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Appendix B. Modeling Games as Decisions

In this appendix we describe how one can move seamlessly between decision-theoretic

analyses and game-theoretic analyses, justifying the application of our results to both

settings. Let us start by considering an experiment in which the subject makes a single

decision and then goes home. Suppose that this decision is a choice among uncertain

prospects: A subject receives a bundle of Apples and Oranges contingent upon the color

of a ball drawn from an urn. Speci�cally, suppose a subject needs to choose between

prospects U and D de�ned by

Red ball Green ball

U 2A, 1O 3A, 2O

D 1A, 3O 2A, 3O

Here, A stands for Apples and O for Oranges. The subject has utility over bundles of

Apples and Oranges, given by u(3A, 2O). These bundles are the entries in the matrix.

The subject also has preferences over uncertain prospects that pay a bundle of Apples

and Oranges as a function of the realized color of the ball. These are the rows of the

matrix (U and D). These latter preferences are obviously related to the utility over

bundles as well as the subject's belief about the likelihood of each color. For example,

under expected utility, U � D if and only if

p(Red)u(2A, 1O) + p(Green)u(3A, 2O) ≥ p(Red)u(1A, 3O) + p(Green)u(2A, 3O).

But in general we need not assume expected utility, or even probabilistic beliefs. We just

have some utility over bundles (u(·)) and some preference over uncertain prospects (�).
It doesn't really matter which preference we take as primitive. We could start with �

and, if we know enough about � and we make some assumptions, we could derive the

u (and p, under expected utility) that represents �. Or we could start with u (and p if

assuming expected utility) and we could derive �. The latter approach is the standard in
game theory and the usual assumption there is expected utility.1 The former is standard

in decision theory, where axioms on � would lead to a representation of � in terms of u

and p, for example. But either approach is valid.

1In classical game theory, p would be assumed via a solution concept. But we describe below many
papers in which p is taken as exogenous, modeled as part of the player's hierarchy of beliefs.

1



2 INCENTIVES IN EXPERIMENTS: APPENDICES

Now, what does it mean that a payment mechanism is incentive compatible in this

single decision experiment? It means that, no matter what are the preferences of the

subject over {U,D}, the payment he receives by choosing his favorite prospect is bet-

ter (according to his preferences) than the payment he receives by choosing the other

prospect. The key point is that, what matters for incentive compatibility are the prefer-

ences of the subject over the set of objects from which he can choose, i.e. over the set

{U,D}. It does not matter what the corresponding utility over bundles of fruits would

look like. And beliefs don't matter. And it does not matter whether u or � was taken

as primitive.2

An incentive compatible mechanism is easy to construct in this example: The subject

gets the prospect he chose. That is, when choosing U the subject will get the bundle

(2A,1O) if the drawn ball is red and the bundle (3A,2O) if the drawn ball is green, and

similarly when he chooses D.

Let us move on to an experiment in which subjects play a single game and then go

home. For example, suppose they play a 2×2 game with payo� (in dollars) matrix given

by

L R

U $2,$1 $3,$2

D $1,$3 $2,$3

Notice that, from the perspective of the row player, this is the same as the decision

problem above, except Apples are now `dollars for the row player', Oranges are now

`dollars for the column player', and the two states of the world (L and R) are chosen by

another subject instead of an urn.

As discussed above, the primitive in standard game theory is usually the preferences

of the players over strategy pro�les, i.e. over the entries of the matrix. But what

matters for incentive compatibility is the preference of each player over the objects he

can choose from, i.e. the set of his own strategies. This preference over U and L is

clearly related to the utility over strategy pro�les (the entries in the matrix), as well as

to the belief about the strategy of the opponent (which may depend on what he believes

his opponent believes about his own play, and so on). But ultimately what matters for

incentive compatibility is only whether the rows player prefers to play U or D (and, for

the column player, whether she prefers L or R).

2Note that much information is lost in moving from utility over bundles to preferences over uncertain
prospects. An experiment where a subject chooses either �U � or �D� can convey only one bit of infor-
mation. It is not rich enough to learn about the subject's beliefs over Red and Green, or their utility
over the four possible bundles. But this `lost information' is not relevant for incentive compatibility. If
the experimenter were interested in this information, it could be elicited via di�erent decision problems;
see Karni (2009), for example.
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As in the decision problem experiment there is a simple way to incentivize subjects

to reveal their preferences over their own strategies: The players get paid the dollar

amounts corresponding to the chosen entry in the matrix. From the point of view of the

row player, when he chooses U the outcome will be either ($2, $1) or ($3, $2) contingent

on whether the column player chose L or R (and similarly when he chooses D).

