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ABSTRACT. Experimental economists currently lack a convention for how to pay subjects
in experiments with multiple tasks. We provide a theoretical framework for analyzing
this question. Assuming statewise monotonicity and nothing else, we prove that paying
for one randomly-chosen problem—the random problem selection (RPS) mechanism—is
essentially the only incentive compatible mechanism. Paying for every period is similarly
justified when we assume only a ‘no complementarities at the top’ (NCaT) condition.
To help experimenters decide which is appropriate for their particular experiment, we
discuss empirical tests of these two assumptions.
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I. INTRODUCTION

Incentivizing subjects has long been a key tenet of experimental economics. But when
subjects are asked to make multiple decisions, the way in which they are incentivized
can distort their actual choices. Several such distortions have been observed in previous
studies. For example, if all decisions are paid, subjects can become more risk-seeking
after losses and more risk-averse after gains (Thaler and Johnson, 1990; Weber and
Zuchel, 2005; Ackert et al., 2006). They may also recognize that their risk is diversified
when multiple lotteries are paid, driving them to choose riskier lotteries in each deci-
sion (Laury, 2005). In auctions, bidders who have won in previous rounds tend to bid
less aggressively in later rounds (Kagel and Levin, 1991; Ham et al., 2005). In some
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cases, one choice is clearly used as a hedge against risk in another (Blanco et al., 2010;
Armantier and Treich, 2013).

It has been suggested that paying for only one randomly-chosen decision—what we
call the random problem selection (RPS) mechanism—will be incentive compatible, mean-
ing it will prevent such distortions.1 But that mechanism may generate new types of
distortions when subjects integrate their decisions into one large lottery. This possi-
bility was noted by Holt (1986), Karni and Safra (1987), and Segal (1988), and such
distortions have been observed by Cox et al. (2014a), Freeman et al. (2016), Harrison
and Swarthout (2014), and Brown and Healy (2014).

Though aware of these concerns, experimental economists have not yet settled on
an accepted convention for paying subjects. Perhaps this is because different settings
call for different mechanisms. Or because the appropriate mechanism depends on the
theory being tested. But we find that most authors do not attempt to justify their chosen
payment mechanism in their manuscript. If the mechanism choice is deliberate, its
rationale is not frequently given.

To provide some evidence for these claims, we surveyed all experimental papers pub-
lished in 2011 in the ‘top five’ economics journals and in the field journal Experimental
Economics. We counted the payment mechanisms used (Table I) and the extent to which
the authors discussed the incentive properties of their chosen mechanism (Table II).2 Of
the 32 experiments with multiple tasks, 56% pay for every decision, 25% use the RPS
mechanism, and 13% pay for multiple randomly-selected decisions. The frequencies dif-
fer somewhat between individual-choice experiments and game experiments, but clearly
no convention exists in either setting. By our count, 29% of papers with multiple tasks do
not even mention which mechanism was used—one must look to the experiment instruc-
tions or an online appendix to see how subjects were paid. An additional 48% describe
the payment mechanism, but do not justify its appropriateness in the given experiment.

1The possibility of distortions was recognized by Wold (1952) and Savage (1954, the ‘hot man’ example on
p.29). The RPS mechanism was suggested by Allais (1953), and by W. Allen Wallis in a person communi-
cation with Savage. Early applications include Becker et al. (1964, the ‘BDM’ mechanism), Yaari (1965),
and Grether and Plott (1979). It is most often called the random lottery incentive mechanism (Safra et al.,
1990); we adopted ‘RPS’ from Beattie and Loomes (1997) (and, indirectly, from Holt, 1986) because our
framework does not require randomness to be represented by objective lotteries.
2This survey is meant to be representative, not exhaustive. It includes both lab and field experiments.
Most field studies only have subjects engage in one task. If subjects play a game repeatedly against
fixed partners and are paid for every period, we count it as ‘Only 1 Task’. ‘Some Random’ refers to
experiments that randomly pay 2, 3, 4, or 5 decisions, with some of the paid decisions possibly being non-
random. Among ‘Some Random’ and ‘All Paid’ experiments, 18 showed subjects outcomes every period,
while the other six only showed outcomes at the end; all nine of the ‘Top 5’ experiments showed outcomes
every period. The rank-based payment mechanism gives payments to players based on their relative
hypothetical earnings summed across all decisions. The one unpaid experiment used children as subjects.
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Only 1 None One Some All Rank-
Payment Mechanism: Task Paid Random Random Paid Based Total

Individual Choice Experiments
‘ Top Five ’ Journals 7 0 3 1 3 0 14

Experimental Economics 3 0 1 0 2 0 6
Muti-Person (Game) Experiments

‘ Top Five ’ Journals 9 0 1 0 8 0 18
Experimental Economics 8 1 3 3 5 1 21

Totals 27 1 8 4 18 1 59

TABLE I. Payment mechanisms used among all (lab and field) experimental papers
published in the ‘top five’ journals and Experimental Economics in 2011. The ‘top five’
journals are Journal of Political Economy, Quarterly Journal of Economics, Economet-
rica, American Economic Review, and The Review of Economic Studies.

Mechanism Discussion of Incentives Clearly
Not in Paper None Brief Extensive I.C. Total

Individual Choice Experiments
‘ Top Five ’ Journals 1 6 0 1 0 7

Experimental Economics 0 2 0 1 0 3
Muti-Person (Game) Experiments

‘ Top Five ’ Journals 6 9 0 0 0 9
Experimental Economics 2 7 4 1 0 12

Totals 9 24 4 3 0 31

TABLE II. Among 2011 papers with an incentivized multiple-task experiment, the
number that do not contain a description of the payment mechanism used, the extent to
which the authors discuss the incentive properties of their mechanism, and whether or
not the incentive compatibility of the payment mechanism is clear from the author’s
assumptions.

Only 23% of authors explicitly justify their mechanism within the manuscript, and most
do so only briefly.

Our goal in this paper is to develop a formal framework for the analysis of incentives
in experiments, and then apply it to understand when the commonly-used payment
mechanisms mentioned above are incentive compatible. Perhaps the most important
insight from our analysis is that one must carefully distinguish between the set of choice
objects X and the set of payment objects P(X ) in an experiment. For example, if subjects
choose among simple lotteries and the RPS mechanism is used, then X is a set of simple
lotteries and P(X ) is a set of compound lotteries. Subjects announce choices from X , but
actually receive payments in P(X ). Thus, incentive compatibility depends crucially on
their preferences over P(X ). But authors design experiments to learn about preferences
over X , and so their theories and hypotheses rarely extend to P(X ). When they don’t,
we cannot evaluate whether or not the experiment is incentive compatible under the
author’s assumptions.
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Returning to our survey of 2011 papers, we found that in no paper did the theory or
hypotheses extend (trivially) to P(X ). Thus, in no case was incentive compatibility of
the experiment (or lack thereof) clear from the author’s assumptions.

The framework we develop is very general. First, no structure is assumed on X . It
could include consumption goods, objective lotteries, ambiguous acts, announcements of
preferences, or strategies in a game. Second, we place no restrictions on how subjects
evaluate gambles; our framework does not require expected utility, or even that gambles
be assigned subjective probabilities (Machina and Schmeidler, 1992).

Our first result is that incentive compatibility is never free: No mechanism is incen-
tive compatible without assumptions on preferences over P(X ). In other words, for a
given payment mechanism, if every preference over P(X ) is admissible then the mech-
anism is not incentive compatible. Second, the RPS mechanism is incentive compatible
if preferences over P(X ) satisfy a (statewise) monotonicity condition. This simply re-
quires that if, in every state of the world, gamble A pays something more preferred than
gamble B, then the decision maker chooses A over B. If this is our only assumption then
the RPS mechanism is, in practice, the only incentive compatible mechanism. Third,
we show that the pay-all mechanism is incentive compatible if a ‘no complementarities
at the top’ (NCaT) condition on preferences over P(X ) holds. NCaT requires that if we
take a person’s favorite object from several different menus and combine them into a
bundle, that bundle must be their most-preferred of all possible bundles. If we assume
NCaT and nothing else, then the pay-all mechanism is, in practice, the only incentive
compatible mechanism.

Given these results, an experimenter choosing a payment mechanism needs only to
decide whether these assumptions are likely to be valid in her setting. This decision
could be based on previous experiments that test these assumptions in a similar set-
ting. We discuss previous experimental evidence in Section V. If these sources are not
sufficiently convincing, the experimenter may wish to collect new evidence on the ques-
tion; we describe a procedure for doing so in Section V.

