) P
φ ⊆ SI(D), and

(2) if m ∈ MR then for each ω ∈Ω, φ(m)(ω)= domm(Pφ(ω))

The first condition requires that every payment set be surely identified, and the sec-

ond requires that most-preferred elements are chosen from each payment set when-

ever messages are rationalizable. No restrictions are placed on the acts chosen at non-

rationalizable messages.

In an RPS mechanism, each payment set is a decision problem, and each decision

problem corresponds to at least one payment set (D = P
φ). Since decision problems

are surely identified, and since each mi is the revealed-most-preferred outcome in D i,

RPS mechanisms are special cases of RSS mechanisms.21 Our main theorem shows that

a particular subclass of RSS mechanisms (which includes the RPS mechanisms) fully

characterizes the set of incentive compatible mechanisms when the set of admissible

extensions is rich.

Theorem 1. Let the admissible extensions E satisfy richness. A mechanism φ is in-

centive compatible with respect to E if and only if it is a random set selection (RSS)

mechanism in which

(1) D i ∈ SI(P φ) for each D i ∈D, and

(2) φ(MR )∩φ(MNR )=∅.

In other words, a mechanism is incentive compatible if and only if it is an RSS mech-

anism (rationalizable messages pay the most-preferred element from some randomly-

selected, surely-identified set); each decision problem can be surely identified from the

21RPS mechanisms completely specify the payments from non-rationalizable messages, while RSS mech-

anisms do not. Thus, the family of RSS mechanisms for which P
φ =D can be strictly larger (in the sense

of inclusion) than the family of RPS mechanisms.
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payment sets; and non-rationalizable messages map to different acts than rationalizable

messages.

The intuition for the above result is quite simple. First, to show that any such mech-

anism is incentive compatible, recall that incentive compatibility is satisfied when an

agent with a preference º receives the best option in each state of the world according

to º. But this is precisely how our mechanisms are defined: φ chooses, for each m,

an optimal element for any º which rationalizes m. Furthermore, condition (1) of the

theorem guarantees that, if the subject misrepresents his preferences in any one of the

decision problems, then this will affect the resulting output of the mechanism. Since

truth-telling gives the best outcome in every state, this change will result in a domi-

nated act. Condition (2) guarantees that reporting non-rationalizable messages is never

optimal. The proof of the other direction is again quite simple, since the TDL property

almost directly implies that the criteria for an RSS mechanism as well as conditions (1)

and (2) of the theorem are satisfied.

Conditions for Uniqueness of the RPS Mechanism

Theorem 1 shows that non-RPS mechanisms (in which P
φ 6=D) can be incentive compat-

ible. Whether such mechanisms exist depends on D. In practice, they are almost never

observed, suggesting that most experiments naturally rule out these mechanisms. We

now identify conditions on D under which these other incentive compatible mechanisms

do not exist. For simplicity, we assume here that D i 6= D j for all i, j.

First, if the decision problems are sufficiently distinct and small in number, then

announced choices will not reveal the most-preferred element of any other set E 6∈D. In

other words, every surely identified set will either be a decision problem or a singleton.

Since every incentive compatible mechanism is an RSS mechanism (Theorem 1), and the

payment sets of an RSS mechanism are all surely identified, it follows that P
φ ⊆D.22

Furthermore, it seems unlikely that an experimenter would want to give subjects a

redundant decision problem—one that is surely identified by the remaining decision

problems—, since there is no new information that can be obtained from that choice.

Using condition (1) of Theorem 1, this implies that every decision problem must be a

payment set at some state (P φ ⊇ D). Combining these two observations, we get that

P
φ = D, which essentially means that any incentive compatible mechanism is an RPS

mechanism.

22There may be singleton payment sets which are not included in D. We ignore this insignificant compli-

cation in this informal discussion.
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To formalize this intuition we need the following definition.

Definition 8 (Redundant Decision Problems). Fix D = (D1, . . . ,Dk). The decision

problem D i is redundant in D if D i ∈ SI(D \ {D i}). Say that D i is non-redundant other-

wise. The collection of all non-redundant decision problems is denoted NRed(D)

We say that a payment mechanism φ is essentially identical to an RPS mechanism if

there is an RPS mechanism φ∗ such that φ(m)(ω) = φ∗(m)(ω) for every m ∈ MR and ω

at which P
φ(ω) is non-singleton. Such a mechanism can differ from an RPS mechanism

in at most two ways: (1) φ may pay differently for non-rationalizable messages, and (2)

there may be some states ω where φ pays a constant payment regardless of m.

Corollary 2. Let E satisfy richness. Every incentive compatible mechanism with re-

spect to E is essentially identical to an RPS mechanism if and only if

SI(D)\{{x}x∈X }=NRed(D).

In words, if the decision problems are non-redundant and there are no other non-

singleton surely-identified sets, then the only incentive compatible mechanisms are es-

sentially identical to RPS mechanisms. The following corollary gives a more easily-

tested sufficient condition for RPS mechanisms to be the only incentive compatible

mechanisms.

Corollary 3. Suppose E is rich and D is such that MNR =∅. If φ is incentive compatible

with respect to E then it is essentially identical to an RPS mechanism.

Environments in which Corollary 3 are satisfied abound in experiments. For example,

any experiment in which the D i are pairwise disjoint satisfies the hypothesis. Since

most experimental designs satisfy the conditions of this corollary, RPS mechanisms are,

in practice, the only incentive compatible mechanisms.

Weak Preferences

We do not have a full characterization of the set of incentive compatible mechanisms

when weak preferences are allowed, but we do know that it will be strictly between the

set of RPS mechanisms and the mechanisms characterized by Theorem 1.

To see that non-RPS mechanisms can be incentive compatible with weak preferences,

suppose D1 = {x, y}, D2 = {y, z}, and D3 = {x, z}. Let Ω= {ω1, . . . ,ω4}. For each i ∈ {1,2,3},

let φ(m)(ωi) = mi. Set φ(m)(ω4) = dom≻({x, y, z}) if m can be rationalized by a strict

preference relation ≻, and φ(m)(ω4) = z otherwise. Verifying incentive compatibility is
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easy, noting that the ‘non-rationalizable’ messages are truthful only for subjects with

complete indifference.

But not all mechanisms identified by Theorem 1 are incentive compatible with weak

preferences. Suppose D1, D2, and D3 are as before, and we add D4 = {x, y, z}. Let

Ω = {ω1,ω2,ω3}. If m can be rationalized by a strict preference, set φ(m)(ωi) = mi for

each i ∈ {1,2,3}. Otherwise, let φ(m) pick x in ω1, y in ω2, and z in ω3. The conditions of

Theorem 1 are satisfied, so this is incentive compatible with strict preferences. But con-

sider a subject with preferences x∼ y≻ z for whom both m= (x, y, x, x) and m′ = (x, y, x, y)

are truthful. Because m can be rationalized and m′ cannot, φ(m′) is strictly dominated

by φ(m). Thus, the subject has a truthful message that is strictly dominated, violat-

ing incentive compatibility. The mechanism does satisfy a weaker notion of incentive

compatibility, however, in which at least one truthful message dominates all others.