Notice that one could assume a di�erent model of game play if desired (for example,

a more psychological or behavioral model such as Level-k), and our framework would

still apply as long as the model ultimately generates a ranking over the player's own

strategies.3 In the end, this is all that matters for incentive compatibility.

To complete the discussion, consider the case of multiple games. Speci�cally, the

subject plays a sequence of games and gets no feedback between the rounds (see the

other appendix for the case with feedback). The subject has preferences over his own

strategies in each game. Then, just as in the case of multiple decision problems, if

the experimenter uses the RPS mechanism to determine which game will be chosen for

payment, and if the subject's �extension� of their preferences (to the space of acts that

select a chosen strategy from one randomly-selected game) satis�es monotonicity (as

de�ned in the paper), then it is incentive compatible for each player in each game to

choose the strategy that he prefers most in that game. Similarly, if NCaT is satis�ed

then the pay-all mechanism is incentive compatible. There is no need to develop a

separate theory for games, since for the purpose of avoiding distortions in choice due

to complementarities, all that matters is � over strategies. In other words, from the

perspective of incentive compatibility, games are no di�erent than decision problems.

One might wonder if there is a substantive di�erence in having the states of the world

be chosen by another player, rather than by an urn. In this setting the row player can have

uncertainty not just about the column player's action, but also beliefs about the column

player's beliefs about the row player's action, and beliefs about those beliefs, and so on.

Thus, we can construct an entire hierarchy of beliefs for the row player. Brandenburger

and Dekel (1993) show how one can de�ne a type space (often called a `strategies-based

type space', or `epistemic type space') that coherently models all possible hierarchies of

beliefs of the row player (and a similar type space for the column player). And Epstein

and Wang (1996) show how it can be done even without expected utility or probabilistic

sophistication. Note that in these sorts of type spaces, the primitive uncertainty is over

the opponent's strategies, and beliefs are taken as exogenous rather than derived from

an assumed solution concept.

Though we could construct such a type space, most of it is irrelevant for incentive

compatibility. In the end, the row player's utility over bundles (u) and their �rst-order

3In the Level-k model, for example, each Level-k type would rank his own strategies based on their
expected payo� given his belief that the opponent will play the Level-(k − 1) strategy.
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belief about the column's action (p) determine a preference over U and D. It is this

preference that matters for incentive compatibility.

Finally, this construction is not novel. Many authors have studied games using the

strategies-based type space framework.4 Dekel and Siniscalchi (2015) have a lengthy

chapter in the Handbook of Game Theory that surveys many results derived using a

strategies-based type space. For example, Brandenburger and Dekel (1987, 1993) and

Aumann (1987) study rationalizability and correlated equilibrium in this setting.5 Au-

mann and Brandenburger (1995) derive su�cient conditions on rationality and beliefs

for players to play Nash equilibrium. Brandenburger et al. (2008) similarly characterize

the iterated elimination of weakly dominated strategies. In extensive-form games, Ben-

Porath (1997), Battigalli and Siniscalchi (1999, 2002), and Battigalli and Friedenberg

(2012) study the link between common knowledge of rationality and backwards induction.

Geanakoplos et al. (1989) and Battigalli and Dufwenberg (2009) use a strategies-based

type space to study psychological games.

Appendix C. A Dynamic Model with Feedback and Learning

In this appendix we provide a generalization of our model to the dynamic setting in which

the subject announces choices sequentially, receives feedback after each period, and may

`learn' (or, more generally, have changing preferences) across time. If the setting is a

sequence of games, we assume the subject plays against di�erent opponents each period;

recall that a repeated game against a single opponent should be viewed as one large

decision problem. Although the notation here is more complex, the result is similar to

that in the paper. For brevity we only study monotonicity and the RPS mechanism; a

similar generalization of NCaT and the pay-all mechanism would be fairly trivial.

We introduce our framework �rst through an example.