At first glance, our results appear to contradict some of the previous literature. In
particular, several authors have provided examples of reasonable-looking preferences
(or classes of preferences) for which the RPS mechanism is not incentive compatible.
Examples include Holt (1986), Karni and Safra (1987), Oechssler and Roomets (2014),
Baillon et al. (2014), and others. Given our results, it must be that these reasonable-
looking preferences in fact violate monotonicity. Indeed, they do: Each of them assumes
some form of a ‘reduction’ axiom (for example, reduction of compound lotteries), and it is
well-known that monotonicity and reduction together imply linear indifference curves
over X . If choices are over lotteries (Holt, 1986; Karni and Safra, 1987), this means the
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RPS mechanism requires the independence axiom on X when reduction is assumed. If
choices are over ambiguous acts (Oechssler and Roomets, 2014; Baillon et al., 2014), it
requires ambiguity neutrality when reduction is assumed. But without reduction, no
structure on preferences over X is required for incentive compatibility. Thus, experi-
menters choosing this mechanism should carefully consider whether or not reduction
may be present in their setting. We discuss this in detail in Section III.

Although our theory is framed as decision-theoretic, we describe in an appendix how
the structure applies equivalently to game-theoretic experiments as well. If the subject
plays multiple games against different opponents and receives no feedback between pe-
riods, then the RPS mechanism can be used just as in decision-theoretic settings. If,
however, the subject plays multiple periods against the same opponent, then they are
engaged in a repeated game. In that case it is inappropriate to attempt to view each
period as independent, and therefore inappropriate to try to incentivize each period’s
choice as independent. Instead, the researcher should view the entire repeated game as
one large decision problem.3

Feedback between decisions can also cause issues for incentive compatibility when
the subject’s choices can alter the feedback they receive. In individual decision problems
this gives rise to multi-armed bandit problems and generates incentives for experimen-
tation. In games, subjects might test certain strategies against early opponents to see
what would be profitable against later opponents. These settings should also be ana-
lyzed as one large decision problem, making the RPS inappropriate. There is, however,
a way for the experimenter to circumvent the experimentation incentive: By giving the
subject feedback on what would have happened for every choice the subject could have
made, the subject no longer can affect what they learn through their choices. In ban-
dit problems, this means reporting what would have happened if each arm had been
pulled. In games, the experimenter would use the ‘strategy method’ to elicit how the
opponent would have reacted to each possible action of the subject, and feed back all of
this information to the subject after each decision. With the experimentation incentive
eliminated, it becomes appropriate to view each decision problem as independent and to
consider using the RPS mechanism. In the appendix we show that indeed it is incentive
compatible under an appropriate definition of monotonicity, as long as experimentation
incentives are eliminated.

There are many related discussions of experimental incentives that are complemen-
tary to our analysis, because they focus on incentives within a single decision problem
but not across problems. In one of the earliest papers on this topic, Smith (1976) de-
scribes how to use monetary payments to induce a desired utility function over fictitious
3If the subject plays multiple repeated games, then the RPS mechanism would call for one repeated game
to be chosen at random for payment.
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goods in a single experimental market. Similarly, Smith and Walker (1993), Camerer
and Hogarth (1999), and others study the impact of increasing monetary stakes within a
single decision. In a single repeated game, Charness and Genicot (2009), Fischer (2011),
Chandrasekhar and Xandri (2011), Frechette et al. (2011), and Sherstyuk et al. (2011)
all recognize that paying for only the final period induces the correct incentives regard-
less of subjects’ risk preferences. All of these studies focus on proper incentives within a
single decision problem, while our work shows how to provide incentives across multiple
decision problems.

In terms of our theoretical contribution, we employ a standard mechanism design
approach that allows for random mechanisms, so our paper is closely related to work
on random mechanisms by Gibbard (1977), Barbera (1977), and Barbera et al. (1998).
These authors require only weak incentive compatibility and study mechanisms where
the entire preference relation is announced. Our innovations are focusing on strict in-
centive compatibility, and eliciting only the most-preferred items from an exogenous list
of menus (or, ‘decision problems’), rather than an entire preference relation.4

II. THE GENERAL FRAMEWORK

The set of possible choice objects is given by X . No structure on X is assumed; examples
of possible x ∈ X include consumption goods, lotteries, ambiguous urns, strategies in
a game, behavioral strategies in an extensive-form game, labor decisions in the field,
donations to charity, and streams of future consumption.

The subject has a preference relation º over X . We make no assumptions on º other
than completeness and transitivity. Preferences need not be ‘selfish’, and need not con-
form to any decision-theoretic model like expected utility. The º-dominant elements of
any set E ⊆ X are denoted by

domº(E)= {x ∈ E : (∀y ∈ E) x º y}.

Where applicable, strict preference (the asymmetric part of º) is denoted by Â.
The researcher has an exogenously-given list of k decision problems, denoted D =

(D1, . . . ,Dk), where each decision problem D i ⊆ X is a finite set (or, menu) of choice
objects from which the subject is asked to choose. We avoid trivial decision problems by
assuming |D i| > 1 for all i.5

4We also resurrect a foundational issue in revealed preference theory, dating back to Wold (1952): How
can one infer an entire preference relation, if doing so requires observing multiple choices? Does revealed
preference theory have empirical content? The answer is yes, but only if choices are observed under an
incentive compatible payment mechanism.
5It is possible that such decision problems do affect preferences through a framing effect, discussed below.
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The researcher does not know the subject’s preference relation º, but wants to use the
decision problems to observe some properties of º. For example, a researcher interested
in correlating risk preferences with time discounting may have D1 be a set of lotteries,
and D2 be a set of intertemporal choices.

Since choices are restricted to D, the choice data from the experiment can be thought
of as an announced choice (or message) vector m = (m1, . . . ,mk), with mi ∈ D i for each i.
The space of all possible messages is M =×iD i. For each i ∈ {1, . . . ,k}, let

µi(º)= domº(D i)

be the set of º-dominant elements of D i, and define µ(º) = ×iµi(º). We refer to each
m ∈µ(º) as a truthful message for º.

We now describe P(X ), the space of possible payments a subject can receive. If only
one decision problem D1 is given, and if the subject is paid their chosen item m1 ∈
D1, then the set of possible payments is simply D1 ⊆ X . When multiple decisions are
given, it is possible that a subject is paid a bundle of items from X . Following general
equilibrium notation, we write bundles as vectors that list the quantity of each good
received. We assume goods are not divisible, so all quantities must be non-negative
integers. Formally, let B(X )= (Z+)X be the space of non-negative integer-valued vectors
of length |X |, with typical element b. Thus, bx ∈ {0,1,2, . . .} denotes the number of units
of x contained in bundle b. For any x ∈ X , we let the variable x also denote the singleton
bundle containing one unit of x and no units of any other good.

A randomizing device may also be used to select bundles from B(X ) for payment. Let
Ω be the state space containing all possible realizations ω of the randomizing device.
For example, if the device is a six-sided die, then Ω = {1, . . . ,6}. We adopt the subjec-
tive uncertainty framework of Savage (1954), modeling a random payment as an act—a
mapping from Ω into B(X )—rather than an objective lottery with known probabilities.
The space of all acts is B(X )Ω, so that each act assigns a bundle in B(X ) to each possible
realization in Ω. We assume throughout that Ω is finite.

A constant act is one that pays the same bundle in every state ( f (ω)= b for all ω ∈Ω).
Constant acts represent non-random payments. We abuse notation, letting b represent
both the bundle itself, and the constant act that pays b in every state. Since x can rep-
resent a singleton bundle, it can also represent the constant act that pays that singleton
bundle in every state. No confusion should result.

In an experiment, payments depend on the subject’s announced choices. Formally, a
(payment) mechanism φ takes the announced choice m ∈ M and awards the subject with
an act in B(X )Ω. We therefore have P(X )= B(X )Ω, and φ : M → P(X ). Let φ(m)(ω) iden-
tify the bundle in B(X ) that is paid if the subject announces choice vector m and state ω
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obtains. We refer to the pair (D,φ) as an experiment. Think of D as given exogenously
by the research question at hand, and φ as being chosen by the experimenter. Since we
view D as fixed, we often refer to experiments and mechanisms interchangeably.

The primitive preference º is defined over elements of X , not P(X ). To study incentive
compatibility, we must also assume that the subject has a complete and transitive pref-
erence º∗ on P(X ) which ‘extends’ º in a sense to be made precise. To avoid confusion,
we henceforth refrain from calling º∗ a preference relation; instead, we refer to it as an
extension of º. The asymmetric relation Â∗ denotes the asymmetric part of º∗.

The researcher has in mind a set of admissible extensions for each preference º; this
admissible set represents the extensions of º that the researcher believes are possible.
This belief would typically come from empirical evidence, but sometimes it may simply
be assumed without data. We only require that all admissible extensions º∗ agree with
º on the space of constant singleton acts: if f (ω)= x and g(ω)= y for every ω, then f º∗ g
if and only if x º y. We call this consistency of º∗.