IV PAYING FOR MULTIPLE DECISIONS

Theorem 1 has an important corollary: Paying for multiple bundles is generally not

incentive compatible for a rich E . If multiple decisions are paid, the resulting bundle

payments are typically not elements of any one decision problem. The payment sets

live outside of
⋃

i D i, and therefore cannot be surely identified by D unless they are

singleton (i.e., don’t depend on the subject’s message). But incentive compatibility on

a rich E requires an RSS mechanism, and RSS mechanisms can only use payment sets

that are surely identified by D. Thus, paying in bundles can only be incentive compatible

if bundle payments don’t depend on the subject’s message.

To formalize this argument, we first identify the set of outcomes in X that only belong

to singleton payment sets, and thus are unaffected by the subject’s announcement.

Definition 9 (Invariance). A mechanism φ is invariant on a set E ⊆ X if, for every

ω∈Ω and m, m′ ∈ M, φ(m)(ω) ∈ E implies that φ(m′)(ω)=φ(m)(ω).

We conclude that incentive compatible mechanisms must be invariant on bundle pay-

ments (or, anything outside of
⋃

i D i).

Corollary 4. If E is rich and a mechanism φ is incentive compatible with respect to E ,

then φ is invariant on X\
⋃k

i=1
D i. In particular, it must be invariant on bundle payments

that are not part of any one decision problem.
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Corollary 4 shows that additional assumptions on preferences are necessary to justify

bundle payments as incentive compatible. We now explore the strength of such assump-

tions.23

To formalize mechanisms that pay in bundles, let Y be a set of ‘singleton items’ so

that each D i is contained in Y (for instance, we may take Y to be equal to the union
⋃k

i=1
D i). Let |Y | be the number of elements in Y . A bundle can now be described by a

vector x ∈ R|Y |. Each y ∈ Y is identified with a particular coordinate. A bundle x ∈ R|Y |

means that the agent consumes xy units of alternative y. Admitting bundle payments

means setting X = R|Y |. This represents a special case of our general framework, so all

of the above results continue to hold.

This construction mimics the representation of commodity bundles in general equi-

librium models, for example. If Y = {pen,pencil,sheet of paper}, then the vector (1,2,3)

represents consumption of one pen, two pencils, and three sheets of paper. In this con-

text, the alternative y can be identified with 1y, which is the vector that puts one on the

yth coordinate and zeroes elsewhere.

Almost all experiments that pay in bundles can be characterized as randomly choosing

a subset of the decision problems (or, all decision problems) and paying the bundle of

messages announced in those chosen problems. We refer to these as Random Multiple

Problem Selection (RMPS) mechanisms. To formalize these mechanisms, let I be the

set of all non-empty subsets of {1, . . ., k}. An RMPS mechanism randomly selects one set

of decision problem indices from I for payment.

Definition 10 (Random Multiple Problem Selection Mechanisms). For any ex-

periment (D,φ), the payment mechanism φ is a Random Multiple Problem Selection

(RMPS) mechanism if there is a function I : Ω→ I mapping each state ω ∈ Ω into a

subset I(ω)∈I of decision problems such that, for each m ∈ M,

φ(m)(ω)=
∑

i∈I(ω)

1mi
.

Definition 11 (No Complementarities at the Top). Fix the list of decision problems

D = (D1, . . . ,Dk) and let F ⊆ I be a collection of non-empty subsets of {1, . . . , k}. The

preference º over X = R|Y | satisfies no complementarities at the top (NCaT) relative to

F if, for every F ∈F and every m ∈ M,

∑

i∈F

1µi(º) º
∑

i∈F

1mi
,

23We emphasize that the assumptions we study in this section are restrictions on preferences º and not

on extensions º∗. Extensions are still assumed to be rich, as in the rest of the paper.
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with a strict preference if there exists i ∈ F for which 1µi(º) ≻ 1mi
.

To interpret the NCaT condition, think of each set F ∈ F as a collection of decision

problems that could be paid together as a bundle. For example, an RMPS mechanism

randomly picks the collection F = I(ω) at state ω. NCaT requires that, for any feasible

collection F, the bundle of most-preferred items (
∑

i∈F 1µi(º)) is also the most-preferred

bundle. There is no way to bundle together items that would be less-preferred individu-

ally, and end up with a more-preferred bundle. In other words, there are no complemen-

tarities strong enough to overwhelm the subject’s top-ranked alternatives.

Proposition 2. Given is an experiment (D,φ), where φ is an RMPS mechanism with

associated function I : Ω→ I . Mechanism φ is incentive compatible with respect to a

rich E if and only if any admissible preference º on X satisfies NCaT with respect to

I(Ω).

The proof is immediate from the definition of incentive compatibility.

There are many reasons to suspect that NCaT will not be satisfied in certain settings,

due to the known and observed presence of complementarities such as wealth effects,

portfolio effects, and hedging opportunities. In developing prospect theory, however,

Kahneman and Tversky (1979) argue that subjects isolate each decision, even when all

are paid (Tversky and Kahneman, 1981). Thus, the isolation effect often used to justify

use of the RPS mechanism (Cubitt et al., 1998; Wakker et al., 1994) can equally be ap-

plied to justify paying for multiple decisions. Several other models of risky choice implic-

itly satisfy NCaT. For example, if subjects learn about payments after every period, then

NCaT is satisfied if they have reference-dependent preferences with rapidly-updating

reference points (as discussed by Cox et al., 2012b), or separable expected utility over

earned income rather than terminal wealth (see Cox and Sadiraj, 2006).

Show-Up Fees

Experimenters often pay subjects a (state-independent) show-up fee for their participa-

tion, in addition to their earnings from their choices. Technically, paying a show-up fee

turns each payment into a bundle. For example, if x0 is the show-up fee and an RPS

mechanism is used, then the realized payment is the bundle (1x0 +1mi
) when decision

problem D i is randomly chosen. Without ruling out any form of complementarities, it is

possible that the show-up fee may distort incentives. As an extreme example, paying a

$1,000 show-up fee is likely to generate wealth effects and reduce risk aversion.
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In practice, however, we agree that relatively small show-up fees are unlikely to dis-

tort incentives. Formally, this is equivalent to assuming that x º y implies 1x0 +1x º

1x0 + 1y for every x, y ∈ X . This assumption represents a very weak form of transla-

tion invariance—restricted only to additions by x0—and could be termed show-up fee

invariance.

V MONOTONICITY VIOLATIONS & FAILURE OF THE RPS MECHANISM

Monotonicity is tightly linked with the incentive compatibility of the RPS mechanism.

Whether one should use an RPS mechanism in practice depends on the empirical valid-

ity of the monotonicity assumption. In the abstract, monotonicity has strong appeal and

is often viewed as a normative criterion (Wald, 1939). In many specific settings, how-

ever, monotonicity becomes much less compelling. In this section, we review plausible

violations of monotonicity, as well as experiments that test directly the incentive com-

patibility of the RPS mechanism. These represent settings where one should be wary

of the RPS mechanism, and perhaps search for other incentive compatible mechanisms

under a different set of assumptions.