Example 1 (Ultimatum Games: Direct Response Method). A subject (`she') will play

two mini-ultimatum games, each against di�erent opponents (both `he'). Her options in

each period t ∈ {1, 2} are to o�er either an Equal split or an Unequal split of a $10 pie.
Thus, each period-t decision problem is given by Dt = {Et, Ut}. If she chooses mt = Ut

then her period-t opponent can choose Accept or Reject. If he accepts then she gets $9

4And, more generally, the decision-theoretic approach to game theory had a long and rich history even
before strategies-based type spaces were developed. Rationalizability (Bernheim, 1984; Pearce, 1984)
was motivated by studying individual-level rationality in the context of a game. Von Neumann and
Morgenstern (1944) developed expected utility theory expressly for use in games, an exercise further
developed by Luce and Rai�a (1957).
5The papers by Aumann (1987) and Brandenburger and Dekel (1987, 1993) de�ne and study ratio-
nalizability in the context of a strategies-based type space, assuming expected utility. Epstein (1997)
de�nes and studies rationalizability in a strategies-based type space that does not assume expected
utility (Epstein and Wang, 1996); this most closely matches our framework.
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θ A1A2 A1R2 R1A2 R1R2

s1 E1 E1 E1 E1

s2 E2 E2 E2 E2

s′1 U1 U1 U1 U1

s′2 U2 U2 E2 E2

Table I. The Θ-acts generated by the plans s and s′ in each period.

and he gets $1. If he rejects they both get $0. But if the subject chooses mt = Et then

the opponent is given no choice; they both get $5 regardless.

Let Θ = {A1, R1} × {A2, R2} be the set of states that captures the uncertainty re-

garding what the opponents would do if the subject were to o�er an unequal split, where

At indicates that the opponent in period t would accept an unequal split and Rt indi-

cates they would reject. For example, this might represent whether each opponent has

sel�sh or spiteful preferences. In period 1 the subject has no information about the

realized θ ∈ Θ. But at the end of period 1 she might receive feedback about her period-

1 opponent's choice, and this might a�ect her preferences in period 2. If she chooses

m1 = U1 then she �nds out if the �rst opponent accepts (A1) or rejects (R1). In other

words, by choosing U1 the subject would know whether the realized state θ is in the set

{(A1, A2), (A1, R2)} or in the set {(R1, A2), (R1, R2)}. But if she chooses m1 = E1 then

she would get no information; she would still face the same uncertainty about θ as before

the �rst period (i.e. θ ∈ Θ).

The subject does not pick a �xed vector of messages m = (m1,m2); instead, she picks

an entire contingent plan of what messages she will send, depending on what feedback

she observes. Plans therefore are functions, which we will denote by s. As she executes

her plan she will ultimately submit a message vector m, but what vector she submits

depends on what feedback she receives during the experiment, which in turn depends on

the realized state θ as well as on the subject's own previous choices. For example, one

possible plan s is to choose E1 in the �rst period and E2 in the second period. Another

plan s′ chooses U1 in the �rst period, and then chooses E2 if R1 was observed and U2 if

A1 was observed.

Notice that any plan s generates a `Θ-act' in each period t, that is a mapping st : Θ→
Dt. The choice object st(θ) ∈ Dt indicates what the subject would choose in period t

when she plays according to plan s and the realized state is θ. The Θ-acts generated by

the plans s and s′ of the previous paragraph in each period are shown in Table I.

Since by choosing a plan the subject essentially chooses a Θ-act in each period, we

model the primitive preferences of the subject as being de�ned over Θ-acts. Suppose

that the subject prefers the Θ-act s1 (the constant E1, see Table I) over the Θ-act s′1
(the constant U1). This can be the case for example if her prior beliefs are that the
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subject in the �rst period is likely to reject an unequal split. Suppose also that the

subject prefers s′2 over s2, with a possible rationale being that the subject believes that

the responses of the two opponents are positively correlated, so she would be better o�

o�ering an unequal split in the second period if and only if the �rst opponent accepted

such an o�er.

A plan is truthful if it chooses an optimal Θ-act in each period from the set of feasible

acts in that period. It is important to note that in the current example the set of acts

available to the subject in the second period depends on her choice in the �rst period: If

she chooses E1 then only constant acts are available in period 2 (since there will be no

feedback); but if she chooses U1 then the set of available acts in period 2 is larger and

contains acts that vary with the response of the �rst opponent. In period 1 the only two

available acts are s1 and s
′
1, so a truthful plan must choose s1 initially. But if she chooses

s1 then in the second period only constant Θ-acts would be available. Assuming that

with no further information the subject still prefers an equal split, her optimal choice

now is E2, so the truthful plan must choose s2. In other words, the plan s is the unique

truthful plan in this example.