A successful experiment is one in which the payment mechanism always induces the
subject to announce their choices truthfully, regardless of º and º∗. We refer to this as
incentive compatibility.6

Definition 1 (Incentive Compatibility). A mechanism φ is incentive compatible if, for
every preference º, every admissible extension º∗, every truthful message m∗ ∈ µ(º),
and every message m ∈ M, we have that φ(m∗) º∗ φ(m), with φ(m∗) Â∗ φ(m) whenever
m 6∈µ(º).

In other words, incentive compatible experiments induce the subject to announce
truthfully a favorite item in every decision problem.

Preferences (and admissible extensions) may depend on the experiment. Incentive
compatibility only requires that preferences in the current experiment be truthfully
elicited. It does not require that preferences be stable across experiments. For exam-
ple, suppose D1 = {exercise,rest}, D2 = {salad,fish}, and D′

2 = {cheeseburger,pizza}. We
might find that announced choices in D1 differ between (D1,D2) and (D1,D′

2), even when
φ(m)(ω) = m1 for every ω. The presence of such framing effects is not an indictment of
the experiment’s incentives, but rather a suggestion that preferences over D1 are highly
sensitive to the context of the decision environment and, therefore, that observations
of this decision may be difficult to generalize. We take D as fixed and do not analyze
framing effects formally.

6Starmer and Sugden (1991) and Bardsley et al. (2010) refer to incentive compatible experiments as
unbiased. Cox et al. (2014b) say they satisfy the isolation hypothesis, while Starmer and Sugden (1991)
and Cubitt et al. (1998) say they avoid contamination.
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To visualize an application of this framework, suppose the subject is asked to play k
games, each against a different opponent.7 In each game i ∈ {1, . . . ,k} the subject (de-
noted by index h) chooses her strategy si

h from the strategy space S i
h and her opponent

(indexed by −h) chooses a strategy si
−h from the strategy space S i

−h. An outcome func-
tion g maps each strategy profile in S i

h ×S i
−h to a pair of dollar payments in R2.8 Thus,

each strategy si
h ∈ S i

h represents an act mapping each ‘state’ si
−h ∈ S i

−h into the payment
vector g(si

h, si
−h) ∈ R2. These strategies in S i

h are the choice objects over which the sub-
ject chooses (meaning, S i

h = D i ⊆ X ), so º represents the subject’s preferences over her
own strategy space. In our subjective framework, º encapsulates not just a ranking
over dollar payments, but also the subject’s ‘beliefs’ over S i

−h.9 The subject’s message m
is the vector of strategies (s1

h, . . . , sk
h) across the k games that she actually selects, given

the payment mechanism. If she is paid for all games, then she receives as payment the
bundle of all k of these strategies. This bundle of strategies is an object in B(X ). Once
all si

−h are realized and revealed to the subject, this bundle of strategies maps into a
realized final vector of dollar payments given by

∑k
i=1 g(si

h, si
−h).

Experiments on individual decision-making under uncertainty have the exact same
structure, except we would view S i

−h as being chosen by nature rather than by an oppo-
nent. In experiments with no uncertainty X is simply a set of choice objects. Obviously,
there are many possibilities for the structure of the choice objects. But our analysis does
not depend on this structure; we simply assume that the subject has a preference over
X and an extension of those preferences to P(X ).

To begin our analysis, we consider the case where the researcher is not willing to
make any assumptions about which extensions on P(X ) are admissible.

Proposition 0. If every extension is admissible, then there exists an incentive com-
patible payment mechanism if and only if k = 1 (the experiment has only one decision
problem).

Proofs appear in the appendix. Proposition 0 verifies that, in experiments with mul-
tiple decisions, incentive compatibility is never free: the experimenter must make some
assumptions about subjects’ possible extensions. Since most authors do not make ex-
plicit assumptions on P(X ), we often lack sufficient information to judge whether or not
their experiment is incentive compatible within their framework (see Table II).
7Or against the same opponent but with no feedback between games. If the subject plays the same
opponent in every game and receives feedback between games then the k games should be thought of
as one large multi-stage game, with subjects making only one choice (their multi-stage strategy) in the
experiment.
8Technically, subjects play game forms (which assign physical outcomes to strategy profiles), not games.
9We do not assume those ‘beliefs’ are probabilistic, in the sense of Machina and Schmeidler (1992), or that
the subject cares only about her own payment. Recall also that º can depend on which games the subject
faces via framing effects.
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III. MONOTONICITY & THE RPS MECHANISM

One natural restriction on extensions is that they respect basic dominance relations.
Given an underlying preference º on X , act f is said to dominate act g (written f w g)
if for each ω ∈Ω, f (ω) ∈ X and g(ω) ∈ X (the acts pay only singleton bundles) and f (ω)º
g(ω). If f w g and f (ω)Â g(ω) for some ω then f strictly dominates g (written as f A g).
An extension that respects the dominance relation is said to be (statewise) monotonic.10

Definition 2 ((Statewise) Monotonicity). The extension º∗ is a monotonic extension
of º if f w g implies f º∗ g, and f A g implies f Â∗ g.

Monotonicity places no restriction on how non-singleton bundles are evaluated. Wealth
effects, portfolio effects, and hedging are all possible under monotonicity. Thus, it can-
not guarantee incentive compatibility of any mechanism that pays in bundles. Instead,
monotonicity is useful for ensuring incentive compatibility in random mechanisms that
select (non-bundle) elements from X . The RPS mechanism is one such mechanism.

Definition 3 (Random Problem Selection Mechanisms). A payment mechanism φ

is a random problem selection (RPS) mechanism if there is a fixed partition {Ω1, . . . ,Ωk}
of Ω with each Ωi non-empty such that, for each i ∈ {1, . . . ,k} and m ∈ M,

ω ∈Ωi implies φ(m)(ω)= mi.

In other words, if event Ωi obtains then the subject is paid what they chose in the
ith decision problem. The only difference between various RPS mechanisms is in the
randomizing devices used, so we often refer to them collectively as the RPS mechanism.

It is well known that the RPS mechanism is incentive compatible when all admissible
extensions satisfy the expected utility axioms. What is not clearly stated in the existing
literature is whether the RPS mechanism is incentive compatible under more general
preferences. With our framework, it is easy to see that deviating from truth-telling to
a less-preferred option in some D i results in an act that gives a less-preferred outcome
in event Ωi, and has no affect in any other event. Thus, the deviation is dominated by
truth-telling. Monotonicity then guarantees that such a deviation is never preferred.
This simple argument proves the following result.11

Proposition 1. If all admissible extensions satisfy monotonicity, then the RPS payment
mechanism is incentive compatible.

10Our definition of monotonicity implicitly assumes that all states ω ∈Ω are non-null; see Savage (1954,
p.24). Otherwise it is equivalent to Savage’s P3.
11In our working paper, we provide a weaker condition—called φ-monotonicity—that is both necessary
and sufficient for incentive compatibility of an RPS mechanism φ. It is essentially monotonicity restricted
to the range of φ.
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When the decision problems are games and the RPS mechanism is used, monotonicity
implies that the subject will select their favorite strategy in each game. If, for example,
all subjects in the experiment have a preference in each game that maximizes their
expected dollar payoff given the actual play of others, then their announced strategies
in each game will be a Nash equilibrium.12 Of course we do not assume this model of
play; subjects’ preferences over their own strategies can be arbitrary. Monotonicity only
restricts how those within-game preferences map into across-game choices, exactly as it
does with individual-choice experiments.

Notice that Proposition 1 does not require an objective randomizing device. It holds
even if the experimenter uses a randomizing device for the RPS mechanism that subjects
perceive as ambiguous. Thus, experimenters need not spend time or added complexity
convincing subjects that the RPS randomization device is truly objective.13

A Characterization Under Monotonicity

To obtain a full characterization of incentive compatible mechanisms under the mono-
tonicity assumption, we assume in this section that only strict preferences on X are
admissible. Thus, |µi(º)| = 1 for each i. Furthermore, there can be messages in some
experiments that cannot be truthful for any strict preference relation. For example, if
D1 = {x, y}, D2 = {y, z}, and D3 = {z, x}, then m = (x, y, z) cannot be rationalized by any
strict preference relation. We say that this m is not rationalizable. Let

MR = {
m ∈ M : (∃Â) m =µ(Â)

}
be the set of rationalizable messages, and MNR = M\MR be the set of non-rationalizable
messages.

To understand how incentive compatibility can extend beyond the RPS mechanism,
consider again the decision problems D1 = {x, y}, D2 = {y, z}, and D3 = {z, x}. From any
rationalizable announcement, we can always infer the subject’s most-preferred element
from the set E = {x, y, z}. For example, m = (x, y, x) reveals that domÂ(E) = {x}. Now
consider a mechanism with four states. In states ω1, ω2, and ω3 the subject gets paid
m1, m2, and m3, respectively, as in the RPS mechanism. In state ω4 the subject is
paid domÂ(E), where Â is inferred from m. Clearly, this mechanism is also incentive
compatible under monotonicity.