Order Reversal. When the choice objects in X are acts that map some state space S

into outcomes in Z, random payment mechanisms such as the RPS result in gambles

over these acts. We typically think of the resolution of the payment mechanism un-

certainty (e.g., the draw of which decision problem to pay) as the ‘first stage’, and the

resolution of the chosen act as the ‘second stage’. Since our definition of monotonicity

operates on choice objects before their uncertainty is resolved, we refer to it here as

first-stage monotonicity. With this ordering, a subject would evaluate the act f ∈ D i

conditional on D i already being chosen for payment. But it is plausible that a subject

may reverse the order of conditioning, fixing some state s ∈ S and then considering the

gamble over chosen acts’ payments at s induced by the payment mechanism. This can

drastically alter the resulting incentives of the mechanism.

To illustrate, consider the following example, adapted roughly from Seo (2009): A

subject is asked to bet on whether her opponent will play U or D in a two-by-two game.

Let f be the bet on U (specifically, f (U) = $1 and f (D) = $0) and g be the bet on D

(g(U)= $0 and g(D)= $1). Suppose f ≻ g and she is asked to announce her preferred bet

twice, so that D1 = D2 = { f , g}.24 A fair coin is flipped to determine which is paid, and we

assume here the subject views the coin as an objective lottery with probabilities equal

24More realistically, the subject might be asked to bet on the strategy and to play the game. The game

play simply represents another bet on the opponent’s strategy.
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to 1/2. If the subject announces m= ( f , g), then φ( f , g)= (1/2, f ;1/2, g), which is a lottery

paying acts f and g with equal probability. Similarly, φ( f , f )= (1/2, f ;1/2, f )= f . Under

(first-stage) monotonicity, we must have φ( f , f )≻∗ φ( f , g) because f ≻ g.

Now suppose the subject reverses the order of conditioning, fixing first the oppo-

nent’s strategy and then evaluating the lottery given by the RPS mechanism. In state

U , the payment φ( f , g) pays (1/2, f (U);1/2, g(U) = (1/2,$1;1/2,$0). In state D it pays

(1/2, f (D);1/2, g(D))= (1/2,$0;1/2,$1). Thus, regardless of the state, the subject receives

the same objective lottery. The coin flip provide a hedge against ambiguity. The pay-

ment φ( f , f ), on the other hand, results in the ambiguous act f regardless of the order

of conditioning. If the subject is ambiguity averse, she may strictly prefer φ( f , g) over

φ( f , f ). But f ≻ g, so this would be a violation of first-stage monotonicity.

In many models of multi-stage gambles it is common to assume an order reversal

axiom that subjects are indifferent over the order of randomization (e.g., Anscombe

and Aumann, 1963). Formally, order reversal requires that the subject be indiffer-

ent between the lottery (α, f ;1−α, g) and the act α f + (1−α)g that pays the lottery

(α, f (s);1−α, g(s)) in each state s ∈ S.

Unfortunately, the joint imposition of order reversal and monotonicity leads to a sur-

prisingly strong restriction that underlying preferences must satisfy the independence

axiom ( f º g implies α f +(1−α)h ºαg+(1−α)h for any act h and any α ∈ [0,1]). Indeed, if

f º g then monotonicity implies that (α, f ;1−α, h)≻∗ (α, g;1−α, h) and by order reversal

this implies that α f +(1−α)h ºαg+(1−α)h. Since the literature on ambiguity aversion

is based on weakening the independence axiom, we get the following observation:

Observation 1. If a subject is ambiguity averse and satisfies order reversal, then they

must violate (first-stage) monotonicity. Thus, there exist experiments for which the RPS

mechanisms will not be incentive compatible.

We must emphasize, however, that ambiguity aversion by itself does not contradict

first-stage monotonicity. Most ambiguity models of the last twenty years do not fo-

cus on two-stage gambles, and are therefore silent on how individuals should evaluate

first-stage mixing. For example, it is perfectly consistent to assume that subjects have

maxmin preferences of Gilboa and Schmeidler (1989) in the second stage (when choos-

ing from X ), and that the extensions º∗ on lotteries over acts satisfy first-stage mono-

tonicity. In that situation, the RPS mechanism would be incentive compatible even

though subjects are ambiguity averse on X . In fact, the prominent theoretical model

that formally studies lotteries over acts in the context of ambiguity (Seo, 2009) allows
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for ambiguity-averse preferences on X while explicitly assuming the independence ax-

iom on lotteries over acts—a much stronger assumption than first-stage monotonicity.25

In contrast, Kuzmics (2013) assumes order reversal but not first-stage monotonicity, and

shows that choices of an ambiguity averse decision maker can always be rationalized as

those of an expected utility maximizer.

Dominiak and Schnedler (2011) find, however, that subjects who exhibit ambiguity

aversion in a two-color Ellsberg-urn experiment do not generally prefer a coin flip be-

tween the two possible bets over each one separately. A plausible explanation for this

result is that these subjects do not view the coin as providing a hedge against ambi-

guity, because they only view the coin’s randomization as being performed ‘before’ the

realization of the urn draw.

Reduction of Compound Lotteries. When second-stage choice objects are viewed as

objective lotteries, the order reversal axiom is identical to the familiar reduction of com-

pound lotteries (ROCL) axiom. Again, the joint imposition of ROCL and first-stage

monotonicity leads to the requirement that preferences over lotteries be linear. In other

words, ROCL and monotonicity jointly imply the independence axiom.

Observation 2. If a subject reduces compound lotteries but does not satisfy the inde-

pendence axiom, then they must violate (first-stage) monotonicity. Thus, there exist

experiments for which RPS mechanisms will not be incentive compatible.

Holt (1986)—commenting on the preference reversal experiments of Grether and Plott

(1979) (among others)—shows by example how the RPS mechanism may not be incentive

compatible with non-expected utility preferences (using the models of Machina, 1982,

Quiggin, 1982, or Yaari, 1987) when ROCL is assumed.26 Similar arguments are found

in Cox et al. (2012b) and Harrison and Swarthout (2011). Cubitt et al. (1998) prove that,

under ROCL, the RPS is incentive compatible if and only if the independence axiom is

satisfied. Our results show that it is the resulting incompatibility with monotonicity

that gives this result.

25Saito (2012) also discusses a preference for randomization after (versus before) the state is realized. His

axiomatic characterization allows for different degrees to which subjects prefer ex-post randomization.
26Several similar rationalizations of the Grether-Plott results have been provided. Karni and Safra (1987)

shows that the Becker et al. (1964) (BDM) elicitation mechanism used by Grether and Plott (1979) is not

incentive compatible if subjects satisfy ROCL but not independence. Segal (1988) shows that the BDM

mechanism is not incentive compatible if subjects satisfy independence, but not reduction. (These conclu-

sions also follow from our results because the BDM mechanism is a type of RPS mechanism.) Loomes and

Sugden (1983) alternatively rationalize preference reversal using regret aversion (see also Loomes and

Sugden, 1982).
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Although violations of the independence axiom are well-documented, ROCL has more

limited support. Loomes et al. (1991); Starmer and Sugden (1991); Cubitt et al. (1998,

Experiment 1); and Beattie and Loomes (1997) all run experiments using the RPS mech-

anism in which two different messages m and m′ lead to the same simple lottery if re-

duction is assumed. In their data, subjects choose one message significantly more often

than the other, clearly indicating that m and m′ are evaluated differently in many sub-

jects’ preferences. Furthermore, Halevy (2007) shows that those who perform reduction

tend to satisfy independence. Thus, subjects who respect reduction seem to be rare,

and seem to be exactly those for whom independence (and, therefore, monotonicity) is a

reasonable assumption.