Assume that the RPS mechanism is used for payment. As in the static framework,

there is a state space Ω = {ω1, ω2} and if ωt is realized then the announced period-t choice

mt is paid. Formally, φ(m)(ωt) = mt. If the subject plays according to the truthful plan

s then, for every θ, she receives E1 if ω1 is realized and E2 if ω2 is realized. In other

words, she receives the Θ-act s1 in state ω1 and the Θ-act s2 in state ω2. If instead the

subject plays according to s′ then she receives the Θ-act s′1 in state ω1 and the Θ-act s′2
in state ω2.

As in the static framework, the subject has an extension �∗ over payment acts (i.e.,

acts from Ω to Θ-acts) that satis�es monotonicity. Thus, incentive compatibility can only

be ensured by requiring that the truthful plan generates a payment act which dominates

any other payment act generated by any non-truthful plan. But notice that the RPS

mechanism described in the previous paragraph does not satisfy this property: The

payment act generated by the plan s′ is not dominated by the payment act generated by

the truthful plan s, since s′2 � s2. This implies that the RPS mechanism is not incentive

compatible in this example.

Incentive compatibility fails in Example 1 because the feedback structure provides a

clear incentive for experimentation: by choosing the less-preferred option U1 in the �rst

period, the subject is able to learn more valuable information on which she can condition

her choice in period 2. This allows her to achieve more desirable outcomes in certain

contingencies. This is similar to a multi-armed bandit problem: A subject might pull
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the riskier arm in earlier periods just so she can have more information when making

her later-period choices.

In our view, any experiment that provides these experimentation incentives should not

be analyzed as a sequence of independent decisions. Instead they should be analyzed

as one large decision problem, much like a repeated game against a single opponent. In

fact, multi-armed bandit problems are always modeled theoretically as one large dynamic

decision problem�not a sequence of independent problems�and so any experiment in-

volving multi-armed bandits should be analyzed as one large problem as well.

The experimentation incentives comes entirely from the subject's ability to change

their feedback by changing their message. Thus, we can rule out experimentation in-

centives by requiring that feedback never depends on the subject's announcements. We

now present a modi�ed version of the experiment in Example 1 which eliminates the

incentive to experiment.

Example 2 (Ultimatum Games: Strategy Method). The subject plays the same two

mini-ultimatum games as in Example 1. Again, the opponent has no choice if an equal

split (mt = Et) is o�ered, but in this version the experimenter asks the opponent what

they would choose if mt = Ut before mt is chosen. In the experimental literature, this is

known as the `strategy method'.6 At the end of the period this information is revealed

to the subject regardless of what she chose. Thus, regardless of what the subject chose

in the �rst period she would know before the second period whether the state θ is in the

set {(A1, A2), (A1, R2)} or in the set {(R1, A2), (R1, R2)}.
Recall that the subject prefers the Θ-act s1 over s′1, and suppose that s′2 is not only

preferred to s2 but also to any other Θ act that depends only on the response of the �rst

opponent (see Table I). Then the unique truthful plan is to choose E1 in period 1, and

to condition the choice in period 2 on the (hypothetical) response of the opponent from

period 1. This plan chooses s1 in period 1 and s′2 in period 2. Note that this plan was

not feasible in the direct response version of the experiment.

The RPS mechanism described in the previous example is now incentive compatible.

Under the truthful plan the payment-act pays s1 in state ω1 and s
′
2 in state ω2; any other

feasible payment-act is dominated by this state-by-state. Thus, under monotonicity, the

subject strictly prefers to follow the truthful plan.

We now build a general framework and prove that if experimentation is not possible

then the RPS mechanism is essentially the only incentive compatible mechanism.