12If the games have multiple Nash equilibria, the RPS randomizing device could facilitate coordination.
But, under monotonicity, play in each game would still be a Nash equilibrium of that game; the random-
izing device could not be used to expand the set of equilibria (as in correlated equilibrium) because it is
publicly observed.
13If the choice objects are meant to be viewed as objective lotteries, then their randomizing device does
need to be perceived as objective. The one used for the RPS mechanism does not.
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To construct mechanisms like this, we must first understand when and how we can
infer Â from m ∈ MR . First, if x, y ∈ D i for some i and mi = x, then we say that x
is directly revealed preferred to y. Let R(m) be the transitive closure of this directly
revealed preferred binary relation. We say that x′ is revealed preferred to y′ under
choices m if x′ R(m) y′.14 Note that R(m) may not be complete.

Let
domm(E)= {x ∈ E : (∀y ∈ E) x R(m) y}

be the set of R(m)-dominant elements of E. If m does not reveal the most-preferred
element of E, then domm(E) = ∅. Otherwise, |domm(E)| = 1. If m is truthful, then
domm(E)= domÂ(E) whenever it is non-empty.

Definition 4 (Surely Identified Sets). A set E ⊆ X is surely identified (SI) if, for every
m ∈ MR , domm(E) 6= ∅. In other words, E is SI if, for any Â, the message m = µ(Â)
identifies the most-preferred element of E, so that domm(E)= domÂ(E).

Let SI(D) be the collection of sets surely identified from the given list of decision
problems D. Obviously, each D i is in SI(D), but there may be other sets in SI(D). For in-
stance, if D1 = {x, y}, D2 = {y, z}, and D3 = {z, x}, then SI(D)= {D1,D2,D3, {x}, {y}, {z}, {x, y, z}}.15

We wish to discuss mechanisms that choose sets in SI(D) for payment; to this end,
define the payment set of a mechanism φ at each state ω to be the set of bundles the
subject can get in state ω by varying her message. Formally, for each ω, let

P(X |φ,ω)= {
φ(m)(ω)

}
m∈M ⊆ B(X ),

and define the collection of all payment sets by

P φ = {
P(X |φ,ω)

}
ω∈Ω .

In an RPS mechanism, P φ = {D1, . . . ,Dk}. The following definition generalizes RPS
mechanisms to allow other surely identified sets to be used as payment sets.

Definition 5 (Random Set Selection Mechanisms). A mechanism φ is a random set
selection (RSS) mechanism if

(1) P φ ⊆ SI(D), and
(2) if m ∈ MR then for each ω ∈Ω, φ(m)(ω)= domm(P(X |φ,ω))

The first condition requires that every payment set be surely identified. It also rules
out any mechanism that pays in non-singleton bundles, since all surely identified sets

14Formally, x′ R(m) y′ if there is a chain x′ = z1, . . . , zl = y′ such that zi is directly revealed preferred to
zi+1 for every i = 1, . . . , l−1.
15Every singleton set is trivially SI. SI sets have a particularly simple characterization, which is given in
our working paper.
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are in X . Condition (2) requires that most-preferred elements are chosen from each pay-
ment set whenever messages are rationalizable. No restrictions are placed on the acts
chosen at non-rationalizable messages. Our main theorem shows that a particular sub-
class of RSS mechanisms (which includes the RPS mechanism) fully characterizes the
set of incentive compatible mechanisms when the experimenter assumes monotonicity
(and nothing else).

Theorem 1. Suppose preferences on X are strict and all extensions satisfying mono-
tonicity are admissible. A mechanism φ is incentive compatible if and only if it is a
random set selection (RSS) mechanism in which

(1) D i ∈ SI(P φ) for each i ∈ {1, . . . ,k}, and
(2) φ(MR)∩φ(MNR)=∅.

Condition (2) requires that non-rationalizable messages pay something different than
any rationalizable message, so that those payments will be strictly dominated by the
truthful (rationalizable) payment. Condition (1) ensures that every decision problem is
‘consequential’: even if D i is not a payment set, condition (1) ensures that a deviation in
D i will be reflected in the resulting payment in some state, which by the nature of RSS
mechanisms implies that the resulting act is dominated.

The theorem assumes all monotonic extensions are admissible. In our working paper,
we show the theorem is true under a variety of other ‘rich’ sets of extensions, such
as all expected utility extensions, all probabilistically sophisticated extensions, and all
multiple-priors extensions.16

In most applications, the RPS mechanism is the only one satisfying the conditions
of Theorem 1. The non-RPS mechanisms require the existence of SI sets outside of
{D1, . . . ,Dk}, such as E = {x, y, z} in the above example. But in most experiments the set
of decision problems is not rich enough for such SI sets to exist, so the RPS mechanism
is the unique incentive compatible mechanism.17

We do not have a complete characterization of incentive compatible mechanisms when
weak preferences are admissible. In that case, the RPS mechanism is still incentive com-
patible, and we know from examples that the set of incentive compatible mechanisms

16The theorem can also apply when º is restricted. The well-known Becker et al. (1964) (BDM)
mechanism for eliciting the subjective value of an object (and its counterpart for eliciting probabil-
ities, as in Grether, 1981 and Karni, 2009) is an example with such a restriction. There, X =
{(0,0), (1,1), (1,2), . . . , (1, N)}, where (1,n) means “receiving the object and paying $n” and (0,0) means “not
receiving the object and paying $0”. Preferences on X in this environment are assumed to satisfy single-
crossing, so that if (1,n) Â (0,0), then for all n′ < n, (1,n′) Â (0,0). Given Â, the value of the object is
n∗ = max{n : (1,n) Â (0,0)}. Under single crossing, announcing n∗ reveals the entire preference over X .
Thus, the BDM is simply an RPS mechanism in which Dn = {(0,0), (1,n)} for each n ∈ {1, . . . , N} and an
announcement of n∗ is interpreted as mn = (1,n) if n ≤ n∗ and mn = (0,0) if n > n∗.
17In our working paper we formalize conditions on D that guarantee the RPS mechanism is unique.
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must be strictly smaller. But the non-RPS mechanisms still rely on surely-identified
sets, so again we conclude that the RPS mechanism is the only incentive compatible
mechanism in most applications.

Objective Lotteries: Monotonicity, Expected Utility, and Ambiguity Aversion

In this section we study the RPS mechanism in settings where the subject has well-
defined probabilities over the draw of which decision will be paid. In such a setting,
Holt (1986) provides an example of an experiment and a non-expected utility prefer-
ence for which the RPS mechanism is not incentive compatible. Similarly, Karni and
Safra (1987) assume any rank-dependent utility representation for º is possible and
then prove that incentive compatibility for a certain class of experiments implies that º
must be consistent with expected utility. The apparent conclusion that expected utility
of º is necessary for the RPS mechanism to be incentive compatible seems at odds with
our Proposition 1, which requires only monotonicity of º∗ and says nothing of º.

The reconciliation of this apparent paradox is that Holt (1986) and Karni and Safra
(1987) assume that subjects reduce compound lotteries to simple lotteries. This reduc-
tion axiom is strong; under reduction, any subject who violates expected utility prefer-
ences must also violate monotonicity. For such a subject, one can always find an experi-
ment for which the RPS mechanism is not incentive compatible.

A similar apparent contradiction appears in the context of ambiguity aversion. Oechssler
and Roomets (2014), Baillon et al. (2014), Kuzmics (2015), and Bade (2015) all point out
that ambiguity averse subjects can use the randomness of the RPS mechanism as a
hedge against ambiguity, causing a potential violation of incentive compatibility. For
example, suppose a subject is asked twice whether she wants to bet on the home team
or the away team in an upcoming football game, and a coin flip will determine whether
her first or second answer is played out. In a single bet she would take the home team.
But suppose in the duplicated bet she chooses the home team once and the away team
once. Regardless of the outcome of the game, she would guarantee herself a coin flip
between winning and losing the bet, which entails no ambiguity. If she is sufficiently
ambiguity averse, she may prefer this diversified strategy over truthfully betting on the
home team twice.

This example suggests that ambiguity neutral preferences are necessary for the RPS
mechanism to be incentive compatible. But the hedging argument depends crucially on
the subject reversing the order of conditioning. Our subject thought about the football
game as being resolved ‘before’ the coin. If she conditions on the coin first, she faces
ambiguity regardless of how the coin lands, so the mechanism provides no hedging op-
portunity. But the commonly-applied ‘order reversal axiom’ (Anscombe and Aumann,
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1963) says that she must be indifferent between the two orders of conditioning, mean-
ing she must recognize the hedging opportunity. Indeed, the order reversal axiom works
exactly like the reduction of compound lotteries axiom above: if we assume order rever-
sal, then any subject who violates ambiguity neutrality must also violate monotonicity.
Again, one can then find an experiment for which the RPS mechanism is not incentive
compatible for this subject.