In a companion paper (Azrieli et al., 2012), we show that if all rank-dependent pref-

erences are admissible and subjects reduce compound lotteries, then there are experi-

ments for which no incentive compatible mechanism exists. In other words, if one as-

sumes reduction but not expected utility, then incentive compatibility may be impossi-

ble to achieve. On a positive note, Cox et al. (2012b) find a mechanism that is incentive

compatible under linear cumulative prospect theory (Schmidt and Zank, 2009) when

reduction is assumed and lotteries are cosigned.27 Thus, incentive compatible mecha-

nisms can exist in some settings where first-stage monotonicity fails. Given Proposi-

tion 1 above, however, different mechanisms will have to be found for different domains

of non-monotonic extensions.

Correlated Randomizing Devices. If choice objects in X are uncertain prospects with

state space S, a subject may believe that there is ‘correlation’ between the processes

generating S andΩ, whether or not this correlation is justified empirically. For example,

suppose D i is chosen for payment if a coin flip lands heads, and x, y ∈ D i are acts whose

payments depend on the same coin flip. Clearly, subjects picking between x and y should

condition on the fact that they will only be paid for this choice in the event that the coin

comes up heads. Preferences over x and y may be altered as a result. This would

represent a violation of monotonicity in our general framework, because monotonicity

requires that preferences over X be state-independent. In general, if preferences over

X can depend on the realization of ω ∈Ω, then incentive compatibility can fail.

Since the experimenter can choose the randomizing device used to choose D i, care

should be taken to ensure that the subject will behave as if S and Ω are independent.

27A set of lotteries is cosigned if, in each state, either all lotteries give positive payments, or all lotteries

give negative payments.
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Even computer-generated randomization may allow room for distrusting subjects to per-

ceive correlation. Using a physical, objective randomizing device such as a coin flip or

die roll should mitigate problems with perceived correlation.28

Decision Overload. If subjects are asked to make many decisions, they may not expend

much cognitive effort on each choice. The result may be dominated choices in some de-

cision problems. This is particularly plausible when there are effort-minimizing choices

m0 to which subjects can default when cognitively overloaded. In an RPS mechanism,

suboptimal choices of m0
i

over the truthful favorite m∗
i

would represent a violation of

monotonicity. Thus, the (positive) appeal of the monotonicity axiom reduces as the num-

ber of decision grows.This concern has been expressed by Harrison (1994), Beattie and

Loomes (1997), and others. Experimental results by Wilcox (1993), Moffatt (2005), and

Baltussen et al. (2010) suggest that incentive compatibility of the RPS mechanism may

indeed fail if decisions are chosen with small probabilities or if the decision problems

are sufficiently complex. It is plausible, however, that cognitive overload would have

a detrimental impact on any payment mechanism. Simply put, paying subjects $20 for

100 decisions may lead to noisy or biased results, regardless of the specific payment rule.

Ex-Ante Fairness. Diamond (1967) demonstrates that certain fairness concerns can

lead to monotonicity violations using an example similar to the following:29 Suppose

a subject is presented with two decision problems: (1) give $10 to person A or B, and

(2) give $10 to person A or C. A coin flip will determine which problem is chosen.

It may be that giving $10 to A is strictly preferred to giving it to either B or C but,

because of ex-ante fairness, the subject would rather choose a fair coin flip between A

and C.30 Such a choice would violate monotonicity and cause the RPS mechanism not

to be incentive compatible. The NCaT assumption is also not particularly appealing

in this case ($10 each for A and C may be preferred to giving all $20 to A), so paying

for both decisions may also not be incentive compatible. In general, experiments with

28Bade (2012) models the ambient probability space and the space corresponding to the randomization

device as one and the same. For an RPS mechanism, Ω is partitioned into {Ω1, . . . ,Ωk}, decision problem

D i is chosen if ω ∈Ωi , and the choices in D i are all acts with Ωi as their domain. Bade fixes a preference

relation and characterizes when the σ-algebra generated by the decision problems and the σ-algebra

generated by the mechanism are independent (for the given preference relation). This independence

turns out to be equivalent to a weak form of incentive compatibility. Here, instead of fixing preferences

and varying σ-algebras, we fix the σ-algebras and study restrictions on preferences.
29Diamond actually argues against the independence axiom; Machina (1989) explains that monotonicity

itself is the source of difficulty. This example is now known as “Machina’s mom”.
30Evidence of this kind of preference has been documented by Bolton and Ockenfels (2010) and Cappelen

et al. (2013), for example.
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difficult moral or ethical choices may be plagued by this persistent incentive problem

when multiple decisions are given.

Irrational Diversification. Loomes (1998) and Rubinstein (2002) document a viola-

tion of monotonicity caused by ‘irrational diversification’. Rubinstein’s experiment can

be summarized by the following stylized example: Subjects are asked to place five bets

on the color of five independent draws (with replacement) from an urn containing six

red and four blue balls. They are paid for all five bets. Assuming subjects employ

probabilities and believe that draws are independent and identically distributed, the

stochastically dominant choice is to bet all five times on their more-likely outcome. In

fact, more than half of the subjects diversify their choices by sometimes betting on the

other outcome. Thus, paying for every bet is not incentive compatible because NCaT is

violated: the ‘bundling’ of identical bets leads to diversification. Although this is not a

violation of monotonicity in the subjective world, it is in the world of objective lotteries

(Azrieli et al., 2012), and so the RPS mechanism may not be incentive compatible when

objective lotteries are assumed and subjects face the same decision problem multiple

times. It is unknown whether payment mechanisms exist that can avoid this problem.

Direct Experimental Evidence. There exist several direct tests of the incentive com-

patibility of the RPS mechanism. Results are generally mixed, though some convincing

failures of incentive compatibility have been observed.

Camerer (1989) allows subjects in an RPS mechanism to change their choice after

learning which decision problem would be paid. Less than three percent of subjects opt

to change, suggesting that the RPS mechanism is incentive compatible.31

Studying lottery choices and assuming ROCL, Hey and Lee (2005b) statistically test

the extreme theories that subjects either treat each choice in isolation or combine them

to form one large lottery. Using multiple functional forms for preferences over lotteries

and two different criteria, they find the data fit better the hypothesis that each decision

is treated in isolation.32

Starmer and Sugden (1991) find that choice frequencies differ in a decision problem

if it is given as part of an RPS mechanism or in isolation, though statistical significance

is marginal due to small sample sizes. In two out of four problems, Beattie and Loomes

(1997) find noticeable but insignificant differences between the RPS mechanism and

31This mechanism is not strictly incentive compatible because initial choices (thus, all unpaid choices) are

not consequential. But Camerer’s results suggest subjects did not deviate from truthful announcements.
32Hey and Lee (2005a) find a similar conclusion when subjects are given problems sequentially and future

problems are not known.
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giving only the one problem. Cubitt et al. (1998, Experiment 2) also find virtually no dif-

ference between a single paid problem and that problem as part of an RPS mechanism.