6The opponent's choice is incentivized because, if the subject actually chooses Ut, then the opponent's
choice is implemented.
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In each period t ∈ {1, . . . , T} the subject chooses mt ∈ Dt ⊆ X. To simplify the expo-

sition assume that for each t and t′ 6= t, Dt andDt′ are disjoint.
7 Letm = (m1, . . . ,mT ) ∈

M = ×tDt. As in the example, there is a state space Θ which captures the uncertainty

that the subject faces in the experiment (e.g., the preferences of her opponents). The

subject has a preference � over the set XΘ of Θ-acts.8

After making a choice in period t the subject receives feedback ot that depends on her

choice mt as well as on the realized θ ∈ Θ. Speci�cally, let σt : Dt × Θ → Ot be the

period-t feedback function. A period-t history is a vector of the form (o1, . . . , ot−1) that

describes all observations prior to period t. The set of all such histories is denoted Ht,

with the convention that H1 = {h1} where h1 = (∅).
A plan is a vector s = (s1, . . . , sT ), where for each t the function st maps Ht into

Dt. Given plan s, each state θ generates a sequence of messages that, with abuse of

notation, we denote by s(θ) = (s1(θ), . . . , sT (θ)). Formally, let s1(θ) = s1(∅) for every θ,
and for every t ≥ 2 de�ned st(θ) = st(σ1(s1(θ), θ), . . . , σt−1(st−1(θ), θ)). Notice that we

can therefore view each st as a mapping from Θ into Dt, that is, as a Θ-act.

Given a plan s, say that two states are indistinguishable in period t if they generate the

same sequence of observations in all periods prior to t. Formally, θ, θ′ are indistinguish-

able in period t if (σ1(s1(θ), θ), . . . , σt−1(st−1(θ), θ)) = (σ1(s1(θ′), θ′), . . . , σt−1(st−1(θ′), θ′)).

This is clearly an equivalence relation over Θ, and we let At
s be the collection of all Θ-

acts with range Dt that are measurable with respect to the partition associated with it.

Simply put, At
s is the set of Θ-acts available to the subject in period t if she followed the

plan s in all past periods.

De�nition 1 (Truthful Plan). A plan s∗ is truthful if s∗t � a for every t = 1, . . . T and

for every a ∈ At
s. Let S

∗(�) be the set of all truthful plans at �.

As in the static framework, a payment mechanism is a mapping φ : M → XΩ, where

Ω is the state space of the mechanism's randomizing device. But notice that here the

messages m would typically depend on the feedback received by the subject, which in

turn depends on the realized θ. More speci�cally, a subject which follows a plan s

would be paid φ(s(θ)) ∈ XΩ when θ is realized. Put di�erently, if the realized state of

the randomization device is ω then the subject is paid the Θ-act φ(s(·))(ω), which pays

φ(s(θ))(ω) in each state θ. We call a mapping f : Ω→ XΘ a payment act, and we denote

by F the set of all such acts. For example, φ(s(·)) ∈ F . As in the static framework

we assume that the subject has an extension �∗ over F of her underlying preference �.
7If the same object x appears in r di�erent decision problems, rede�ne X to contain r copies of x.
8To make the connection to our static framework clearer and to save on notation we use as primitive the
preferences of the subject over XΘ. One could instead start with a collection of `conditional preferences'
{�E}E⊆Θ, where �E is a preference over XE representing the subject's ranking conditional on learning
that event E occurred.
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In particular, �∗ is used to rank payment acts and, therefore, determines whether the

truthful plans are most-preferred.

We can now give the de�nitions of incentive compatibility, dominance, and monotonic-

ity adapted to our dynamic framework.

De�nition 2 (Incentive Compatibility). A mechanism φ is incentive compatible if,

for every preference �, every admissible extension �∗, every truthful plan s∗ ∈ S∗(�),

and every plan s, φ(s∗(·)) �∗ φ(s(·))), with φ(s∗(·)) �∗ φ(s(·))) whenever s 6∈ S∗(�).

De�nition 3 (Dominance). Given �, payment-act f dominates payment-act g (de-

noted f w g) if f(ω) � g(ω) for every ω ∈ Ω. If f w g and there is some ω ∈ Ω such

that f(ω) � g(ω) then f strictly dominates g (denoted f A g).

De�nition 4 (Monotonicity). Given�, an extension�∗ satis�es monotonicity if f w g

implies f �∗ g, and f A g implies f �∗ g.

Next, we recall the de�nition of the RPS mechanism.

De�nition 5 (RPS Mechanisms). Payment mechanism φ : M → XΩ is a random

problem select (RPS) mechanism if there is a �xed partition {Ω1, . . . ,ΩT} of Ω with each

Ωt non-empty such that, for each t ∈ {1, . . . , T} and m ∈M ,

ω ∈ Ωt implies φ(m)(ω) = mt.