In this section we present a simple framework that formalizes and unifies these two
observations. But we must emphasize that these insights are not our own. The main in-
sight dates back at least to Samuelson (1952), but follows most clearly from the original
work of Anscombe and Aumann (1963).18 The contrapositive of their theorem is that, if
a subject does not have personal probabilities (thus, is not ambiguity neutral) but does
satisfy order reversal, then they must violate monotonicity. This is exactly the point we
emphasize here. Anscombe and Aumann (1963) emphasize that order reversal is “akin
in spirit” to the reduction of compound lotteries (Luce and Raiffa, 1957); we simply for-
malize that kinship by presenting both as a single axiom in a very general setup. These
insights are also clearly expressed by Segal (1990) and Seo (2009), and emphasized more
recently by Baillon et al. (2014) and Kuzmics (2015).

Formally, assume that º∗ satisfies probabilistic sophistication (Machina and Schmei-
dler, 1992), so that º∗ identifies well-defined probability ‘beliefs’ p over Ω, which are
‘rich’ in the sense that for any α ∈ [0,1], there is E ⊆Ω for which p(E)=α.19 In general,
let (p1, x1; . . . ; pl , xl) denote the lottery that selects each xi with probability pi.

Now suppose the set X is convex.20 Let
∑

i pixi denote the mixture (or, convex combi-
nation) of x1 through xl , with weights p1 through pl , respectively. To be clear,

∑
i pixi is

an element of X , while (p1, x1; . . . ; pl , xl) is a lottery over X . The reduction of compound
lotteries and Anscombe & Aumann’s ‘order reversal’ axiom both equate preferences over
mixtures with preferences over lotteries. We provide here a unified version of these
assumptions, which we simply call reduction.

Definition 6 (Reduction). Assume X is convex and extension º∗ of º satisfies proba-
bilistic sophistication. Then º∗ satisfies reduction if, for all (p1, x1; . . . ; pl , xl) and
(p′

1, x′1; . . . ; p′
n, x′n),

(p1, x1; . . . ; pl , xl)º∗ (p′
1, x′1; . . . ; p′

n, x′n) ⇐⇒
l∑

i=1
pixi º

n∑
i=1

p′
ix

′
i.

18Samuelson used the term compound independence for monotonicity. He noted that a weakened version
of monotonicity suffices for the result. The mathematical fact that additivity across states comes from
allowing the order to commute is also seen in Harsanyi (1955), though in a slightly different context.
19This assumption is not consistent with finite Ω, but is made here to allow for the possibility of a general
objective randomization device.
20More generally, the analysis applies to any mixture space, as in Herstein and Milnor (1953).



16 AZRIELI, CHAMBERS, AND HEALY

Next, we define the independence axiom of Von Neumann and Morgenstern (1944),
but interpreted in the current context in which x, y, and z are not necessarily lotteries.

Definition 7 (Independence). Assume X is convex. Then º satisfies independence if,
for all x, y, z ∈ X and all α ∈ (0,1],

x º y ⇐⇒ αx+ (1−α)z ºαy+ (1−α)z.

As discussed above, the strength of assuming reduction in the presence of monotonic-
ity is well-known, and gives the following result.

Fact 1. Assume X is convex. If º∗ satisfies monotonicity and reduction, then º satisfies
independence.21

Consider the settings of Holt (1986) and Karni and Safra (1987), in which X is itself
a convex space of objective lotteries. Preferences º are defined over ‘one-stage’ lotter-
ies, while º∗ evaluates ‘two-stage’ lotteries. The mixture

∑
i pixi represents a one-stage

lottery. Reduction now refers to the familiar reduction of compound lotteries. Indepen-
dence refers to expected utility preferences on X . With this framework, the contraposi-
tive of Fact 1 clearly summarizes the findings of Holt (1986) and Karni and Safra (1987):

Fact 1.1. Suppose X is a convex set of objective lotteries. If º violates the independence
axiom and º∗ satisfies reduction (of compound lotteries), then monotonicity of º∗ is
violated. Thus, there exist experiments for which the RPS mechanism is not incentive
compatible.

In other words, if reduction is assumed, one should be wary of testing models of non-
expected utility preferences using the RPS mechanism.

Now we consider the argument that the RPS mechanism provides a hedge against
ambiguity. Formally, suppose X is a set of acts mapping some finite state space Θ into
a convex set of outcomes Y (e.g., money payments). An extension º∗ evaluates lotteries
over acts, as in Anscombe and Aumann (1963). Mixtures of acts are performed state-
wise, meaning

∑
i pixi is an act in X that pays

∑
i pixi(θ) ∈Y in state θ. We assume X is

convex, meaning it is closed under the mixing operation.
In this setting, reduction now is equivalent to Anscombe & Aumann’s ‘order reversal’

axiom. And independence is equivalent to ambiguity neutrality, as defined by Schmei-
dler (1989). Thus, reduction and monotonicity jointly imply ambiguity neutrality of º.22

21The proof is simple. Suppose α> 0. By monotonicity, (α, x;1−α, z)º∗ (α, y;1−α, z), and so by reduction
αx+ (1−α)z ºαy+ (1−α)z. The converse can just as easily be seen to hold.
22See also Mongin and Pivato (2015). Applying Gorman’s (1968) theorem, they derive a version of the
Anscombe and Aumann (1963) theorem (thus, ambiguity neutrality) using various notions of monotonicity
for two-stage acts.
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This insight organizes the various findings of Oechssler and Roomets (2014), Baillon
et al. (2014), and others:

Fact 1.2. Suppose X is a convex space of acts mapping a finite state space Θ into a
convex set Y . If º is not ambiguity neutral and º∗ satisfies reduction (also known as
‘order reversal’), then monotonicity of º∗ is violated. Thus, there exist experiments for
which the RPS mechanism is not incentive compatible.

Those violations of incentive compatibility will present as hedging opportunities that
appeal to the ambiguity-averse subject.23 In general, one should be wary of testing
theories of ambiguity aversion with the RPS mechanism when reduction is satisfied.

Of course, all of these conclusions vanish if reduction is violated. Without reduction
(or any other similar axiom), properties of º are completely unrelated to the incentive
compatibility of the RPS mechanism.

Feedback, Experimentation Incentives & The Strategy Method

As described, our framework is entirely static. Any uncertainty inherent in the choice
objects is not resolved until after the subject has announced all of her choices. In many
experiments, however, subjects receive feedback about each choice before proceeding to
the next decision. We develop a fully dynamic version of our framework in the appendix,
but describe here informally the main lesson from that exercise: If the feedback subjects
receive can depend on their decisions, then incentive compatibility cannot be assured.
But if the feedback each period is completely independent of the subject’s choices then
the RPS mechanism is incentive compatible under a similarly-defined monotonicity ax-
iom.

To see the issue with choice-contingent feedback, consider a subject playing two modi-
fied ultimatum games, one after another. In each game the subject has a $10 endowment
and must choose either an equal split of $5 for each, or keeping $9 for herself. Label the
equal split choice by E and the unequal split by U . If the subject chooses E then the
recipient has no choice; the equal split is the final payoff. But if the subject chooses U
then the recipient can either accept or reject the split. If it is rejected then both players
earn $0. The subject will see the result of the first game before playing the second.24

23Baillon et al. (2014) argue that the RPS mechanism will be incentive compatible if the state ω is resolved
(but not revealed) before θ, as this may force only one order of conditioning in subjects. Oechssler et al.
(2016) test this idea in the lab and find support for order reversal, though they also find little evidence of
ambiguity aversion in their setting.
24To clarify how this example fits in our framework, think of D1 = {E1,U1} as the game played against the
first opponent, and D2 = {E2,U2} as the game played against the second opponent. Each E t is a constant
act that pays $5 to both players, while each Ut is an act that pays ($9,$1) if the ‘state of the world’ is that
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This design offers a clear experimentation incentive. By choosing U in the first game
the subject can collect data on whether opponents tend to accept or reject unequal splits.
A risk-averse subject who would prefer E if the game were only played once might ra-
tionally prefer to choose U in the first period in an effort to collect this information. Not
only would the RPS mechanism not be incentive compatible, but it would be inappro-
priate to analyze these two games as separate decision problems since the first-period
action can alter the information available in the second period.

The experimenter can restore incentive compatibility of the RPS mechanism by alter-
ing the feedback structure. Consider another version of the same experiment wherein
the experimenter elicits from the recipient what they would choose if the first mover
were to choose U . This is elicited regardless of the first mover’s actual choice.25 The
experimenter then reveals the second mover’s choice to the first mover at the end of the
game, even if the first mover actually chose E. Now the first mover cannot alter what
feedback she receives. Eliciting a player’s actions at every contingency is known as the
strategy method; here it is useful in that it allows that experimenter to provide feed-
back about the entire strategy profile in an extensive-form game, rather than just the
realized path of play. Thus, the feedback cannot be affected by players’ chosen actions,
eliminating experimentation incentives.