Cox et al. (2012b) compare choices in five lottery decision problems across seven dif-

ferent payment mechanisms. Significant differences in behavior are observed. Subjects

behave similarly whether facing only one decision problem or being paid for each prob-

lem sequentially, but are significantly more risk averse (in some problems) if the RPS

mechanism is used or they are paid at the end for all decisions.33

Similarly, Harrison and Swarthout (2011) estimate various utility functionals using

both the RPS mechanism and data from subjects who make only one choice. Non-

expected utility functional estimates differ across payment mechanisms (mostly in their

estimated probability weights), but the expected utility functional estimates do not.

In all of the these direct-comparison studies, subjects who are given a single choice

do not see the other decision problems. Thus, behavior differences may be attributed to

framing effects (causing a change in underlying preferences) rather than monotonicity

violations. For example, Cox et al. (2012a) compare a lottery-choice experiment with

only D1 = {x, y}, to an RPS experiment with D1 = {x, y} and D2 = {x, y}, where x dominates

x and y dominates y. More subjects announce m1 = x in the RPS experiment. Though

this may be a monotonicity violation, it seems more likely that it is an application of

the well-known asymmetric dominance (or, decoy) effect, in which choices change when

dominating alternatives are present (see Huber et al., 1982 or Herne, 1999). Adding D2

simply makes x look more appealing to subjects. If such framing effects are present, lab

results may not generalize to field settings. If monotonicity is violated, then the RPS

is not correctly eliciting preferences. Disentangling these confounded explanations is

clearly important.

In our view, Cubitt et al. (1998, Experiment 3) provides the cleanest test of incentive

compatibility of the RPS mechanism because the confound with framing is eliminated.

Subjects are randomly assigned to one of three groups. All groups are given the same

20 decision problems. The first group is paid only for D1; the second group is paid

only for D2; and the third group is paid for one randomly selected problem out of the

twenty, each selected with equal probability. The order of the problems is randomized

for each subject, but subjects can backtrack and change any decision at any time before

33A pilot experiment on lists of problems by Brown and Healy (2013) corroborates the claim that RPS

subjects are more risk averse, though a new study by Freeman et al. (2012) shows less risk aversion

under RPS using Mechanical Turk (online) subjects. These lists hold constant one choice while the other

becomes progressively more (or less) attractive, and the differing results can be explained by subjects

simply ‘switching too late’ when working down the list. Similar biases in list elicitation tasks are explored

by Andersen et al. (2006); Beauchamp et al. (2012); Sprenger (2011); Castillo and Eil (2013); and others.
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a problem is chosen for payment. Choice frequencies in D1 do not significantly differ

between groups one and three (χ2 p-value 0.355) and choice frequencies in D2 do not

differ between groups two and three (χ2 p-value 0.285). Thus, incentive compatibility of

the RPS mechanism holds for that experiment.34

VI DISCUSSION

Incentives Within Decisions. Our paper focuses on how to pay for multiple decision

problems, assuming simply that subjects have preferences over the exogenously-given

choice objects. But in many cases the choice objects themselves are designed by the

experimenter for a specific purpose, and the proper structuring of the choice objects for

the question at hand can be a non-trivial problem.

For example, suppose an experimenter wants to study play of an infinitely repeated

game. The standard methodology—established by Roth and Murninghan (1978)—is to

pay for each period, terminating the repeated game with a fixed probability after each

period. Such games are often called indefinitely repeated. Each x ∈ D i represents a

possible strategy in this randomly-terminating game, and each strategy choice x is an

act that maps the play of others into a payment equal to the sum of all periods’ earn-

ings. Charness and Genicot (2009), Fischer (2011), Chandrasekhar and Xandri (2011),

and Sherstyuk et al. (2011) all recognize that this payment induces the same incentives

as the infinitely-repeated game model only if subjects have linear utility. With concav-

ity, accumulated (unconsumed) earnings through the game can alter preferences going

forward. Paying for one randomly-selected period clearly induces a myopic bias. Pay-

ing only for the final period induces the correct incentives, regardless of the subjects’

risk preferences. Sherstyuk et al. (2011) and Frechette et al. (2011) test these payment

schemes and find support for these predictions.35

Many researchers elicit preferences directly as part of a larger experiment. For ex-

ample, the well-known Becker et al. (1964) (BDM) mechanism is often used to elicit the

subjective value of an object. Grether (1981) and Karni (2009) describe a similar mecha-

nism for eliciting belief probabilities. Although we think of these as individual decision

34In a similarly-structured pilot study of list elicitation tasks (Sprenger, 2011 and Freeman et al., 2012),

Brown and Healy (2013) do find significant differences in choice frequencies, even when those paid for one

fixed decision are shown all decision problems.
35Frechette et al. (2011) also test payment mechanisms of Cabral et al. (2011) and Cooper and Kuhn

(2010).
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problems, their incentive properties can be analyzed easily through our framework be-

cause they are random payment mechanisms in which subjects announce information

about their preferences.

In the BDM mechanism, for example, a subject is usually endowed with k dollars

and asked how many dollars she would give up to obtain the object. Assuming only

integer-valued responses, we could think of there being k decision problems, each of

the form D i = {(0, k), (1, k− i)}, where (0, k) means not getting the object and keeping k

dollars, and (1, k−i) means getting the object and keeping k−i dollars. When the subject

announces a value of v, this is treated as identical to the (rationalizable) message m in

which mi = (1, k− i) if i ≤ v and mi = (0, k) if i > v.36 The BDM mechanism is then an

RPS mechanism in which one D i is randomly chosen and the inferred message mi is

paid. It is incentive compatible assuming monotonicity.37 Karni (2009) proves this same

result for the probability-elicitation version of the BDM mechanism. The second-price

auction of Vickrey (1961) can also be thought of as an RPS mechanism using exactly the

same framework, except that the random choice of the decision problem is determined

by the second-highest bidder’s strategy, rather than a computer. In the context of games,

the assumption of monotonicity is identical to the assumption that subjects never play

dominated strategies.

Payment Inequality. Suppose an experiment has subjects play 10 matching pennies

games against varying opponents. If only one game is drawn for payment, then half

the subjects will receive no earnings beyond their show-up fee. Subjects dislike such

payment inequality, and future participation may be affected. Paying for every game

would mitigate this problem. But the matching pennies game is supposed to be a game

of unequal payments; if subjects leave the lab with roughly equal earnings, then they

have not played a true, one-shot matching pennies game, and complementarities are

likely to have distorted choices. One possibility is to use the RPS mechanism with lower

payments for the game, and a higher show-up fee. Obviously, the experimenter must

trade off greater payment equality against ‘watered down’ incentives, and also should

worry about wealth effects that may arise from the larger show-up fee.