In the static framework it was possible that Dt ∩Dt′ 6= ∅. Thus, we had to deal with

the possibility of non-rationalizable messages and the concept of surely-identi�ed sets.

This led us to de�ne the family of RSS mechanisms, and we found that the incentive

compatible mechanisms were a subset of that class. In the dynamic framework each Dt is

disjoint, meaning there are no non-rationalizable messages and the only surely identi�ed

sets are the decision problems themselves plus the singleton sets. Thus, the appropriate

notion of an RSS mechanism in the dynamic framework simply boils down to an RPS

mechanism that can also pay �xed payments.

De�nition 6 (RPS Mechanisms with Fixed Payments). A payment mechanism φ

is a random problem selection mechanism with �xed payments (RPS-FP) if there is a set

of k choice objects {x1, . . . , xk} ⊆ X (called the �xed payments, with the possibility that

k = 0) and a partition {Ω1, . . . ,ΩT+k} of Ω with each Ωt non-empty such that, for each

t ∈ {1, . . . , T + k} and m ∈M ,

ω ∈ Ωt implies

{
φ(m)(ω) = mt if t ≤ T

φ(m)(ω) = xt−T if t > T

If k = 0 then an RPS-FP mechanism reduces to an RPS mechanism.
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Finally, we need to formalize the idea that the subject cannot in�uence the information

she receives through her own choices.

De�nition 7 (No Experimentation). The feedback functions {σt}t prohibit experi-
mentation if σt(mt, θ) = σt(m

′
t, θ) for every t, every θ, and every mt,m

′
t ∈ Dt.

Theorem 1. Consider an experiment in which the feedback functions prohibit exper-

imentation. If only monotonic extensions are admissible then any RPS mechanism is

incentive compatible. Furthermore, if the underlying preferences � over XΘ are strict

and all monotonic extensions are admissible then a mechanism is incentive compatible

if and only if it is an RPS-FP mechanism.

Proof. Since the feedback functions prohibit experimentation, the set At
s of acts available

to the subject in period t is independent of the plan s. We can therefore omit s from the

notation and denote by At the set of feasible acts in period t.

Notice that we are now in a very similar set-up to the static framework of the paper:

The subject chooses an element of At in each period t; truthfulness means choosing a

maximal element in each period; extensions are preferences over payment acts that map

Ω into choice objects; and incentive compatibility means that being truthful results in a

payment act that is preferred to any payment act obtained by lying for every admissible

extension. However, the di�erence from the static framework is that the sets At and the

choices from these sets are only in the subject's mind; the experimenter only observes

the realized choices mt made from the sets Dt, and so the mechanism can only depend

on these choices.

Let us call the static framework in which the subject chooses from the sets {At} and
the mechanism pays based on these choices the �hypothetical static framework�. We say

that a mechanism φ in the dynamic framework is equivalent to a mechanism φ′ in the

hypothetical static framework if φ(m1, . . . ,mT ) = φ′(s1, . . . , sT )(θ) whenever mt = st(θ)

for all t. It is easy to see that φ is incentive compatible in the dynamic framework if

and only if it is equivalent to an incentive compatible mechanism φ′ of the hypothetical

static framework.

Now, it follows from Proposition 1 in the paper that any RPS mechanism in the hypo-

thetical static framework is incentive compatible when the subject's extension satis�es

monotonicity. Also, any RPS mechanism of the dynamic framework is equivalent to an

RPS mechanism of the hypothetical static framework. This proves the �rst part of the

Theorem.

To prove the second part notice that since the sets {Dt} are disjoint, the sets {At}
are disjoint as well. It follows that the only surely identi�ed sets (see De�nition 4

in the paper) in the hypothetical static framework are the sets {At} themselves and
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the singletons. Thus, we know from Theorem 1 in the paper that if all monotonic

extensions are admissible then any incentive compatible mechanism in the hypothetical

static framework is an RSS mechanism that in each state ω pays either the chosen

element from At or some �xed Θ-act that does not depend on the choices made by

the subject. Again, it is easy to check that the mechanisms in the dynamic framework

that are equivalent to such mechanisms in the hypothetical static framework are exactly

RPS-FP mechanisms. This concludes the proof. �
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