In the appendix we show that, once experimentation incentives are eliminated in
this way, the RPS mechanism is incentive compatible under an appropriately redefined
notion of monotonicity. Notice that the presence of feedback itself is not a problem for in-
centive compatibility, though the researcher must acknowledge that the most-preferred
choices revealed in each decision problem might have been different if the feedback the
subject received had differed.

IV. NCAT & THE PAY-ALL MECHANISM

According to Table I, the most-frequently used mechanism in current practice is to pay
subjects their announced choice in every decision. We call this the pay-all mechanism.

Definition 8 (The Pay-All Mechanism). Mechanism φ is the pay-all mechanism if,
for every ω ∈Ω and every m ∈ M, we have φ(m)(ω)=∑

i mi.

We now show how this mechanism may not be incentive compatible. Suppose x1 is a
safe lottery and y1 is a risky lottery. A risk-averse subject will have x1 Â y1. But if x2 is a
cash payment large enough to alter the subject’s risk preferences, then y1 + x2 Â x1 + x2,

the recipient accepts, and ($0,$0) if the recipient rejects. Thus, X = {E1,U1,E2,U2}, which are all acts
whose state space specifies whether the opponent would accept or reject Ut.
25The second mover’s choice is binding once the first mover’s action is revealed; thus, this ‘strategy
method’ is strictly incentive compatible as long as the second mover believes U is not a null event.
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violating incentive compatibility. As another example, if each xi is a safe lottery and
each yi is a risky lottery, then our risk-averse subject will have xi Â yi for each i. But
if the lotteries are independent then the risk associated with

∑
i yi may be quite small,

leading to a possible portfolio effect in which
∑

i yi Â∑
i xi.

We now describe an assumption that rules out these distortions and makes the pay-all
mechanism incentive compatible. Since the mechanism pays in constant acts (there is
no randomness), the required restriction is only on how subjects evaluate fixed bundles,
but not gambles over bundles.

Definition 9 (No Complementarities at the Top). The extension º∗ is an NCaT
extension of º if, for every (x1, . . . , xk) ∈µ(º) and every (y1, . . . , yk) ∈×iD i,∑

i
xi º∗ ∑

i
yi,

with strict preference if there is at least one i for which yi 6∈µi(º).

NCaT guarantees that any bundle of favorite elements is preferred to every other
bundle the subject could receive via the pay-all mechanism. It means there are no com-
plementarities strong enough to overwhelm the subject’s top-ranked alternatives when
bundled together. NCaT does allow for complementarities among lower-ranked alter-
natives and smaller-sized bundles, however, and is therefore weaker than assuming no
complementarities anywhere. It is only complementarities ‘at the top’ that can distort
incentives. We discuss in Section V empirical evidence related to this assumption.

Proposition 2. The pay-all mechanism is incentive compatible if every admissible ex-
tension satisfies NCaT.

The proof is immediate from the definition of incentive compatibility. We now provide
a characterization of incentive compatible mechanisms when preferences are strict and
only NCaT is assumed. We show that any incentive compatible mechanism must agree
with the pay-all mechanism whenever the subject announces a rationalizable message.
As in Theorem 1, we require that non-rationalizable messages map to payments that
cannot be paid under any rationalizable message, ensuring (via NCaT) that truth-telling
is strictly preferred to any non-rationalizable deviation.

Theorem 2. Suppose preferences are strict and all extensions satisfying NCaT are ad-
missible. Let φPA be the pay-all mechanism. A mechanism φ is incentive compatible if
and only if

(1) φ(m)(ω)=φPA(m)(ω) for all m ∈ MR and ω ∈Ω,
(2) φ(M)⊆φPA(M), and
(3) φ(MR)∩φ(MNR)=;.
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Again, most experiments have MNR = ; because ∩iD i = ;. In that case condition
(1) implies condition (2), and condition (3) is vacuous, so the only incentive compatible
mechanism is the pay-all mechanism.

Some authors choose to pay subjects for a randomly-selected subset of decision prob-
lems; we call this the random multiple problem selection (RMPS) mechanism. If we
assume a generalized form of monotonicity that also operates on non-singleton bundles,
and a generalized form of NCaT that restrict preferences over all bundles that might get
paid (not just those of size k), then this mechanism will also be incentive compatible.26

V. EMPIRICAL EVIDENCE

The main contribution of this paper is to identify the assumptions on P(X ) that are
needed for incentive compatibility of the RPS and pay-all mechanisms. But whether
or not those assumptions are valid for a particular experimental design is an empirical
question, which theory alone cannot answer. Thus, we conclude with a discussion of how
one might test these assumptions, and we review past laboratory studies that test them
directly.

Consider an experimenter who plans on running experiment (D,φ) using the RPS
mechanism and wants to test first whether or not monotonicity will hold in that setting.
One approach would be to design a new experiment (D′,φ′) that tests monotonicity di-
rectly. This would require at least two decision problems (one to learn about º, and one
to learn about º∗). But then (D′,φ′) would require its own assumptions for incentive
compatibility, which would need to be tested by another experiment, ad infinitum.

Given this difficulty, we see two ways that one could proceed. The first is to use choice
objects for which we are reasonably confident about º (e.g., more money is preferred to
less). Once º is assumed, properties of º∗ can be then tested using a single decision
problem. The other way to proceed is to study monotonicity ‘between-subjects’—or at
a population level—by randomly assigning some subjects to a single decision problem
about º, and the rest to a single decision problem about º∗. Comparing choice frequen-
cies between groups gives a statistical test of whether monotonicity (or NCaT) holds for
every subject. A problem with this approach is that the two groups will see different
decision problems and thus their underlying preferences may be differentially altered
by framing effects, generating a false rejection of monotonicity. A potential solution is
to give each group the decision problem faced by the other group, but not pay for this
added problem. In this way both groups see the exact same problems, and thus have the

26Most experimenters also pay a show-up fee s in addition to earnings from the experiment. Technically,
this creates a bundle, which may distort incentives. This practice can be justified, however, by assuming
that, for every x, y ∈ X , x º y if and only if x+s º∗ y+s. We call this show-up fee invariance, and we believe
it is a reasonable assumption when s represents a fairly small cash payment.
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exact same framing effects, but one group is paid only for the question about º while the
other is paid only for the question about º∗.27

In fact, any experimenter can run their own between-subjects statistical test of mono-
tonicity or NCaT in their own setting by using the design just described: simply have
one group be paid as in the original experiment (giving data on º∗), while other groups
face the exact same decision problems but are paid only for one fixed D i (giving data
on º). The choice frequencies can then be compared between treatments using a chi-
squared or Fisher test. We describe below several papers that have used this technique.
Unfortunately, the statistical power of these tests can be quite low, so a large number
of subjects may be needed for the test to be sufficiently informative. Since researchers
are unlikely to run this test for every experiment, we proceed with a survey of existing
evidence on monotonicity and NCaT. This may provide some initial guidance in choosing
which assumption is appropriate for a given environment.

Tests of Monotonicity

Several authors have run between-subjects tests of the RPS mechanism (hence, mono-
tonicity). Most have different groups viewing different sets of decision problems, con-
founding monotonicity violations with framing effects. Examples include Beattie and
Loomes (1997), Cubitt et al. (1998, Experiment 2), Cox et al. (2014a,b), Harrison and
Swarthout (2014), and Freeman et al. (2016). The first two find almost no violations of
monotonicity. The latter three show significant differences between groups. But in all of
these, the subjects who faced the RPS mechanism saw a different set of problems than
the subjects who only saw a single decision problem. This difference in framing may
have altered preferences, causing a potential confound with the results.