Framing Effects & Learning. As discussed above, framing effects occur when the

mere presence of decision problems alters underlying preferences. For example, the in-

clusion of dominated lotteries in one problem may impact choices in another. Machina

36The mechanism therefore assumes the single-crossing property that (1,k− i) ≻ (0,k) implies (1,k− j) ≻

(0,k) for all j < i, and (0,k) ≻ (1,k− i) implies (0,k) ≻ (1,k− j) for all j > i.
37Bohm et al. (1997) find that elicited values in the BDM correlate with the upper bound of the range of

prices, suggesting that a framing effect may alter preferences with these mechanisms.
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(1987) reviews ways in which the presentation of a gamble can affect subjects’ choices.

If preferences are changed by the presence of another decision problem or by the presen-

tation of choices, then an incentive compatible mechanism will still correctly elicit those

changed preferences.38 The generalizability of observed choices, however, can be called

into question, because they are apparently sensitive to the surrounding context. This

sensitivity is to the inclusion of other decision problems, but not to the way in which

they are incentivized. Thus, the payment mechanism is not responsible for (and cannot

mitigate) framing effects.

It is well known that subjects often ‘learn’ over time in an experiment (Camerer,

2003, Ch. 6). For example, Garvin and Kagel (1994) show that subjects learn to avoid

the winner’s curse mistake in experimental auctions simply by observing others make

the mistake. Weber (2003) even shows evidence of ‘non-observational’ learning across

decision problems when no feedback is given. Learning represents another example

of a framing effect. The choice behavior in the kth decision problem can be affected

by the presence of prior problems, regardless of the way in which decisions are paid.

Thus, learning represents another way in which laboratory results can be difficult to

generalize.

Confusion. A subject may misunderstand the structure of the choice objects, perhaps

due to poorly-written experimental instructions. This may lead them to choose items

from X differently than if they were properly informed. Formally, one could define an

‘informed’ preference relation º1 and a ‘confused’ preference relation º2. An incentive

compatible payment mechanism will elicit whichever preference relation currently de-

scribes the subject’s choices. An experimenter who observes ‘confused’ choices (according

to º2) may be misled when attempting to rationalize those choices assuming no confu-

sion. As with framing, this is not rectified through the appropriate choice of payment

mechanisms.

Subjects may also be confused about the payment mechanism. The mechanism φ

may be viewed incorrectly by the subject as φ′, resulting in a loss of control by the

experimenter. The only practical solution is to ensure that the payment mechanism

is explained well and the randomizing devices are simple, physical devices that are

observable by subjects. It may also be worthwhile to test subjects’ understanding of the

experiment before proceeding. If the RPS mechanisms if found to be too complex, for

example, then paying for every decision may be justified.

38Different presentations of the same gamble might more properly be modeled as different choice objects

in X .
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Irrational Choice. We assume choice can always be rationalized by a preference re-

lation. Modeling incentives in experiments under irrational choice (as in the model by

Masatlioglu et al., 2012, or others) is well beyond the scope of our current paper, but

would be an interesting extension for future research.

APPENDIX A: φ-MONOTONICITY

Here we show that incentive compatibility of the RPS mechanisms obtains if and only if

a weakened version of monotonicity—called φ-monotonicity—is assumed. φ-monotonicity

requires that º∗ respect dominance only when comparing a payment that results from

a truthful report to the payments that could result from other reports.

Axiom 1 (φ-Monotonicity). Fix an experiment (D,φ). For any preference º, the exten-

sion º∗ is φ-monotonic if, for every f ∈ φ(µ(º)) and g ∈ φ(M), f ⊒ g implies f º∗ g, and

f ⊐ g implies f ≻∗ g.39

Let E
φmon identify the φ-monotonic extensions for each º. The following shows that

φ-monotonicity applied to all experiments using an RPS mechanism is equivalent to the

global monotonicity requirement.

Proposition 3. Fix X , º, and extension º∗. If º∗ satisfies φ-monotonicity for every

experiment (D,φ) in which φ is an RPS mechanism, then º∗ satisfies monotonicity.

Proof. Consider any two acts f and g such that f ⊒ g. Let {Ω1, . . . ,Ωk} be the coars-

est refinement of the pre-images of f and g. For each Ωi, pick any ωi ∈ Ωi and let

D i = { f (ωi), g(ωi)}. Consider an RPS mechanism φ for this D = (D1, . . . ,Dk). Let m∗ =

( f (ω1), . . . , f (ωk)) and m = (g(ω1), . . . , g(ωk)). Since f ⊒ g, we have that m∗ ∈ µ(º). Thus,

f = φ(m∗) ∈ φ(µ(º)) and g ∈ φ(M), and so, by φ-monotonicity, f º∗ g. If f ⊐ g then

f (ωi)≻ g(ωi) for at least one i, so m 6∈ µ(º). By φ-monotonicity, f ≻∗ g. Thus, monotonic-

ity holds. �

We now demonstrate that φ-monotonicity is equivalent to incentive compatibility of

the RPS mechanisms.

Theorem 2. An RPS mechanism φ is incentive compatible with respect to E if and only

if E ⊆ E
φmon.

Proof. The proof of the theorem follows from the following lemma:

39For any set S ⊆ M, φ(S)= {φ(m)}m∈S .
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Lemma 3. Let φ be an RPS mechanism, f ∈φ(µ(º)) and g ∈φ(M).

(1) f ⊒ g.

(2) g 6∈φ(µ(º)) if and only if f ⊐ g.

Proof. Let f = φ(m∗) for some m∗ ∈ µ(º) and g = φ(m) for some m ∈ M. For each i ∈

{1, . . ., k}, m∗
i

and mi are both elements of D i and m∗
i
º mi. If g 6∈φ(µ(º)) then m 6∈ µ(º),

and so there is some i for which m∗
i
≻ mi.

Since φ is an RPS mechanism and f = φ(m∗) for some m∗ ∈ µ(º), it must be that for

each i ∈ {1, . . ., k} and ω ∈ Ωi, f (ω) = m∗
i
º mi = g(ω). Thus, f ⊒ g, proving part (1) of

the lemma. If g 6∈ φ(µ(º)) then m 6∈ µ(º), and so there is some j where, for each ω ∈Ω j,

f (ω) = m∗
j
≻ m j = g(ω). In that case, f ⊐ g. Conversely, if f ⊐ g then there is at least

one state ω where f (ω) ≻ g(ω). Let i be such that ω ∈Ωi. Thus, f (ω) = m∗
i
≻ mi = g(ω),

proving that m 6∈ µ(º) and, therefore, g 6∈φ(µ(º)). �

Returning to the theorem, assume incentive compatibility with respect to some E ,

and pick an arbitrary º. If f ∈φ(µ(º)), g ∈φ(M), and f ⊒ g, then incentive compatibility

guarantees that f º∗ g for every º∗∈ E (º). (This is true regardless of φ, and the fact

that f ⊒ g.) Now assume f ∈ φ(µ(º)), g ∈ φ(M), and f ⊐ g. By part (2) of Lemma 3,

g 6∈ φ(µ(º)), so incentive compatibility guarantees that f ≻∗ g for all º∗∈ E (º). Thus,

E ⊆ E
φmon.40

Conversely, assume E ⊆ E
φmon, and pick an arbitrary º and extension º∗∈ E (º). Pick

any f ∈ φ(µ(º)) and g ∈ φ(M). By part (1) of Lemma 3, we have that f ⊒ g. Since

º∗∈ E
φmon ⊆ E

mon, we have f º∗ g, as needed. If, in addition, g 6∈ φ(µ(º)), then, by part

(2) of Lemma 3, f ⊐ g. Here, º∗∈ E
φmon ⊆ E

mon guarantees that f ≻∗ g, proving that

incentive compatibility holds.