There are, to our knowledge, three experiments that use the between-subjects design
and have no such framing confound between groups. The first is Starmer and Sugden
(1991), who use four groups to run two independent tests. In one test the null hypothesis
of monotonicity is not rejected with a p-value of 0.223. In the second, a marginal p-
value of 0.052 is obtained, though the tests are slightly underpowered with only 40
subjects per group.28 The second is Cubitt et al. (1998, Experiment 3), who also run
two tests using roughly 50 subjects per group. The first gives a p-value of 0.685, while
the second is 0.120. Both of these papers study choice over specific pairs of lotteries

27This argument assumes preferences are affected by the decision problems present, but not by the pay-
ment mechanism itself. In a dynamic framework this test may not work because subjects may alter their
choices on unpaid problems, thus altering the feedback they receive prior to making their paid choice.
This would generate a difference in feedback between groups, muddling their comparison.
28Their tests pool together two groups that saw different decision problems. Breaking these apart, we
find the p-values are 0.356 and 0.043, respectively.
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that reveal the presence of common-consequence and common-ratio effects. The third
is Brown and Healy (2014), who run a between-subjects test of the multiple price list
procedure of Holt and Laury (2002). They use 60 subjects per group. There is a clear
violation of monotonicity when all decision problems are shown on one screen (p-value
0.040), but not when each decision problem is shown on a separate screen and their
order randomized (p-value 0.697). This suggests that presenting all decisions together
may trigger reduction-like behavior, causing a monotonicity violation for non-expected-
utility subjects.29

Camerer (1989) uses the RPS mechanism in his experiment, and then, once the pay-
ment state is realized, surprises subjects by asking if they’d like to change their decision
in the paid decision problem. Less than three percent of subjects opt to change, sug-
gesting that the RPS mechanism is incentive compatible.30 Studying lottery choices and
assuming reduction, Hey and Lee (2005b) statistically test the extreme theories that
subjects either treat each choice in isolation or combine them to form one large lottery.
Using multiple functional forms for preferences over lotteries and two different criteria,
they find the data fit better the hypothesis that each decision is treated in isolation.31

Loomes (1998) and Rubinstein (2002) document a violation of monotonicity caused by
‘irrational diversification’, or ‘probability matching’. Imagine a roulette wheel for which
red is more likely than black. Although betting on red every spin is the stochastichally
dominant strategy, many subjects choose to place some of their bets on black, as if di-
versifying their portfolio of bets. Rubinstein (2002) observes this when paying for all
decisions, indicating NCaT is violated. But first-order stochastic dominance is also vi-
olated, suggesting that monotonicity would also be questionable in this setting. It is
unknown whether a payment mechanism exists that can avoid this irrational diversifi-
cation problem.

Ex-ante fairness concerns can lead to monotonicity violations that are unrelated to
reduction. For example, consider a dictator who must give $1 to either Ann or Bob.
Suppose he prefers to give to Ann. If the dictator were given this same problem twice
and the RPS mechanism used, he may prefer to give to Ann once, and Bob once, so that
the random choice of which problem gets paid provides an ex-ante fair division between
Ann and Bob. This was first suggested by Diamond (1967), and evidence of this kind
of preference has been documented by Bolton and Ockenfels (2010) and Cappelen et al.

29Cox et al. (2014b) do run a treatment called ‘ImpureOT’ that eliminates the framing difference, but in
their analysis they do not directly compare this treatment to their RPS treatment.
30This procedure cannot be used regularly, since forward-looking subjects would realize that their initial
choices are inconsequential.
31Hey and Lee (2005a) find a similar conclusion when subjects are given problems sequentially and future
problems are not known.
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(2013), for example. In general, experimenters should be wary of this possibility when
studying repeated play of games with unfair outcomes.

In developing prospect theory (Kahneman and Tversky, 1979), it was found that sub-
jects remove common components of compound lotteries. This ‘isolation effect’ has often
been used as a justification for incentive compatibility of the RPS mechanism (Cubitt
et al., 1998; Wakker et al., 1994). Indeed, isolation (properly formalized) is equivalent
to monotonicity (assuming transitivity), so isolation can be an appropriate justification
for using the RPS mechanism.

Recall that monotonicity and reduction are quite strong when jointly satisfied. For-
tunately for the RPS mechanism, reduction has found little empirical support in the
literature (see Camerer, 1995, p.656 for a survey). For example, Loomes et al. (1991);
Starmer and Sugden (1991); Cubitt et al. (1998, Experiment 1); and Beattie and Loomes
(1997) all run experiments using the RPS mechanism in which two different messages
m and m′ lead to the same simple lottery if reduction is assumed. In their data, subjects
choose one message significantly more often than the other, clearly indicating that m
and m′ are evaluated differently in many subjects’ preferences. Snowball and Brown
(1979), Schoemaker (1989), and Bernasconi and Loomes (1992) also observe violations
of reduction. Halevy (2007) finds that those who do perform reduction tend to satisfy
independence. Thus, subjects who respect reduction seem to be rare, and seem to be
exactly those for whom independence (and, therefore, monotonicity) is a reasonable as-
sumption. Recall, however, that reduction may be triggered when decision problems are
shown together (Brown and Healy, 2014).

In the ambiguity domain, Dominiak and Schnedler (2011) find that subjects who ex-
hibit ambiguity aversion in a two-color Ellsberg-urn experiment generally do not prefer
a coin flip between the two possible bets over each one separately. A plausible expla-
nation for this result is that these subjects do not view the coin as providing a hedge
against ambiguity, because they only view the coin’s randomization as being performed
‘before’ the realization of the urn draw. In other words, reduction appears not to be
satisfied in this context.

Tests of NCaT

There are many settings in which the NCaT assumption appears controversial. In the
introduction, we listed several instances of violations, including wealth effects (Thaler
and Johnson, 1990; Kagel and Levin, 1991; Weber and Zuchel, 2005; Ham et al., 2005;
Ackert et al., 2006) and portfolio effects (Laury, 2005). These possibilities are often
discussed in the experimental literature. We also described above the irrational diversi-
fication result of Rubinstein (2002), in which NCaT is violated.



24 AZRIELI, CHAMBERS, AND HEALY

Ex-post fairness concerns can also lead to NCaT violations. Consider again the dicta-
tor choosing twice whether to give $1 to Ann or Bob. In one decision he prefers giving
to Ann, but if both choices are paid then he may prefer to give $1 to each. Formally, the
bundle (1,1) may be preferred to the truthful bundle (2,0). Since fairness causes issues
with both the RPS and the pay-all mechanisms, the obvious solution is to avoid (when
possible) experiments in which these difficult trade-offs are repeated across multiple
decisions with the same recipients.

On a positive note, the isolation effect is found when all decision are paid (Tversky
and Kahneman, 1981), so NCaT may be justified in some settings. Several other models
of risky choice implicitly satisfy NCaT. For example, if subjects learn about payments
after every period, then NCaT is satisfied if they have reference-dependent preferences
with rapidly-updating reference points (Cox et al., 2014b), or separable expected utility
over earned income rather than terminal wealth (see Cox and Sadiraj, 2006).

Overall, it is difficult at this point to say when NCaT will or will not be satisfied.
This is because there are many different ways in which complementarities can arise;
assuming away all complementarities is a blanket assumption whose interpretation can
vary widely from one context to another. General guidelines will be difficult to achieve.

APPENDIX A:. PROOFS

Proof of Proposition 0

For sufficiency, if k = 1 then the mechanism in which φ(m)= m for each m ∈ M is clearly
incentive compatible. The proof of necessity proceeds in several steps. In each, assume
the hypothesis that φ is incentive compatible, and extensions are only restricted to be
consistent with º on X (the space of constant acts that pay singleton bundles).

Step 1: |Range(φ)| > 1.
If x, y ∈ D i (with x 6= y) then consider a preference º where x Â z for all z 6= x and a

preference º′ where yÂ′ z for all z 6= y. Let m =µ(º) and m′ =µ(º′), and note that m 6= m′

since mi = x and m′
i = y. Incentive compatibility therefore requires φ(m)Â∗ φ(m′), which

implies φ(m) 6=φ(m′). Thus, |Range(φ)| > 1.
Step 2: Range(φ)⊆ X (the space of constant acts that pay singleton bundles).
First, suppose there is some m′ ∈ M such that φ(m′) is not a constant act. Using step

1, let m 6= m′ be such that φ(m) 6=φ(m′), and then pick any º such that m ∈µ(º). Pick an
extension º∗ of º such that φ(m′)Â∗ f for every act f 6=φ(m′). But then φ(m′)Â∗ φ(m) ∈
µ(º), contradicting incentive compatibility.

Next, suppose φ(m) is a constant act for every m, but there is some m′ ∈ M such that
φ(m′) = b′ is not a singleton bundle. As before, pick some m 6= m′ where φ(m) = b 6= b′,
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and some º such that m ∈ µ(º). Pick an extension º∗ of º such that b′ Â∗ b′′ for every
b′′ 6= b′. But then φ(m′)Â∗ φ(m) ∈µ(º), contradicting incentive compatibility.

Thus, every φ(m) is a constant act paying a singleton bundle.
Step 3: Range(φ)⊆⋂

i D i.
Suppose not. Then there is some x′ ∈Range(φ) (by step 2) and some D j where x′ 6∈ D j.

Suppose x, y ∈ D j (x 6= y). Now pick a preference º where x′ Â x Â z for every z ∈ X \{x′, x},
and a strict preference º′ where x′ Â′ yÂ′ z for every z ∈ X \{x′, y}. Let m =µ(º) and m′ =
µ(º′), and note that m j = x and m′

j = y, so m 6= m′. Incentive compatibility requires that
φ(m) = x′ and φ(m′) = x′. But our strict notion of incentive compatibility also requires
that φ(m)Â∗ φ(m′) for any extension º∗ of º, which is a contradiction.