�

APPENDIX B: PROOFS OF THE MAIN RESULTS

B.1: Proof of Proposition 1

Let x ∈ X denote both the choice object x, and the constant act that pays x at every state

ω ∈Ω. For sufficiency, if k = 1 then the mechanism in which φ(m) = m for each m ∈ M is

clearly incentive compatible. The proof of necessity proceeds in several steps. In each,

assume the hypothesis that φ is incentive compatible and E has no restrictions.

40Finding an example of a non-monotonic extension where incentive compatibility fails (as in Holt, 1986)

is not sufficient to prove this direction of the theorem, as it must be shown for all possible counter-

examples.
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Step 1: |Range(φ)| > 1.

If x, y ∈ D i (with x 6= y) then consider a preference º where x ≻ z for all z 6= x and a

preference º′ where y≻′ z for all z 6= x. Let m= µ(º) and m′ =µ(º′), and note that m 6= m′

since mi = x and m′
i
= y. Incentive compatibility therefore requires φ(m)≻∗ φ(m′), which

implies φ(m) 6=φ(m′). Thus, |Range(φ)| > 1.

Step 2: Range(φ)⊆ X (that is, φ(m) is a constant act for every m ∈ M).

Suppose not. Then there is some m′ ∈ M such that φ(m′) is not a constant act. Using

step 1, let m 6= m′ be such that φ(m) 6= φ(m′), and then pick any º such that m ∈ µ(º).

Since there are no restrictions on E , pick an extension º∗∈ E (º) such that φ(m′)≻∗ f for

every act f 6=φ(m′). But then φ(m′)≻∗ φ(m) ∈µ(º), contradicting incentive compatibility.

Step 3: Range(φ)⊆ D i for every i ∈ {1, . . ., k}.

Suppose not. Then there is some a ∈ Range(φ) (by step 2) and some D j with x, y ∈ D j

(x 6= y) where a 6∈ D j. Now pick a preference º where a≻ x≻ z for every z ∈ X\{a, x}, and a

strict preference º′ where a≻′ y≻′ z for every z ∈ X \{a, y}. Let m=µ(º) and m′ =µ(º′),

and note that m j = x and m′
j
= y, so m 6= m′. Incentive compatibility requires that

φ(m) = a and φ(m′) = a. But incentive compatibility also requires that φ(m) ≻∗ φ(m′),

which is a contradiction.

Step 4: Range(φ)= D i for every i ∈ {1, . . ., k}.

Suppose not. Then there is some D i and some a ∈ D i such that a 6∈ Range(φ). Let º

be a preference where a ≻ z for every z 6= a, and let m = µ(º). Let b = φ(m), and note

that b ∈ D i by step 3. Now let º′ be a strict preference where b ≻′ z for every z 6= b, and

let m′ = µ(º′). Since m′
i
= b and mi = a, we have m′ 6= m = µ(º). Therefore, incentive

compatibility requires that φ(m) ≻φ(m′). But incentive compatibility also requires that

φ(m′)= b, so that φ(m′)=φ(m), a contradiction.

Step 5: k = 1.

(If we assume no two decision problems are identical, then this step is unnecessary.)

Suppose not. By step 4, we have D1 = D2 = Range(φ). Pick any m′ such that m′
1 6= m′

2,

and let x = φ(m′). Now consider the preference º where x ≻ z for every z 6= x, and let

m = µ(º). Since m1 = m2 = x, we have that m 6= m′. Incentive compatibility requires

that φ(m)≻φ(m′), but also that φ(m)= x =φ(m′), a contradiction.

B.2: Proof of Lemma 1

Fix a preference º, a truthful message m∗ ∈ µ(º), and an arbitrary message m. If φ(m∗)

dominates φ(m) under º then, under monotonicity, φ(m∗) º∗ φ(m) for any extension
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º∗∈ E (º)⊆ E
mon(º) (with strict orderings when m 6∈ µ(º)). Since this holds for all º, the

experiment is incentive compatible.

B.3: Proof of Lemma 2

Let º be a preference, and let m∗ ∈ µ(º). We claim that φ(m∗) dominates φ(m) under

º. To this end, we know that for all º∗∈ E (º), we have φ(m∗) º∗ φ(m). Because of

our hypothesis that
⋂

º∗∈E (º) º
∗=⊒, this implies that φ(m∗) ⊒ φ(m). Now, suppose that

m 6∈ µ(º). Then, for all i, it follows by definition that m∗
i
º mi, and that there exists j

for which m∗
j
≻ m j. Therefore, for all º∗∈ E (º), we have φ(m∗) ≻∗ φ(m). Consequently,

by our hypothesis that
⋂

º∗∈E (º) º
∗=⊒, we know that φ(m) ⊒φ(m∗) is false. Further, we

know that φ(m∗)⊒φ(m) is true. Conclude that φ(m∗)⊐φ(m).

B.4: Proof of Theorem 1

We start by showing that any RSS mechanism that satisfies conditions (1) and (2) is

incentive compatible (with respect to E
mon). Let º be arbitrary, m∗ = µ(º) and let

º∗ be some (monotonic) extension of º. We claim that φ(m∗) º∗ φ(m′) for any m′ 6=

m∗. This follows since, for each ω, φ(m∗)(ω) = domm∗(Pφ(ω)) and φ(m′)(ω) ∈ Pφ(ω), so

φ(m∗)(ω) º φ(m′)(ω). Since m′ 6= µ(º), we must also show that there exists ω ∈ Ω for

which φ(m∗)(ω) ≻ φ(m′)(ω). Suppose not, so that φ(m∗)(ω) ∼ φ(m′)(ω) at each ω. Be-

cause º is a linear order, this implies that φ(m∗) = φ(m′). Recalling condition (2) of the

hypothesis, this implies that m′ ∈ MR , so there exists º′ for which m′ = µ(º′). Since

φ(m∗) = φ(m′), both acts pick the same elements from every Pφ(ω). Condition (1) re-

quires D i ∈ SI(P φ) for every i, so that µi(º)=µi(º
′) for every i. But µ(º)=µ(º′) contra-

dicts m∗ 6= m′.