Step 4: Range(φ)= D1 = D2 = ·· · = Dk.
Suppose not. Then there is some D i and some x′ ∈ D i such that x′ 6∈Range(φ). Let º be

a preference where x′ Â z for every z 6= x′, and let m =µ(º). Let x′′ =φ(m), and note that
x′′ ∈ D i by step 3. Now let º′ be a strict preference where x′′ Â′ z for every z 6= x′′, and
let m′ = µ(º′). Since m′

i = x′′ and mi = x′, we have m′ 6= m = µ(º). Therefore, incentive
compatibility requires that φ(m)Âφ(m′). But incentive compatibility also requires that
φ(m′)= x′′, so that φ(m′)=φ(m), a contradiction.

Step 5: k = 1.
(If we assume no two decision problems are identical, then this step is unnecessary.)

Suppose not. By step 4, we have D1 = D2 = Range(φ). Pick any m′ such that m′
1 6= m′

2,
and let x = φ(m′). Now consider the preference º where x Â z for every z 6= x, and let
m = µ(º). Since m1 = m2 = x, we have that m 6= m′. Incentive compatibility requires
that φ(m)Âφ(m′), but also that φ(m)= x =φ(m′), a contradiction.

Proof of Theorem 1

For each º, let E (º) be the set of admissible extensions consistent with º, and E mon(º
) be the set of all possible monotonic extensions of º. Our main results concern the
case where all admissible extensions are monotonic (E (º) ⊆ E mon(º)). Here, a sufficient
condition for incentive compatibility is that acts resulting from truth-telling messages
dominate all acts resulting from any other message, with strict dominance whenever
the other message is not truthful.

Definition 10 (Truth Dominates Lies). A mechanism φ has the truth-dominates-lies
(TDL) property if, for every º, every m∗ ∈ µ(º), and every m ∈ M, we have that φ(m∗) w
φ(m), with φ(m∗)Aφ(m) whenever m 6∈µ(º).

Recall that φ(m∗)wφ(m) for all m implies that the range of φ is X .
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Lemma 1. If E (º)⊆ E mon(º) for every º and φ has the TDL property then φ is incentive
compatible with respect to E .

Proof. Fix a preference º, a truthful message m∗ ∈µ(º), and an arbitrary message m. If
φ(m∗) dominates φ(m) under º then, under monotonicity, φ(m∗) º∗ φ(m) for any exten-
sion º∗∈ E (º)⊆ E mon(º) (with strict orderings when m 6∈µ(º)). Since this holds for all º,
the experiment is incentive compatible. �

Lemma 2. Suppose E = E mon. A mechanism φ is incentive compatible (with respect to
E ) if and only if it has the TDL property.

Proof. Lemma 1 gives sufficiency of the TDL property, so we prove necessity here. As-
sume φ is incentive compatible. Let º be a preference, and let m∗ ∈ µ(º). We claim that
φ(m∗) dominates φ(m) under º. We know from incentive compatibility that for all º∗∈
E (º) and m ∈ M, φ(m∗) º∗ φ(m). Because E = E mon, we also know that

⋂
º∗∈E (º) º∗=w

(see Szpilrajn, 1930 or lemma 2 in our online appendix). In particular, if f º∗ g for ev-
ery º∗∈ E (º), then f w g, which also means that neither f nor g pay in non-singleton
bundles. Thus, φ(m∗) w φ(m). Now, suppose that m 6∈ µ(º). Then, for all i, it follows by
definition that m∗

i º mi, and that there exists j for which m∗
j Â m j. Therefore, for all

º∗∈ E (º), we have φ(m∗)Â∗ φ(m). Consequently, by our hypothesis that
⋂

º∗∈E (º) º∗=w,
we know that φ(m) w φ(m∗) is false. Further, we know that φ(m∗) w φ(m) is true. Con-
clude that φ(m∗)Aφ(m). �

We now begin the proof of Theorem 1 by showing that any RSS mechanism that sat-
isfies conditions (1) and (2) is incentive compatible (with respect to E mon). Let º be arbi-
trary, m∗ =µ(º) and let º∗ be some (monotonic) extension of º. We claim that φ(m∗)º∗

φ(m′) for any m′ 6= m∗. This follows since, for each ω, φ(m∗)(ω) = domm∗(P(X |φ,ω)) ∈ X
and φ(m′)(ω) ∈ P(X |φ,ω) ⊆ X , so φ(m∗)(ω) º φ(m′)(ω). Since m′ 6= µ(º), we must also
show that there exists ω ∈ Ω for which φ(m∗)(ω) Â φ(m′)(ω). Suppose not, so that
φ(m∗)(ω) ∼ φ(m′)(ω) at each ω. Because º is a linear order, this implies that φ(m∗) =
φ(m′). Recalling condition (2) of the hypothesis, this implies that m′ ∈ MR , so there ex-
ists º′ for which m′ =µ(º′). Since φ(m∗)=φ(m′), both acts pick the same elements from
every P(X |φ,ω). Condition (1) requires D i ∈ SI(P φ) for every i, so that µi(º)=µi(º′) for
every i. But µ(º)=µ(º′) contradicts m∗ 6= m′.

Conversely, let φ be an incentive compatible mechanism for (D1, . . . ,Dk). Recall that,
for each ω ∈Ω, P(X |φ,ω) = φ(M)(ω). Let m∗ ∈ MR , and let º such that m∗ = µ(º). By
incentive compatibility (recall Lemma 2), it follows that for all m ∈ M, we have φ(µ(º
)) w φ(m). In particular, this implies that Range(φ) ⊆ X and, for all ω ∈Ω, φ(µ(º))(ω) º
φ(m)(ω) (by definition of w), or φ(m∗)(ω) º φ(m)(ω). That is, φ(m∗)(ω) º y for all y ∈
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P(X |φ,ω) ⊆ X . Since º was arbitrary, this establishes both that P(X |φ,ω) ∈ SI(D), and
that φ(m)(ω)= domm(P(X |φ,ω)) whenever m ∈ MR . Hence, φ is an RSS.

We claim now that for all i, D i ∈ SI(P φ). If not, then by definition, there exists D i,
and preferences º,º′ for which for all ω ∈Ω, domº P(X |φ,ω) = domº′ P(X |φ,ω), but for
which domº D i 6= domº′ D i. Hence, µ(º) 6= µ(º′). Since φ is an RSS mechanism, for all
ω ∈Ω, φ(µ(º))(ω)= domº P(X |φ,ω)= domº′ P(X |φ,ω)=φ(µ(º′))(ω). Consequently, φ(µ(º
))=φ(µ(º′)), but µ(º) 6= µ(º′). In particular, since µ(º) and µ(º′) are each single-valued,
incentive compatibility implies that there exists ω ∈Ω for which φ(µ(º))(ω)Âφ(µ(º′))(ω),
a contradiction.

Finally, suppose that there are m ∈ MR and m′ ∈ MNR such that φ(m) = φ(m′). Let º
be such that µ(º) = m. Incentive compatibility requires that φ(m)A φ(m′) with respect
to º, which contradicts φ(m)=φ(m′).

Proof of Theorem 2

Assume NCaT and incentive compatibility. Clearly, φ(M) ⊆ φPA(M)∪ X . To see this,
note that random payments cannot be used since no assumption is made on non-trivial
gambles. Furthermore, if φ(m) = b (meaning φ(m)(ω) = b for all ω), where b ∈ B(X ) but
b 6∈ φPA(M)∪ X , then pick some preference º′ where m 6∈ µ(º′) and let b be the most-
preferred bundle according to º′. Clearly incentive compatibility fails for º′.

Next, we argue that either φ(M) ⊆ φPA(M) or φ(M) ⊆ X . Suppose not, so φ(m) = b ∈
φPA(M) and φ(m′) = x′ ∈ X . Pick any º such that m 6∈ µ(º), and pick an extension Â∗

such that b Â∗ x for all x ∈ X . This does not violate NCaT, but incentive compatibility
fails.

If φ(M)⊆ X then NCaT places no applicable restrictions on º∗, and the proof of Propo-
sition 0 (steps 3–5) shows that we have k = 1, in which case φ ≡ φPA, φPA(M) = X , and
MNR =;, proving the theorem.

Consider instead the case where φ(M) ⊆ φPA(M). Pick any m ∈ MR and º such that
m = µ(º). Suppose φ(m) = b 6= ∑

i mi. Let º∗ be an extension of º in which b is the
lowest-ranked bundle in φPA(M). This does not violate NCaT, since NCaT only requires∑

i mi be top ranked. But the subject will strictly prefer to announce any m′ 6= m where
φ(m′) 6= φ(m), violating incentive compatibility.32 Thus, φ(m) = ∑

i mi for all m ∈ MR .
Furthermore, it is clear that φ(MNR)∩φ(MR)=;; otherwise strict incentive compatibil-
ity would be violated.

32Clearly, incentive compatibility will also fail if φ(m′)=φ(m) for every m′.
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