Conversely, let φ be an incentive compatible mechanism for (D1, . . . ,Dk). Recall that,

for each ω ∈ Ω, Pφ(ω) = φ(M)(ω). Let m∗ ∈ MR , and let º such that m∗ = µ(º). By

incentive compatibility (recall Lemma 2), it follows that for all m ∈ M, we have φ(µ(º))⊒

φ(m). In particular, this implies that, for all ω ∈Ω, φ(µ(º))(ω)ºφ(m)(ω) (by definition of

⊒), or φ(m∗)(ω)ºφ(m)(ω). That is, φ(m∗)(ω)º y for all y ∈ Pφ(ω). Since º was arbitrary,

this establishes both that Pφ(ω) ∈ SI(D), and that φ(m)(ω) = domm(Pφ(ω)) whenever

m ∈ MR . Hence, φ is an RSS.

We claim now that for all i, D i ∈ SI(P φ). If not, then by definition, there exists

D i, and preferences º,º′ for which for all ω ∈ Ω, domº Pφ(ω) = domº′ Pφ(ω), but for

which domº D i 6= domº′ D i. Hence, µ(º) 6= µ(º′). Since φ is an RSS mechanism, for
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all ω ∈ Ω, φ(µ(º))(ω) = domº Pφ(ω) = domº′ Pφ(ω) = φ(µ(º′))(ω). Consequently, φ(µ(º

))=φ(µ(º′)), but µ(º) 6= µ(º′). In particular, since µ(º) and µ(º′) are each single-valued,

incentive compatibility implies that there exists ω ∈Ω for which φ(µ(º))(ω)≻φ(µ(º′))(ω),

a contradiction.

Finally, suppose that there are m ∈ MR and m′ ∈ MNR such that φ(m) = φ(m′). Let º

be such that µ(º) = m. Incentive compatibility requires that φ(m) ⊐ φ(m′) with respect

to º, which contradicts φ(m)=φ(m′).

APPENDIX C: UNIQUENESS OF THE RPS MECHANISM

We begin with a useful characterization of surely identified sets, which is used to prove

the subsequent lemma.

Proposition 4. E ∈ SI(D) if and only if for every pair {x, y} ⊆ E, there exists D ∈ D for

which {x, y}⊆ D ⊆ E.

Proof. Suppose that E ∈ SI(D), and that E is not a singleton. Let {x, y}⊆ E be arbitrary.

Consider two linear orders, º and º′, which are identical except in their ranking of x and

y (which are adjacent). They rank all elements of X\E above all elements of E, and they

rank x and y above all elements of E\{x, y}. However, x ≻ y and y≻′ x. It is clear that if

there is no D ∈D such that {x, y}⊆ D ⊆ E, then for all D ∈D, we have domº D = domº′ D,

yet domº E = x 6= y= domº′ E, contradicting sure identification.

Conversely, suppose that for every pair {x, y}⊆ E, there exists D ∈D for which {x, y}⊆

D ⊆ E. Suppose by means of contradiction that there exist º and º′ for which for all D ∈

D, domº D = domº′ D, but domº E 6= domº′ E. Let w = domº E and z = domº′ E. There

exists D′ ∈D for which {w, z}⊆ D′ ⊆ E. As a consequence, w = domº D′ and z = domº′ D′,

contradicting the fact that domº D = domº′ D for all D ∈D. �

Lemma 4. Let φ be an RSS mechanism that satisfies condition (2) of Theorem 1 (that

φ(MR )∩φ(MNR)=∅). Then φ is incentive compatible if and only if NRed(D)⊆P
φ.

Proof. The proof follows immediately from Theorem 1; all we need to show is that con-

dition (1) of that theorem (D ⊆ SI(P φ)) is equivalent to NRed(D)⊆P
φ.

Suppose first that any decision problem is surely identified from P
φ, and let D i be

non-redundant. Assume by contradiction that D i 6∈ P
φ. By Proposition 4, for each pair

{x, y} ⊆ D i there is some {x, y} ⊆ Pφ(ω(x,y)) ( D i. Now, as each Pφ(ω(x,y)) ∈ SI(D), and

since each Pφ(ω(x,y))( D i, it follows by Proposition 4 that Pφ(ω(x,y)) ∈ SI(D \ {D i}). This

tells us that there exists D(x,y) for which {x, y} ⊆ D(x,y) ⊆ Pφ(ω(x,y)). Further, we know
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that {x, y} ⊆ D(x,y) ( D i. By Proposition 4, it follows that D i is surely identified by the

D(x,y), contradicting the fact that D i is non-redundant.

Conversely, suppose that NRed(D)⊆P
φ and let D i be some decision problem. If D i is

non-redundant then obviously it is surely identified from the payment sets, so assume

D i is redundant. Then by Proposition 4 for every {x, y} ⊆ D i there is D(x,y) such that

{x, y}⊆ D(x,y) ( D i. For each {x, y} choose a minimal (with respect to inclusion) set D(x,y)

with the above property. Then each D(x,y) is non-redundant and this collection of sets

surely identifies D i. It follows that D i is surely identified from the payment sets, so φ is

incentive compatible. �

C.1: Proof of Corollary 2

First, suppose that SI(D)\{{x}x∈X}=NRed(D). We know from Theorem 1 that any incen-

tive compatible mechanism φ is an RSS mechanism, and from Lemma 4 that any non-

redundant set must be a payment set at some state. It follows from the assumption that

D = NRed(D), so every decision problem is a payment set at some state. Furthermore,

since any payment set is in SI(D), it follows that whenever P
φ(ω) is not a singleton it is

in D. This proves that φ coincides with an RPS mechanism when restricted to MR and

to states where the payment sets of φ are not singletons.

Now, suppose that any incentive compatible mechanism φ coincides with an RPS

mechanism restricted to MR and to states where the payment sets of φ are not sin-

gletons. If NRed(D)(D then, by Lemma 4, there are incentive compatible mechanisms

in which P
φ ( D, contradicting the assumption. Thus, we must have NRed(D) = D.

Similarly, we must also have SI(D)\{{x}x∈X }=D, and the result follows.

C.2: Proof of Corollary 3

We show that the condition from Corollary 2 is satisfied. To this end, we will show that

all non-singleton elements of SI(D) are elements of D, and that all elements of D are

non-redundant.

For the first claim, suppose by means of contradiction that E ∈ SI(D), but that E 6∈D.

Let x, y ∈ E. By Proposition 4, there is D(x,y) ∈ D for which {x, y} ⊆ D(x,y) ( E. There

exists z ∈ E\D(x,y). Let D(x,z) ∈ D be such that {x, z} ⊆ D(x,z). If y ∈ D(x,z), then an ir-

rational message exists (namely, announcing x from E and y from D(x,z). If y 6∈ D(x,z),

then let D(y,z) ∈ D for which {y, z} ⊆ D(y,z). Then, an irrational message exists, namely,

announcing x from E, y from D(y,z) and z from D(x,z).
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For the second claim, suppose that there is a redundant D i. Then, similarly to the pre-

ceding paragraph, we can construct an irrational message from the elements of D\D i.

Now, since MNR =∅, we do not need to add the qualification that there is an agreeing

RPS mechanism on MR (since M = MR ).
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